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Radiating fluid spheres in general relativity
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We study the time-dependent field equations for radiating fluid spheres, where we take the energy-
momentum tensor as the sum of the energy-momentum tensor for a perfect fluid and a radially expanding
radiation. We present four new exact analytic solutions with the corresponding pressure, density, and
luminosity distributions. We also present a case where two of the three metric coefficients are given as a
function of the other, thus reduring the problem to choosing one of the metric elements such that
distribution of physical quantities is reasonable. The solutions we have considered correspond to fluids at rest
and have radius independent of time. Hence they represent fluid spheres in equilibrium.

I. INTRODUCTION

Einstein's field equations were first published in
1916. Since then much work has been done to ob-
tain exact analytic solutions and to classify them.
Even today, in the age of fast computers, search-
ing for analytic solutions remaihs valuable due to
the fact that once such a solution is found one can
immediately study all of its physical properties.
Besides, because of the nonlinearity of the equa-
tions, even if one has a general solution there is
always the possibility of the existence of singular
solutions, with entirely new properties. In this
paper we study radiating fluid spheres in general
relativity and present four new exact analytic so-
lutions for their interior.

During most stages of stellar evolution the vari-
ation of physical parameters with time is so slow
that a quasistatic approximation becomes sufficient.
That is, one sets all the time derivatives in the
structure equations to zero and mimics the evolu-
tion of the star by a series of static models, with

varying chemical composition for post-main-se-
quence stars and varying central density for cold
stars. On the -other hand this method fails for stars
evolving very rapidly from one energy state to an-
other. In such cases full time-dependent equations
have to be solved to get realistic models.

In general relativity finding the field of radiating
fluid spheres becomes a much more difficult prob-
lem, basically due to the fact that coupled nonlinear
ordinary differential equations of the static case
are now coupled nonlinear partial differential equa-
tions. The first attempt to solve time-dependent
equations outside the field of cosmology was done
by oppenheimer and Snyder. ' The only analytic
solution they found was for nonradiating spherical-
ly symmetric distributions in, a state of free fall
with zero pressure. Later their solution was gen-
eralized to include pressure gradient terms and
radiation. ' Several authors have also studied time-

dependent field equations for perfect fluids. 4'
Since a nonstatic system in general would be radi-
ating energy their solutions could only apply to
special cases. Besides, the discovery of extra-
galactic strong radio sources and their huge en-
ergy requirements motivated Hoyle and Fowler"
to develop a theory of hot, convective supermas-
sive stars where general-relativistic effects are
important. Also Thorne and Zytkow' have numeri-
cally analyzed the structure of red supergiant stars
with degenerate neutron cores. So far the only an-
alytic solutions to time-dependent field equations
with nontrivial pressure distribution and radiation
are given by Vaidya. ' Here we present four new
exact analytic solutions, one of which is physically
reasonable everywhere, and the other three could
be used to represent portions of relativistic radi-
ating stars.

II. FIELD EQUATIONS AND METHOD OF OBTAINING

ANALYTIC SOLUTIONS

(T"") „„=(I'+p)v"v" Pg"", —

v"e„=l.
(2.2)

(2.3)

(T""), corresponds to the energy-momentum ten-
sor for spherically symmetric and radially expand-
ing radiation and can be given as'

(2.4)

(2 5)

A nonstatic system will be radiating energy.
Hence, the energy-momentum tensor can be taken
as

(2.l)

Here (T"")„„„corresponds to the mechanical part
of the energy-momentum tensor due to matter and
can be taken as the energy-momentum tensor for
a perfect fluid:
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where@ is the density of the flowing radiation
and m".„means a covariant derivative of m". Hence
the final T"' can be written as

equation for radiating fluid spheres as

l ~ jy 'lP'=- (P+p)y'+e'" '"' p+(P+p)IP+ —
I2]

T~"=(P+p) v~v"-Pg""+ me "iv" (2.6)
(2.10)

Using comoving coordinates where
I

v'=e2=V'=0 v'=e ""
so".„m"=0, gr&zo =0 m2=so'=0

p

(2.8)

(2.9)

and T„".„=0, we can derive an equation that re-
places the Tolman-Oppenheimer-Volkoff (TOV)

Next we wiQ consider the most general form of
line element that has spherical symmetry as

de2= e "dr rn-ee(d92+sin gdp ) +e&dt 2, (2.'I)

~=o(r, t), P=P(r, t), y=y(f, r), andc=c=1.

where prime and dot denote partial derivatives
with respect to r and t, respectively.

