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We study the interior magnetohydrodynamic structure of a rotating stationary axisymmetric neutron star.
We assume the fluid is ideal, infinitely conducting, and flows only azimuthaly. We justify this assumption by
considering in detail the superfluid physics in the interior. We obtain some of our results by taking a certain
limit of previously. discovered magnetohydrodynamic conservation laws. We show that the angular velocity,
electric and magnetic potentials, and the red-shifted chemical potential are constant on magnetic surfaces.
We demonstrate that the absence of meridional circulation implies the vanishing of the toriodal magnetic
field. This clashes with previous arguments from the probable evolution of the magnetic field during the
collapse to the neutron star. We solve completely Maxwell's equations for the distribution of magnetic field
strength, and we show that the magnetic surfaces are the equipotentials of a simple geometrical invariant.
With neglect of gravitational effects the magnetic field must be uniform in the interior in accordance with the
Deutsch model, but at variance with numerous other models which have been proposed for ordinary stars.
Gravitation, causes the magnetic surfaces to flare out toward the polar regions and enhances the central field
as compared to the polar field. The star must be charged; the charge distribution depends on the magnetic
field strength and on the angular velocity relative to the local inertial frames.

I. INTRODUCTION

It is widely agreed that pui. sars and pulsating x-
ray sources are rotating magnetized neutron
stars. ' In a neutron star (NS) the gravitational
binding energy per particle can be a tenth of the
rest energy. Thus general-relativistic effects are
sizable, and a definitive investigation of the mag-
netic structure in the interior and magnetosphere
of a pulsar or pulsating x-ray source will have to
be based on general-relativistic magnetohydrody-
namics (GRM). Although the outlines of GRM have
existed for years, '3 there have not been concrete
methods for solving the complicated coupled equa-
tions of the theory for a particular model. This is
perhaps the reason almost all investigations of
magnetized NS's (for example, Refs. 4-6) have
been based on special-relativistic or Newtonian
magnetohydrodynamics (but see Ref. 7). The mod-
el usually adopted is that of a rotat, ing conductor
endowed with a uniform interior magnetic field
which may or may not be parallel to the rotation
axis. Aside from not being general-relativistic,
this model has two drawbacks: The shape of the
magnetic lines is assumed, not calculated, and the
magnetic structure is treated separately from the
fluid structure. Clearly the situation needs im-
provement. A fully consistent GRM model for a
magnetized rotating NS is desirable, not only in
the interest of realism, but also to make'a check
of relativistic gravitational theory in the strong-
field limit possible once other aspects of the prob-
lem are well understood.

Our purpose is to show that a GEM treatment of
a, magnetized rotating NS model is feasible, and to

derive a number of exact results bearing on the
interior magnetohydrodynamic structure of an NS
having its rotation an'd magnetic axes aligned. This
restriction is, of course, overly stringent; in pul-
sars and pulsating x-ray sources the axes are un-
aligned —otherwise there would be no pulses. Yet
one need only recall the progress made in under-
standing pulsars as a result of the classic Gold-
reich and Julian aligned-axis model to realize
that one could profit greatly from even such an
oversimplified model. None of our results depend
on Einstein's equations; they are equally valid in
any metric theory of gravitation. The gravitational
theory comes in only in determining the metric.
Hence observational testing of various gravita-
tional theories by comparison of the model with
observations should be comparatively straightfor-
ward.

