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Particle solutions in a unified field theory
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A numerical solution is obtained for the static electric spherically symmetric field in Bonnor's unified field

theory. This solution can be interpreted as a distributed particle with a finite self-energy. Important
constants of the theory k and p are evaluated by assuming the particle carries the electron's charge and

mass.

I. INTRODUCTION

In the thirty years that has elapsed since Ein-
stein proposed his nonsymmetric unified field
theory' progress in the area has been slow.
Closed-form solutions for Einstein's equations
were obtained by Papapetrou, 2 Wyman, 3 and Bon-
nor. These solutions were not, however, in ac-
cord with nature. It appeared that Einstein's equa-
tions did not lead to the correct I orentz equations
of motion for electromagnetic charges. ' This
problem was again examined in 1971 when Johnson
developed a fast-motion approximation which
showed that in the lowest order the proper equa-
tions of motion are obtained. 6 In higher-order
correction terms, however, long-range forces
appear that have not yet been observed in nature. '

Because of the problems associated with Ein-
stein s theory two modifications of it soon appear-
ed. The first was published in 1952 by Kursun-
oglus; the other was published in 1954 by Bonnor. s

The form used by Bonnor was previously consid-
ered and rejected by Einstein for lack of a com-
pelling reason to include it.' In this paper we will
be concerned only with Bonnor's theory. Closed-
form magnetic-monopole solutions for Bonnor's
equations were obtained by Pant in 1975." Pant's
interpretation of his result is based on Einstein's
original identification of the dual of the electro-
magnetic tensor with the asymmetric part of the
metric tensor. An identical solution was obtained
by Boal and Moffat but they chose to interpret it
as an electric monopole. " This is, of course, in

apparent accord with nature. Pant comments, in
fact, that his result seems to allow magnetic
monopoles which are not observed, but forbids
electric monopoles which are observed.

In this paper we prefer to stay with Einstein's
interpretation. ' Using it, a numerical solution is
obtained for the static, electric, spherically sym-
metric field in Bonnor's theory. Particle- type
solutions are obtained which demonstrate a short-
range attraction that stabilizes the charge distri-
bution with a finite se1.f-energy. The Bonnor term

in the field equations may be interpreted as a gen-
eralized ener gy- momentum density. The charge
and mass of the electron is used to determine the
constants introduced by Bonnor.

II. FIELD EQUATIONS

where

(~»»v 2 p g[]»»)v» (2.1}

R„„=r.r„„-a„r„.—I„,r'.„+r„„r'.. (2.2)

is the contracted curvature tensor, g"" is the con-
travariant nonsymmetric metric tensor, and I'~v
is the nonsymmetric affine connection; The field
equations are obtained from

Xdv =0, (2.3)

where g"" and I „„are varied independently subject
to the constraint

vI',„„&
—0.

The resulting field equations are

~ag~ v- govt'ea -gw. I'e. = o,

(2.4)

(2.5}

(g v) (av) (2 &)

Rf.&vy~ +g)tIgy v]) —0 i (2.7}

(2 9)

where

2 Map3 Cabal2'~ (&v»»b' Wv + 2:A»Zm R+'Av, v])' (2.9}

and P is a constant to be determined experiment-
ally. The notation used here is

„a„„,= a,a „„+a„z„„+a~,„,
1

g(»»v) 2 (Rvv+Rvv)»

lg
g'rvvi = 2(R'» v

—Zv~)

Bonnor's modification of Einstein's nonsymmetric
theory may be derived from the Hamiltonian
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III. SOLUTIONS

A. Analytic results

The 82 simultaneous equations (2.5) to (2.8) are
considerably simplified by selecting the spheric-
ally symmetric metric corresponding to a radial
electric field (this is a magnetic field in Boal and
Moffat's paper) to be

-n 0 0 0

trou. ' We simply quote his results:

I =csc 8I fB—PA
2Q

fA+ PB
Sinc,

2Q

fsin8 0

0 -fsin8 -P sin 8 0

0 0

(3 1)

I'44 = 2—

2 2
2
—F2) ——A,

I'&3 ——I'3& ——& Bsin8,2 2 (3.3)

The corresponding contravariant g"" is obtained
from

I 33 ——sln8 coso,

gV
g'OV = ~e ~ (3.2) ~i 3 ~31

3 3

A universal constant k connects gt~„& with the
dual of the electromagnetic field tensor F"". The
relationship is

kF P v — eII'vcr g

3 1I'„=- I",2 =—Bcsc8,

r,3, = r,3, =cote,
l

4 4 YI f4=I4i ==
2p

ff'+ PP'
f2 + p2

(3.4)

f +P

The primes denote differentiation with respect to

Using the affine connections (3.3) in Eqs. (2.6)
we obtain six equations which are not identically
zero. They are