It can be shown that for P/p-0 and quasistatic
processes, T'".„=0 reduces to the classical
hydrostatic equilibrium equation with radiation
pressure, '

„,(P, +P)=—,, p.d m(r)
(2.11)

Now we can write down Einstein's field equations
for the metric (2.V) as

~PP -—'gl"vg = -SENT»

2 . . .+yI il e 8-
(2.13)

~2 2, 4 4 4 4 4 2r r 2r]

„-&&a,P, tx' P', ~P oy Py&t

(2 2 4 4 4 4 4 &'

pp 3 I2 Q P 3 Q 1 l e f ~p P8»= e "lP-" + :P" --+ — + 2 I+ 3 +e 'I +
2 r r r2) r2 ( 2 4J'

Py' ' ' P'
8 T =- P — +(P — ) +(P — ) —i2 2 &)

(2.14)

The components of T» in comoving coordinates
become

coefficients:

P = T'„p = T,'+-T,' T'„(r = e—"" '"'(u'-) 'T'
Tg —-Q + 0 $0350 ~ T2 —T3 —-Q

~

T4 =p + 0"N@K, Tg = (T lUgK

(2.1V)

(2.18) 1,(1uminosity) = -4mr'e em',
(2.22)

(2.23)

where

T"„=(P+p) v„v" Pg"„+v w-„te",

with

v'=v'=v'=0 v'=e ~12

(2.19)

(2.20)

gy'=e&" »"gp', ~~ „w"=0 (s. ee Appendix A).

(2.24)

From (2.17) and (2.18) one can obtain the analo-
gous equation to Eq. (2.5) in Bayin

&)12T 4
1 2 (2.25)

(2.21)m2 = m'=0, se „so"=0, zo ~.,gr '=0.
From (2.1V), (2.18) and (2.13)-(2.16) one can ob-
tain the physical variables in terms of the metric

Using (2.25) and Eqs. (2.13)-(2.16) we obtain the
foIlowing differential equation which is not altered
by introducing the cosmological constant to the
field equations:
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Pll II yl2 ~IPI Plyl yl ~I ~I yl '

1 e l2 " 8——+ —+ +
2 2 4 4 4 4 2r 2r r' r

OO 0 0 0 0 0 0 o e 0-.-'i",-- —,—,",'-,'-',""'I""-"ip -" (p- )
' (p- ) —"i=a.

(2.26)

HI. BOUNDARY CONDITIONS

A nonstatic distribution would be radiating ener-
gy, and so it would be surrounded by an ever-ex-
panding zone of radiation. Hence the system v611
have two boundaries. The first boundary j,s at
r =R,(t), where the matter pressure vanishes and
the second boundary is at R, =R,(t} where the ra-
diation zone ends. For r &R2 the line element is
simply the Schwarzschild exterior solution,

2M dr2 r2 d 82 +sjn2gd

dt2 (3.1)

For B~- r 82 the line element is found by solving
the field equations for radially expanding radiation
with energy-momentum tensor given in Eq. (2.4).
This solution is obtained by Vaidya~o as

ds = — 1 — dr -r d0 +sin Od
2m

2
ref

~

dt2~2 r ] (3.2)

where E(m) is an arbitrary function of m given by

In order to solve this differential equation in a,
P, and y we need two more relations, one of them
corresponding to an equation of state apd the other
to the law of energy transfer. But due to mathe-
matical difficulties we will use the same method
discussed by By,yin" and assume two relations
among n, P, and y and later check the solution for
physical reasonableness. We take a solution to be
physically reasonable if pressure and density are
positive and monotonically decreasing functions of
r throughout the star, and pressure vanishes yt
finite radius. Since we are using camoving coordi-
nates the boundary of the star should be indepen-
dent of time. This alone greatly limits the possible
forms for time dependence of the metric coeffici-
ents. Also we should have positive o and zo' for
radiating fluid spheres.