The jumping-off point of our analysis is a collec-
tion of conservation laws for stationary axisym-
metric GRM flow which we deduced earlier. We
review these laws in Sec. II. In Sec. III we justify
the assumptions of our model: that the star's ma-
terial can be regarded as a single fluid, that the
fluid is ideal and infinitely conducting, that the flow
is purely azimuthal, and that there is stationary
and axial symmetry. In Sec. IV we demonstrate
that the fluid's angular velocity and the electro-
magnetic potentials are constant on the surfaces
containing equivalent magnetic lines —the magnet-
ic surfaces (MS's). The first result is the rela-
tivistic generalization of Ferraro's classical theo-
rem which was earlier considered by Yodzis. 3 In
Sec. V we show that the appropriately red-shifted
chemical potential of the Quid is constant on each
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MS. In Sec. VI we prove that there can be no tor-
oidal magnetic field in our model, and that con-
sequently the electric current is purely azimuthal
and of a convective nature. The magnetic field
strength is the subject of Sec. VII, where we ex-
plicitly integrate Maxwell's equations to deter-
mine its distribution throughout the star. The
shape of the MS's is determined in Sec. VIII, where
we show that the MS's are equipotentials of an in-
variant combination of the Killing vectors and the
angular velocity field. In,Sec. IX we examine in
detail the magnetic structure of a Newtonian model
star: We show that the field must be uniform, and
we discuss departure from this behavior due to
first-order relativistic effects. Finally, in Sec.
X we find some relations between MS constants,
and also discuss the electric charge distribution
within the star.

A w'ord about conventions. Our signature is + 2.
Greek indices run from 0 to 3 with x =(t, x', x2, Q);
t denotes time, P is the azimuthal angle; Latin
indices run over the remaining coordinates. We
take c =1.

II. CONSERVATION LAWS IN GRM

Assuming the permittivity and permeability of the
fluid are unity, one can describe the electromag-
netic field by a single antisymmetric tensor J'

z
obeying Maxwell's equations

+fOIBt tl —O~

+of/ 4 ~Jal

(1)

(2)

One can choose a reference velocity u, which we
shall identify with the baryon velocity, and define
the electric and magnetic field vectors referred
to u (see Ref. 3):

N & ngyoB p'6 Qg gy6 (4)

where e "' is the Levi-Civita tensor.
The electric current can be decomposed into con-

duc tion and convection par ts, ' 3

J =crE +au (5)

where o' is the conductivity and &=-t u is the
charge density measured by an observer with vel-
ocity u . In most astrophysical situations o is
very large and may be regarded as infinite. Thus
t will be finite only if the frozen-in field condi-
tion

(6)

is satisfied. '3

Assuming the plasma into which the field is fro-
zen is ideal and nondissipative, one can write

E„/F,~ =A (a=1, 2; no sum over a),

Bo= Cn[(u, Au, )-u +5, -A5™.],

(10)

where the coordinates x' are those independent of
t and Q, and where A and C are conserved along
each flowline (but may differ from flowline to
flowline). In addition we showed that E, I, and D
are also conserved along flowlines, where

(12)

(13)

(14)

D -=q(u, -Au, ),
—E=xu, +C(u, -Au~)B, /4 , v

J = }(u~ + C(uq Au~)B~/4w

and }(= p, +B /4'. E and L are the enthalpy and

enthalpic angular momentum per baryon of the
plasma and magnetic field, as measured from in-
finity. We found the relation

(15)D —E AL,

which together with (12)-(14) implies that

B /n+C(B, -AB~) =0. (16)

The conservation laws (10)-(14) for A, C, E, I,
and D are the basis for our investigation of the
magnetic structure of a xotating NS's interior.
Before we get into that let us pose our model.

III. MODEL AND ASSUMPTIONS

It is widely accepteds'0 that an NS's interior is
divided into three distinct regimes: a solid crust,
a thick neutron superfluid layer, and a hyperon
core. It has been suggested that the core is solid,"

Euler's equations as

(p+p+B'/4&)& N=- &N'[(0+B'/«), a

—(BqB"),„/4. vr j,
where p and P are the mass-energy density and
pressure, respectively, a =-u,.zu~ is the plasma's
acceleration, 8 =-B 8, and h z=g 8+u ua. By
combining (7) with the homogeneous Maxwell equa-
tions, the local conservation of energy, and the
conservation of baryon number, we derived the
useful results

(pB ); =0 (6)

where p,
= dp/dn =(-p +P)/ nis the plasma's chemi-

cal potential, and n is the scalar baryon density.
The results that we now summarize follow from

the preceding theory for the case of stationary and
axisymmetric flow. 8 Let us denote by t and P the
corresponding time and axial coordinates; all phys-
ical quantities are independent of t and P. Then

+~a =o
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but the concensus opinion is that there is no good
theoretical support for solidification. We shall
thus assume that our star is fluid throughout the
interior. We now wish to argue that under the con-
ditions of interest, the flow inside the star may be
regarded as that of a single, ideal, infinitely cori-
duc ting fluid.