(3.5)

where e " is the Levi-Civita tensor density.
Using (3.1) in (2.5) we obtain 64 linear simul-

taneous algebraic equations. They determine the
affine connections in terms of the g„„and its de-
rivatives. It is easy to see that these I'„satisfy
(2.6). The task of solving 64 simultaneous equa-
tions may seem formidable, but in practice the
use of (3.1) results in considerable simplification.
The 64 equations break into independent groups
each of which includes only a fraction of the orig-
inal number of variables. The solution of these
equations has been obtained previously by Papape-

r' 'n' r' r' }' P' &f'+I = A'--,'(A'+B-')+A. +—'—
2n 2y(2n 2y 2y~ 2 f +p

R22+I22 [(fB—PA)/(2n)]'—+ (fB- PA) +B(fA + PB)/(2n} +1 +-[in(ny)]'

(3.6)=0=csc28 (R»+I»),
(&s rr ) i2 g2

R44+I«= —
I

+
I

—— +A I+—
2 (3.7)

2n& 2o. (2o. 2y j 2 f +p
a' y'l

csc8 (R22+I22) = [(fA +PB)/(2o) J' —B(fB-PA)/(2n) + (fA + PB) +—
~

(2o) + f 2, + 1 }—
=+2@=—csc8 (R22 +I22). (3.6)

In Eq. (3.8), iQ is a constant of integration. Its
meaning will be clarified later.

Now, let

then

A =R'/R,
(3.10)

P =R cosh/,

f=iR sinhg;
(3.9)

B=—i

Taking the linear combination
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y(Rgf +Iff) +n(R44+I4, ) =0,

we obtain

A'+-,'(A'+ B')——,'A[in(ny)]' =O,

(3.11)

(3.12)

by the use of

g =PA fB— and iq =fA + PB

and (3.9). They give

(3.16)

which becomes

(R' 1 /R')2, 2l 1R'
+—

)

—
(
-(y)' ——[ln(ny)] =O.

~R 2. I, R ) 2R

I

~

——[in(ny)]' + y'7}/(2n }i2n &
4n

+1——,
'

p R cosh/ sinh /=0, (3.17)

This may be written as

(3.13)
which may be written as

( v'ny
e —v'nye (1-—,'p2R cosh/ sinh2$} =0,

2n
(3.18}

R'
v'R ay

i' R' 'R——,(y')' = o,
2 ~v'Ra. y R' (3.14) where

which has the formal solution

C R'
&ny =—— e,

2

where

(3.15)
Integrating and solving for a we obtain

C&+ J ze v'ny(1 —2p R coshgsinh p}dr
'

(3.19)

and C is a constant.
Now proceed to R»+I» —0, which we simplify

The lower limit is taken as zero and C, set to zero
to exclude a singularity at the origin.

Turning now to the equation for R», we can write
it as

g'+ —[in(v'ny }]'—Q+ 2p R sinhg(1+cosh g) =0.&n~' ~, n p 1 2

I,2n ) 2n 2n

This can be integrated to give the expression

(3.20)

(3.21)
h.

C2 + J Oe

any�

)Q —~ p R sinhp(1+ cosh2$)]dr '

wher e A' = (- g/q) g'.
Now we have two apparently different expressions for a. In order to cause the two expressions to be the

same, we use the method of Procrustes and require

P1r r
2~ny)e C2+ e v'ny[Q —,' p R sinhg(1 —+cosh2$)]dr = ,'v'nyqe —C,+ e u'ny (1- —,'p2R cosh/ sinh2$)dr

0 al 0

(3.22)

This is an integrodifferential equation with de-
pendent variable g and independent variable r.
Equation (3.16}can be used to eliminate Vny . We
have used only three of the four equations to arrive
at our result, but Kursunoglu has shown that the
four equations are not independent. The fourth
equation is satisfied identically by a solution of the
other three. Also, the Bianchi relation requires
that the choice of the radial coordinate be arbitr-
ary. Choosing r =R we can eliminate R; this
leaves us with an ordinary nonlinear integrodiffer-
ential equation in g and r Before p.roceeding to
its solution we will examine its asymptotic forms.

They will allow us to interpret the constants of
integration. C& and C, are dropped.

B. Asymptotic forms

We can write Eq. (3.22) as

)ee joe v'ny(1 —&p R coshgsinh2$)dr
qe Jo" e ~~&[Q —&p Rsinhg(2+sinh2$)]dr

'

(3.23)

Consider the case where P =0. Rewriting Eq.
(3.16) as
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$ =R'cosh/+Re' sinhg,

q =R'sinhg —Rg' cosh),
(3.24)

we try (=constant (g'=0). With this 8=A=0 and

If now we let

2M=— &R p cosh sinh Cr,
0

(3.31)

$/p =coth(0 = constant.