,I =F(~) . (3.3)

Continuity of the metric at r =8, determines the
arbitrary function 4 (t) which appears when (3.3)
is solved for m. F(m) is determined by the con-
ditions at r =R„ then Eq. (3.3) is solved to obtain
m = m(r, t). Taking the classical limit of (3.2) one
sees that classically E(m} corresponds to luminos-
ity.

IV. SOME ANALYTIC SOLUTIONS

A(r, t) =f(r)g(t),
R(r, t) =@(r)k(t),

(4.2)

which gives the following differential equations:

f —( + If"—
~A r]

a" 2a" 1 a'& f'
+ —,—— If =(2ea)a yP r g& f
4 =sg,

(4.3)

(4.4)

where s is an arbitrary constant. Note that this
equation reduces to a second-order homogeneous
differential equation for f (r) once h(r} is known
for a static case.~2

Next we assuihe

e'=a'=a C'(r) e'(t)
ey=A'=A 4 '(r)g (t),

(4.5)

(4.6)

First we assume u =P which reduces the metric
to isotropic coordinates: Equation (2.26) becomes

A." B" 2R" 2AB' 1 &A' B' )
A. 8 a' AR r iA a)

R (»'
RA

where

A'(r, t)=ev&r, t& R2(r, f) =es'I ~ ".
Equation (4.1) is separable in space and time

variables. Hence we make the substitution
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where Bp, Ap, b, a are constants. Substituting
these into (4.S) gives us the differential equation
to be solved for Q(r):

@I @f2 2e" ——c -=-2 ' 'i C&'"&/'i
i
ee',4 Apj

(4.V)

y '"=c,e (zr —1}+c,,
where

(R )1/2
s.

(Ap j
This gives the following metric coefficients:

(4.9)

I 2 I 22b2-2a2 —ab+b -ac= b-a (4.8)

tl

We also have k = sg to be solved for the time-de-
pendent part of the metric. The only solution we
have found for general a and b is Q = constant. It
is also possible to solve (4.V) for a =0 and a = -b.
Now we study these solutions.

Solution I
FOr a= -b, c =2b+14 1, s0, we find

ez=zi, [c,e (zr —1)+c,] 'b'(t), (4.10)

e~=A~ [c,e'"(zr —1) + c,] 'g'(t) . (4.11)

Now we determine k(t ) and g(t) using (4.4) and the
physical reasonableness conditions discussed in
Sec. II. In order to have radius independent of
time we may choose b(t) =g(t} which leads to k(t)
=coe" from Eq. (4.4). Actually b(t) =coe" is the
only form that has the desired property (see Ap-
pendix 9).

The pressure and density distributions now be-
come

e "28t
8vP =[c1e'"(zr -1)+c1]'

Cp

e-28t
8vp = [c,e'"(zr —1)+c,]'

Cp

-2c1z'e~ (-,'c1z'r—'—2c, +zc,r) es" +2c, +zc,r s'
a, [c,e (zr-1)+c,]'

z'e~ (c,e'"+c, +zrc, e'") 6c1—Sc,' 'zre Ss'
8, [c,e'"(zr —1)+c,]' 4A,

(4.12)

J(r, t) =- ' z'r'[c, e'"(zr -1)+c,] 'e~, (4.14)

2st 4c z2 s2
87/P, =(c, —c1)', —

(
'

)
—~

e "' z' (c, +c,) 6c, Ss' ~
8wp, = (c, —c,)', ,' „'+

0 P &2 1& 0-
L,,=O.

(4.16)

Solution II

For a=0, (cb+s1)e1, se0, we have

y(r) (c r2+c )1/(1-c)

e8 R (c r2+c )se2st
0 0

e~=A e2
0

with the properties

(4.1V)

(4.18)

(4.19)

This solution could be physically reasonable
throughout the star. The radius is defined by
P(R) = 0 and R is independent of time but it can-
not be found analytically from Eq. (4.12).