The material in the interior (core excepted) is
mostly neutrons with a small admixture of protons
and an equal number of electrons. '0 It is well es-
tablished, both theoretically' and observationally,
that the neutrons form a superfluid. As is well
known a superfluid flows inviscidly and is an ex-
cellent heat conductor. ' Thus the bulk of the ma-
terial is an ideal fluid. However, it does not follow
that one can speak about a single baryon velocity
under all circumstances. Because of the super-
fluidity, the neutron and proton fluids couple only
very weakly; thus in general one would have to
consider both a neutron and a proton velocity. ,For
example, after a "glitch" (pulsar speed-up) the
neutrons will flow with their preglitch velocity
while the protons, being tied to the crust via the
magnetic field threading the star, will flow fast-
er. Similarly, if the crust is subject to.a sizable
braking torque due to pulsar radiation, the proton
fluid will flow slower than the neutron fluid. '

Our considerations will be confined to an NS
whose crust is not subject to glitches, or appre-
ciable radiation, or accretion torques. In this
case the weak coupling of proton and neutron flu-
ids due to the interaction of the protons with the
normal component of the neutron fluids (which must
be present at finite temperature) will eventually
erisure that the two fluids flow with one velocity.

- The same effect is brought about by a different
factor —the existence of an array of vortex lines
in the superfluid due to the rotation. "' Although
superfluid flow is irrotational, the effect of the
vortex lines is to endow the superfluid with a "vor-
ticity in the large" which mimics that of an ordin-
ary rotating fluid. It is quite probable that the
vortex lines are pinned at the crust. " Thus by
virtue of their intrinsic tension they will drag the
superfluid at the same angular velocity as the
crust. (The assumption that the crust is unaccel-
erated ensures that the vortex lines do not get
bent or tangled. ) The proton fluid is dragged by
the magnetic lines (which are anchored to the
crust) at the same angular velocity. Thus macro-
scopically neutrons and protons flow with the same
velocity. The second mechanism we discussed re-
mains operative even if, as may well happen, ' the
protons form a superconductor, in which case the
first mechanism is ineffective. We may conclude
tha, t macroscopically the neutron-proton fluid may
be treated as an ideal fluid described by a single

velocity field. Furthermore, the angular velocity
will be uniform.

According to (5) the conduction current a'E will
be solely electronic; protons contribute only to
eu . The electrons cannot collide with the neutrons
which are superfluid (except for the rare normal
component in the vortex cores). They may collide
with the protons if these are normal. However,
if the protons are superconducting, the only
sources of electric resistivity are the interaction
of electrons with the magnetic moments of normal
neutrons, and with charge density fluctuations of
other electrons. Clearly the electron conductivity
will be high. Calculations have shown'4 that even
if proton superconductivity does not set in, the
conductivity is so high that the magnetic diffusion
time can be much larger than 10' yr. Over short-
er times the field will be frozen into the fluid, and
condition (6) will hold. If the protons are super-
conducting the diffusion time scale is lengthened.
However, a superconductor strives to expel the
magnetic field (Meissner-Ochsenfeld effect). '2 It
appears that in neutron stars the expulsion time
is so long that the field simply concentrates into
a multitude of quantized vortices (type-II super-
conductor). ' ' Macroscopically, the field will be
effectively frozen in. We conclude that the super-
Quid behaves as an infinitely conducting fluid with
a frozen-in magnetic field.