Thus, we have from Eq. (3.23)

e any =e v'o. yQ ' tanh(0,

and therefore,

(3.25)

(3.28)

Q '=cothgo. (3.27)

The. integrodifferential equation (3.23) is therefore
satisfied when P =0 by

we can write (3.30) as

2M g2P2 1
Q =1-—+ — ~ ~r 2 r (3.32)

2m K
2

C
(3.33)

This is in agreement with the Reissner-Nord-
strom' solution if we identify the mass and charge
by

g -=(0 —constant,

P =R cosh(0,

f=iR sinhgo,

and

+2/2 2K

2 c4 (3.34)

and

CR'
V'ny =-

2 v'R
(3.28)

Turning now to the expression on the right-hand
side of Eq. (3.21) and using F = constant as above,
we find that

cosh/ =1,

sinhP =F/r',

$ =2r,

q =4E/~.

(3.29)

Using them in (3.15) and the right-hand side of
(3.19) we obtain

V'ny =C,

and

The choice P= rma—kes the solution identical to
Papapetrou's solution' for the homogeneous Ein-
stein set' of equations.

When this solution is interpreted as representing
a distributed charge and energy density, we find
the integrals do not converge in an asymptotically
flat space. We regard this solution as an asymp-
totic solution describing the charge distribution
near the center of the particle.

To find the appropriate asymptotic solution in the
region of large r we assume f =iE =constant.
Again choosing P=r and neglecting terms where
F «P r, we find

and this in turn gives

r
o, ' =(2F) ' r[Q ——,'P~E(2+sinh~g)Jdr

0

r
=(2F) ' r(Q-P'F)dr

0

r
——,'P~ r sinh gdh.

0
(3.35)

This is obviously not the previous asymptotic form.
To accomplish this we put Q =FP; this eliminates
the first term in (3.35).

We conclude, in agreement with Pant, that only
the trivial solution exists in the region where the

charge density vanishes (E' =0). In order to find

the solution we seek we must relax that assump-
tion and allow the space to be modified by the pres-
ence of a nonzero charge density. Since we seek a
solution free from singularities and discontinuous

derivative, we must expect a charge density that
is riot identically zero at any finite distance.

By choosing f =E +Z„A„/t"we may 'find A„such
that the Reissner-Nordstrom solution is obtained
as an asymptotic form. '

r OO

n ' =x ' dr — &RP coshgsinh~gdr
0 0

~y2p2 dr
(3.30)

C. Numerical integration

Standard finite-difference methods were used to
obtain numerical solutions to Eq. (3.23). It can be
written as
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r
(2 sinhg+rg' cosh/} 'e '"' e~""+")(1—2 p2y2 cosh(p sinh2(p}dy

0

r
=(2 cosh) —r(I)' sinh())}e~") e '" "I")[tanh(0 —~ p y2 sinh(t)(1+ eosh2(p)]dy, (3.36}

0

where

")7 d(p ""' )}e(r) =
0 5dy

(3.37}

(3.38)

however, approaches an asymptotic form, and the
physical results are obtained by extrapolation from
the region where the computations are more readi-
ly accomplished.

Comparison with the Reissner-Nordstrom equa-
tion gives the results

()()'), dyC'(") — r(=A )&y ='4 f yd dd.404,, dy
(3.39)

and

2mc/cc =2M pcf —yc ecch(tc)ch~(dy (3.40)
0

Q and y are dummy variables standing for g and r
The radial variable may be resealed to absorb

the constant P, so we need only specify the start-
ing values ())0 and g'(0) to determine the solution.
When g'(0} ~ 0, the solution rapidly diverges for
$0 & 0. When P'(0) & 0 the solution generally di-
verges. However, the divergence is found to be in
tbe positive direction when $0 & )). and in the nega-
tive direction when $0 & )). where X is a number that
depends only upon )I)'(0).

The source of the divergence is apparently re-
lated to the divergence noted when the terms in
Eq. (3.36} fail to cancel. This case may be re-
lated to the cosmological solutions discussed by
'Synge.

The limitations of the numerical methods pre-
clude integration to the point at infinity. This sort
of problem is common when a boundary condition
at a distant point is to be satisfied by choosing an
initial value and initial slope. The approximate
results ob.tained from the series expansion about
~ indicate that the Reissner-Nordstrom solution
is approached asymptotically as r increases. Thus
we need only press the numerical procedure to ob-
tain results that approach the Reissner-Nordstrom
solution to the desired degree of accuracy (Fig. 1).

~ p tanb(0 —2ve2/c4. (3.41)

=0.7062 x 10-8 (3.42)

where r =5.6568 is about as far as the numerical
procedure produces reasonable results. The last
term is the remaining field energy approximated
by the inverse-square field (Fig. 2).