8 -2„ ii &2C0 C, 3S'
(4.21)

Note that p=T4 since T, =O. This solution has
pressure and density as functions of time only;
also, there is no radiation. Hence, even though
it could be useful in cosmology with the addition
of a cosmological constant to obtain positive pres-
sure, it is not a suitable solution to represent in-
teriors of radiating fluid spheres.

Next we make the following substitution to Eq.
(2.26):

A'(r, t) =e/, +(r, t) =e", C'(r, t) =es, (4.22)

S2
&Mat 0 1

Bp 4A0
(4.20)

and A(r, t) =f(r) g(t), 'B(r, t) =h(r)k(t), C(r, t)
=t(r)m(t), to obtain
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I II I I 2 f II

I l2 f
f'I' f'h' h'l' h' f' 1 h'k'

f I fh hl hr fr r' I'm'r'

I 'k' m m' k pm
f'g m m' k km

gm gk hk I'm
2

m f' 2kl' (m k 2

gm gk fg g tm m f kl )m k

(4.23)

If we take

l(r) =1, c(r, t) =m(t), and k(t) =m(t), (4.24)

Eq. (4.23) becomes separable. Hence the differ-
ential equations to be solved for x and t, respec-
tively, become

difficult to solve. Note that for static models
(4.30) reduces to the Bernoulli equation, which
@an be reduced to quadratures immediately. '~

Now we present various solutions to (4.30).

f2 fir flhl hl fl ] h2

hf' f fh hr fr r' r' ) f'f'f'=0 (4.31)

(4.25) Eq. (4.30) is immediately integrable leading to the
following metric coefficients:

2m
=S~ (4.26)

where s is a separation constant which in general
could take complex values:

f(r) =~~,

h(r) =(c,r'+1) ',
m(t) & &(s/ )ts

74=O.

(4.32)

(4.34)

(4.35)
S =So+LSd. (4.27)

+f'(r) g'(t)dt', (4.28)

which could be considered as the time-dependent
generalization of the Schwarzschild metric in can-
onical coordinates.

Using m =g, Eq. (4.26) is immediately integrable
giving (see Appendix B)

Of course to obtain physically reasonable answers
at the end we have to take the real part of the phys-
ical quantities.

For the above choice (4.24) the line element can
be given Rs

ds' = -h2(r) m'(t)dr' (mt) r-'(d 8'+sin'Od(t)')

This solution again is not suitabl. e for representing
interiors of radiating fluid spheres. Actually it can
be transformed into the form of solution H by a new
choice of radial marker. Hence we will not discuss
it any further.

Equation (4.30), which can be written as

h' =ft(r) k+f2(r)h +f,(r)hs,

can be converted into one of the second order by
the following transformation~3:

)d )= ( ) ()r, zz=zfvvfr, (r)dr, v=ezp ff dr

(4.3V)

m(t) c eis/2)t (4.29) En the new independent variable,

and (4.25) gives the following first-order differ-
ential equation for h(r), once f (r) is known:

f' 1l

. u'(z) = u'+ g(z) u', g(z) = v(r)

Now let

(4.38)

(4.39)

(4.30)
so that

r'z"(r)+g(z) =0. (4.40)

This is Abel's equation of the first kind and is quite If (4.40) can be solved, then (4.39) will give us
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u(z}, and (4.3V) gives the general solution of (4.30).
Now we will try the following form for f(r):

f (r) =aor", r/(constant) e-1 .
Evaluating the integrals (4.3V) we get

(vF lnr) '.
p&p

The physical parameters can be given as

f(r) = =—(ur lnF) ',
+p

(4.51)

(4.52)

&(r) r(n~-On-1)/(n+1)
y

s(++1) rwn/(n+1)
20p

Hence (4.40) becomes

F z"(r)+froz~=0,

where

ao 2ao " (no —n —1)
sn s(n+1) ' n

(4.42)

(4.43)

(4.44)

(4.45)

h(F) = — ', m(t) = coe(n/2)(2a lnF'

s 1nF'+2 '

Eo'e " r(lnF+2)'
C()

xI 3—f3 2lnP(lnP+4)
~(lnr + 2)'

