
PHYSICAI REVIEW D VOI, UMK 19, NUMBER 10

Thin spherical shells

15 MAY 1979

Kayll Lake
Theoretical Physics Institute, University of Alberta, Edmonton, Canada T66 2J1

(Received 14 December 1978)

The equation of motion of a thin spherical timelike shell is obtained directly from the Lanczos equations
for all spherically symmetric embedding four-geometries. No explicit form for the intrinsic surface energy
three-tensor of the shell is used, It is shown that for static embedding geometries the condition of positive-
definite total proper shell mass guarantees the impossibility of the coalescence of inner and black-hole
horizons but allows the coalescence of black-hole and cosmological horizons.

I. INTRODUCTION

The equation of motion of a thin spherical timelike
shell with spherically symmetric, embeddingfour-
geometries is obtained directly from the Lanczos
equations withoutuse of an explicit form for the in-
trinsic surface energy three-tensor of the shell.
The procedure qsed here has the advantage that it
streamlines the calculations and does not intro-
duce a spurious constant of integration. Kith sta-
tic embedding four-geometries it is shown that the
impossibility of the coalescence of inner and black-
hole horizons is an immediate consequence of the
condition that the shell have positive-definite total
proper mass. The possibility of the coalescence
of black-hole and cosmological horizons, discussed
recently, ' can be traced directly to the behavior
of null geodesics in the asymptotic regions of
asymptotically de Sitter spacetimes.

For a spherical shell the intrinsic metric can be
given in terms of "comoving" coordinates as

ds z' = R'(7 )(d8'+ sin'8dg') —d~',

where

and the overdot denotes d/dr Fro.m Eqs. (3) and

(4) it follows that

y ee ———4n R c =——I(7),

from which we obtain

Write the metric in the four-geometries V' and
V as'

ds, ' ='(2cdvdr —c'fdv'+r'( d8+ sin'Hdp )), , (7)

II. EQUATION OF MOTION

A timelike hypersurface Z, which divides space-
time into two distinct four-dimensional manifolds
V' and V, represents the history of a thin shell
if its extrinsic curvature three-tensor K, , suffers
a discontinuity when Z is crossed, [K„.]=—&;, I

—ff, , I- go. The intrinsic surface energy three-
tensor S„.is given by the Lanczos equations which
can be written in the form'

where c =c(v, r) and f=f(v, r) For a. simultaneous
embedding of Z in V' and V it follows from Eqs.
(4) and (7) that rz =R(r), 8 = 8, p' = p, and

(c fb' —2cRb)I'=1 .

(9)

With K, ,
—= n6(sx /8$')/-5g', $' the intrinsic co-

ordinates of Z, and n the unit normals to Z, it fol-
lows from Eq. (7) that

K~=+R('~) (cfog —R),
where (n„,n„, ne, n&) =+ c( R, v, o, o). F—rom Eq. (8)
we have

where g,.&
is the intrinsic metric of Z, y-=g'~y„,

and y, , =—[K,.&]. In terms of the shell tangent u',
the proper surface density o is defined by the
eigenvalue equation

cfv —R =+ (R'+f)'i' .
Inserting Eq. (9) with Eq. (10) into Eq. (6) then
yields the equation of motion

(10)

S 'u' = -cpu~ u'u. = -1.i

From Eqs. (1) and (2) it follows that

-8' =y,-&u u +y.i

(2)
Note that Eq. (11) follows directly from the

Lanczos equations (1), the spherical symmetry,
and the form (7) for the metric of the enveloping
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spacetimes. In particular, no explicit form of the
intrinsic surface energy three-tensor S,, has been
used. To obtain M(w) (and thus the history of Z)
we must, through use of the field equations, relate
an explicit form of the three-tensor S,~

to the jump
across Z of the energy-momentum tensors of the
enveloping spacetimes '.Equation (11) is usually
derived from an explicit form of S,.~ (e.g. , an ideal
fluid) via integration of R, a procedure which in-
troduces a spurious constant of integration.

III. RESTRICTION

Whereas Eq. (11) is indifferent to the labeling
of V' and V, the behavior of Z is not. In particu-
lar, we must distinguish the "exterior" to Z.' To
do this, consider the history of Z in the two-st, ces
of V' and V determined by constant angular co-
ordinates 8 and P. At some ~ in the history of Z
consider a spacelike geodesic g of an enveloping
four-geometry to Z, parametrized by A. such that
X =0 on Z arid n =dh"/A on Z. If the area of two-
spheres along g is increasing at Z, that is, dr/A ~z
&0 [where dr/dh~z=n"=+(cfv-8) =+(R'+f)'~'], we
say that n points to the exterior of Z. As long as
0 wo, only one of the enveloping four-geometries
can be exterior to Z. Suppose we label V" as ex-
terior to Z at 7 such that R' w-f„ then the exter-
ior normal to Z is determined, and V' remains ex-
terior to Z until 7'~ such that R' = -f, (~f, & O.for
finite v, ). The "interior" or "exterior" character
of V' subsequent to T~ depends on the explicit form
of $,, .

For shells of positive-definite total proper mass
M(v), it follows from Eq. (5) that Kee~' &Ke)
Moreover, as long as V' is exterior to Z, Keej'
& 0, so that from Eqs. (9) and (10) it follows that

(12)

The coalescence of the inner and black-hole hor-
izons of the Reissner-Nordstrom and Reissner-
Nordstrom-de Sitter (or anti-de Sitter) space-
times violates condition (12). Thus, with the rea-
sonable initial conditions that f, & 0 and b, finite
on some nonsingular spacelike initial surface,
the third law of black-bole mechanics' (for any
spherical timelike shell "perturbation" ) .applied
to inner and black-hole horizons can be viewed
as an immediate consequence of the condition
m(r) &0.'

In asymptotically de Sitter spacetimes the null
goedesics are asymptotically totally divergent
nea, r the future spacelike infinity (or totally con-
vergent near the past spacelike infinity). The
coalescence of the black-hole and cosmological
horizons does not violate condition (12); rather it
is the reverse transformation which does. '
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R czp 8f tp R4gR2[T~u n~'J = + —— —,+—A+ —I3,2 R 80 c c
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Condition (12) is easily visualized in terms of the con-
vergence (or divergence) of null geodesics. Along

null geodesics of the. metric (7) (except the radial null
geodesics with v = const on which the metric is based),

c f=2c dr/dv+t sin 8p(dg/dv)

Suppose c= 0, then if an apparent horizon forms in
p- [f-{ro). =0], it foiiows that either f+&0, or that an
apparent horizon has formed in V'+[f+(v') =0, r&r&j
Consider the static case c =1,f=f(&). In terms of
null geodesics condition (12) gives the relation

dr dw '
c— &Om c—&0.

dv dv

With c,= c, under the conditions governing relation
(12), we have the following: (i) For c=+1, the con-
vergence (d~/dv &0) of null geodesics in the interior
V demands the convergence of null geodesics in the
exterior V+. (ii) For c= -1, the divergence (dh/dv& 0)
of null geodesics in the interior V" demands the diver-
gence of null geodesics in the exterior V'.