The shape of the curve seems to change imper-
ceptibly for smaller g, so we deduce

2zm 0.7062 tanb2$,
2P

for small )1)0.

Also

tanh g, 2)(:e
2@2

— 4 ~

This gives

(3.43)

The integral is evaluated as the numerical solu-
tion proceeds and then is augmented by an amount
determined analytically for the region wher'e the
numerical solution has become unusable. For ex-
ample, in the case where (0 —10 4

) 2M =0.SaSSc)O'+(cc)'ycf
5.6568

D. The fundamental constant
p =&2/a =0.501 x10'3 cm ', (3.45)

The numerical solution of the integrodifferential
equation provides the gravitatiorial field which
gives the appearance of a charged spherically sym-
metric particle with a mass derived from its elec-
trical energy density. When we identify this solu-
tion with an existing particle of known charge and
mass, we can determine the fundamental constant
P as well as the constant relating the electric field
to the metric. The value of $0 corresponding to the
electron provides such a small change in n that
the numerical method is expected to fail through
lack of significant figures. The solution for $,

S~m' '» m
tanh(0= -~ =-—v8g =1.385x10, (3.46)

e e

itanhg, ia ~
p g c

=i1.149x 10 s ec(cm/g}' (3.47)

The lack of spin in this model makes the identi-

where a is the classical electron radius, a =e2/
mc, and
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FIG. 3. . A comparison of normalized field functions. The Einstein-Bonnor theory approaches the Reissner-
Nordstrom solution for large x. In the region of small ~, the Einstein-Bonnor theory approaches Papapetrou's
solution. The Born-Infeld theory has a field function similar to the Einstein-Bonnor theory but lies in a Minkowski
space.

fication with the electron and subsequent evalua-
tion of the constants somewhat capricious.

C'—(1 —~ P2y2 cosh/ sinh~P)dycosh/

E. The Born-Infeld model

r ~O —[tanh(0
sinhg

An analytic solution of a closely related equation
may be found. If th)' is ignored only in the form

s inhP ——,'r g' cosh(—= tan hg,cosh)+ m2g' sinhg
(3.48)

then the integrodifferential equation reduces to

r
tanhge e ' (1 —2P2y cosh/ sinh2$)dy

r
=e e '

[tanhgo
0

——,'p2y si h@(nl + shcoP)Jdy, (3.49)

where

or

=tanhgo ——,'P r sinhg(2+sinh g) (3.53)

P S P P S—
2
—tanhgo ——2s ——, 2 ~ (3.54)

P 2P-s 0 2 2P-s
where

s = r2 sinhg =- if. —

This may be written as

—~ P y sinhg(1 + cosh2$) jdy. (3.52)

Therefore, the integrands must be equal and

tanhg(1 —
& p r2 cosh( sinh2$)

cothQP'dy= —ln
sinhP
sinh 0

(3.50}
P tanhPo
1+O'P (3.55)

0 -=— tanhQQ'dy =- ln
cosh/

0 cosh/0

Thorn we have

(3.51)

which corresponds to the Born-Infeld solution when
the space is taken to be flat.

The early choice of a Hermitian metric (f=is)
now gives us an approximate solution without the
singularity. Bonnor has pointed out that ignoring
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FIG. 2. Mass in nth shell vs x for small charge. The numerical integration fails pastPr =36j4, so we use the
Reissner-Nordstrom curve to estimate the remaining area under the curve.

g' in (3.48) produces an error of up to a factor of
2 in q/]. '

IV. CONCLUSIONS

The classical problem of the interaction of a
charged particle with its own field has been solved
in the Einstein-Bonnor unified field theory. The
static model shows that the asymptotic conditions
that correspond to a charged particle require a
charge distribution that does not vanish at a finite
distance, but is sufficiently concentrated near the
center to look like a point charge for x & 10 ' cm.
The particles mass is derived entirely from the
generalized energy density. The identification of
this model with the electron and subsequent eval-
uation of P and k is clouded by the electron"s spin.
The integrodifferential equation and subsequent
numerical solution may be readily extended to in-
clude interaction terms other than Bonnor's.

Papapetrou's solution, the Born-Infeld solution,
and the Reissner-Nordstrom solution are shown
to be closely related to the present solution. Using
the charge and mass of the electron, we find that
the deviations of n and y from constants are so
slight that they have no observable consequences
(other than the existence of this particleiike charge
distribution).

The solution presented here has the same prop-
erties under space and time inversion and charge
conjugation as the current quantum field theories
of the electron. It is also noted that the antisym-
metric energy tensor is a feature of a spinor field.

If one takes the point of view that the discontin-
uous derivative located at. the center of the particle
is a result of a fundamental process not included
in the present theory, then we have a theory that
predicts a unique charge and charge/mass ratio
for the electron. Once P and $0 are specified, the
charge and charge/mass ratios are fixed.
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