——(lnF)
—2

p 2~-St
8)(p(F, t) = o, ——F(lnr+2)'

0

Q P in@2

(4.53)

(4.54)

(4.55)
We do not have a solution to (4.45) for general m,
but for nz = I, n = I we have the following solutions: (4.56)

z(F) =vP[c, z,(F) +c,z,(F)],
(i) &o

——,
' = ro'&0, z, (F) = cosr, lnF,

z,(F) = sinr, lnF,

(ii) ro'&0, z,(P) =(F)"o, z, (F) =(P) "o,

(iii) r,'=0, z, =l, z,(r) =lnP,

(4.47)

(4.48)

(4.49)

Note that we have the condition

r &0 —,——&0ap I
p y S2 4 y (4.5V')

The radius is defined by P(R) =0, and is given by

lnR = —', (llvl139) .

Solution IV

For xp'&0 we have found

z(F}=Pour lnr,

where Fp=c, cos~,+c,sin~, .
Vfe will use P as our radial marker, where

(4.50)

where go = -ao'/s . Now we will evaluate the phys-
ical parameters.

with the above equations, which could only be sat-
isfied by complex s. Hence the rea1 parts of the
physical variables have to be taken after substi-
tuting s = sp+ is, into the above formulas with sp
and s~ arbitrary real constants. Note that from
(4.51) F ~ as r 0 and J),-~, p, -~, and I,,-O
at the center. In this respect this solution is not
reasonable at the center but could satisfy our phys-
ical reasonableness conditions for finite ~'.

Solution V

For &p'&0 we have found

z(F}=WF [C,(F)"o+Q (P) "o], r =(s/a, ) [ (c)"F'"o' +(c)~P' o]1/' (4.58)

s I (r, + 1)c,(F)"o+ (-,' -r, ) c,(r) "o ' (4.59)

(4.60)
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(t ) = c,e(8&x) 8

e" [(c,/2+c, r,)(r)"o+(c,/2 —c, ro)(F) "()]'
(a, /s) [c,(r)"o+c,(r)" ]

r"'[c,(r)"()+ c,(F) "()] h'(P)" ' r
( / ) h 4

3cp(r t)=, —'+c,r, (r)' + —* —c,r, (r)" (3r)+ 2 ', ——[c,(r)" '"*+c,(r) " '"*['I,
Q

where

dh 1 dh
h dr h dr (dr/dP)

o ~ [r.cx(P)"o —c,r o(F)-" o] [ c,(F)" +c,(r)-" ]
s (c, /2+ c, ro)(P) "() + (c, /2 —c, ro)(F) "o

(4.61)

(4.62)

a, ~ [(c,/2+c, r,)(P)"o —(c, /2 —c,r, )(P) 'o][c,(F)"o+c,(F) "o]'
s [(c,/2 + c,r,)(r)"o + (c, /2 —c,r, )(P) "()]'

L r t)
s' [(r, +o) c,(P)"o+(-,' r,) c,(P) "o]'

~@[c,(F)"o+c,(F) "o] '
%'e have the condition

(4.63)

(4.64)

ao0 &0
s 4

with the above equations. This solution is also unphysical at the origin but otherwise it is well behaved.

Solution VI

For ro=0 we have found

z(P) =WF(c, +c, lnr), r = (P) "'(c,+c, lnr) '.
0

(4.65)

The physical variables become

2a c +c lnr
s c, +2c, +c, lnr ' (4.66)

f (F) = s(F) "'(c,+c, lnr) ', (4.67)

e " F(c, +2c, +c, lnP)2

Co

c~+c, lnr 1 1 FX 1+4 ~ ' — ——(c, +c, lnF)oc, +2c, +c, lnr i c, +c, lnr c~+2c, +c, lnr 4 (4.68)

e -st 2a'
8cp(r, l)=, — (c, +2c, +c, lcr) +, ——, ) r(c, +c, lcr) (4.69)

s'
( ) „, (c, +2c, +c, lnF)'

8Eao' (c, + c, lnF)'

The condition ro = 0 gives

a2
0

S

(4.VO)

Again we have to consider s in the comply plane and at the end take the real part of the physical vari-
ables which are unphysical at the origin, otherwise well behaved.

Note that E(1. (4.23) is still separable even if we take l as a function of r, as long as h(t) = m(t). The
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differential equations to be solved in this case become

(4.V1)

2m/g=s. (4.V2)

Equation (4.71) is again an Abel equation for h(r)
and we need two more relations between h, f, and
l to solve it. As our first relation we take

l'--+ + —=0,
l

(4.73)

X
c z )srz (4.V4)

(4.V5)

where co is an arbitrary constant. Hence, if we
choose l(r) as our second relation, (4.74) and

(4.V5} will give us the other metric coefficients
and the problem will be solved. Of course whether
these solutions we generated by arbitrarily choos-
ing l (r} are physically reasonable or not has to be
settled later.

which immediately makes it possible to write h. and

f in terms of / as

equation and is quite difficult to solve. %e reduced
it to one of the second order (4.40). This led to
three new solutions (solutions IV, V, VI). They are
not reasonable at the origin but otherwise satisfy
our physical reasonableness conditions. Also, for
the metric

d s' = -h(r)' m(t }'dr'
—I'(r) m(t)'(r'd 8'+ r' sin'Odg')

+f(r)' g(t }'dt ',
we managed to write h(r) and f (r) in terms of /(r).
This reduced the problem to choosing a functional
form for l(r) which will lead to physically reason-
able pressure, density, and luminosity distribu-
tions; see Eqs. (4.V4) and (4.V5). The solutions we
have considered correspond to fluids at rest and
have radius independent of time. Hence they rep-
resent Quid spheres in equilibrium.
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V. SUMMARY AND CONCLUSIONS

We have discussed radiating Quid spheres in
general relativity and used the same technique
discussed by Bayin to solve them. The differ-
ential equation to be solved for isotropic coordi-
nates is immediately separable in space and time
coordinates; see Eqs. (4.3) and (4.5). In these co-
ordinates we have found one new solution (solution
I) which is physically reasonable throughout the
entire star. Solution II is already known in cos-
mology and leads us to the Robertson-%'alker met-
ric. This solution is not good for representing
radiating Quid spheres.

Next we studied the field equations for the metric
(4.28) which can be considered as the time-depen-
dent generalization of the Schwarzschild metric.
Eq. (2.26} for this metric turned out to be separ-
able and led to (4.25} and (4.26) to be solved for r
and t, respectively. Equation (4.25) is an Abel

APPENDIX A

Since photons have to follow null geodesics, we
obtain the following two equations to be satisfied
by so ~'

m "m„=0,

which gives

ZO4=e'" ~"'m' (A1)

w ".„se"=0.
t

Eliminating eo' among (Al} and (A2) we obtain

(A2)

BK „8% ~1+ I ~

+g( - ) )i2~ 0Br BI' 2

(As)

to be solved for so~. A solution of this differential
equation, with the particular time dependence of the

/
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Similarly, in isotropic coordinates the luminosity
is given by

s f'~' '(

1.(~, f) =-
@

(A6)

metric w'e are using is

zo'=Ee' ~ '~' andm'=/e ~

where E is an arbitrary constant.
Using (A4) and (2.28) with the line element, E(l.

(4.28), we obtain the following expression for lum-
inosity:

(A5)

With the substitution (4.2) we obtain

@)I hl2 f ll /If +f)h("=a'u' I a'' f '
ay~

1 2k k2 2kg
f'g -k k' kg

Since the radius is defined by P(R, t) =0, R could
be independent of time either by having

k=g,

which leads to

APPENDIX B st
Q (B4)

The differential equation to be solved for the
time-dependent part of the metric from (4.4) is

k =sg. (Bl)

%e are looking for a solution where the radius of
the star is independent of time.

From (2.22) and (2.14) with n =P for isotropic
coordinates the pressure takes the following form:

(„) . () w" y""))'+y')
2 2 2 2r

(B2)

or by having

2k k 2kg
k2 (B5)

g=0 k = const. (Be)

Hence (B4) is the only solution with desired prop-
erty. A similar argument leads to (4.29).

But simultaneous solution of (B5) and (B1) leads to
a trivial answer:
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