The core baryons are most likely nonsuperfluid. '

Their strong interaction guarantees that they may
be described by a single baryon velocity. All fer-
mions in the core should be highly degenerate.
This will suppress dissipative effects such as vis-
cosity or thermal resistivity. Thus it is a good
approximation to regard the fluid as ideal. The
free electrons and muons will flow with little im-
pediment —the Pauli principle suppresses their
scattering. Furthermore, a negative pion conden-
sate may form in the core'6; it will be supereon-
du, cting. ' There are thus two factors that make
the core medium an excellent conductor. If pion
condensation occurs, the magnetic field will prob-
ably not be expelled, but will nucleate into vor-
tices, being effectively frozen in. It will be the
agent which couples the core to the crust. We may
conclude that the core fluid may also be regarded
as an ideal, infinitely conducting fluid with a fro-
zen-in magnetic field, and probably corotating
with the crust.

We assume our model star to be stationary and
axisymmetric. This immediately implies that the
magnetic and rotation axes are aligned. We note
that this is a necessary restriction if we are to
avoid a radiation-induced braking torque on the
crust as specified earlier. 'Although our assump-
tion is unrealistic for pulsars and pulsating x-ray
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sources, it may hold for old NS's in which the
magnetic symmetry axis has already been aligned
with the rotation axis by a radiation torque. ' We
hope that our results will also be representative
of the actual situation for pulsars and pulsating
x-ray sources if we exclude questions about the
pulsed emission. The assumed symmetry would
still allow meridional circulation (nonazimuthal
flow) such as tends to be induced in ordinary ro-
tating stars by centrifugal forces. ' The situation
being considered here is, however, unique because
of the presence of the superfluid with its array of
vortex lines. It is hard to see how the vortex .

structure could coexist with meridional circula-
tion. And if there is no vortex array, the super-
fluid does not rotate even on a macroscopic level.
We thus assume the flow is strictly azimuthal.

This assumption has a strong bearing on the
form of the metric. By the symmetries we must
have g &, , ——g &, ~

—0. If the effects of nonazimuth-
al flow in the star's magnetosphere are negligible,
it follows from a theorem proved by Carter'9 with-
in general relativity that

g,.=g,.=o, a=1, 2.

(Of courseg, ~&0 because of the rotation. ) These
results may well hold in other metric theories of
gravity, and we shall assume them throughout. We
note here that the influence of the magnetic field
on the metric will be negligible for realistic sit-
uations. From estimates based on flux conserva-
tion, and from analysis of the observed rotational
braking, a value of order 10' 0 is inferred for the
magnetic field of pulsars. " The same value may
be typical of pulsating x-ray sources. Thus the
magnetic energy density and pressure are both of
order 4~10 erg cm 3. These are negligible com-
pared to the typical fluid quantities in NS interiors,
p=1035 ergcm 3, P =103 erg cm 3. Thus the mag-
netic field contributes negligibly to the stress-
energy tensor and may be ignored in calculating
the metric. Henceforth we assume the metric is
known.

IV. ANGULAR VELOCITY AND ELECTROMAGNETIC
POTENTIALS

From now on we shall confine our attention to
the fluid interior of the NS. We made it plausible
that it rotates uniformly. However, for the sake
of discussion let us consider the more general case
of differential rotation. We denote by 0 the angu-
lar velocity dP/dt =u~/I'; it is a function of the x'
only. Let us introduce the electromagnetic vector
potential A defined by I'

~ =A~ -A z and let
4=—A, and 0 =-A~. By exploiting the gauge freedom
one can make C and 0 depend only on the x'. It

follows from (6) with u'=0 (no meridional flow)
that

4 +0+ =0.
Taking the cur l we get

Qq+ -0 4 ~=0.

(18)

The equipotentials mentioned are also the MS's-
those axisymmetric surfaces tangent to 8 —as we
show now. Let us use (4) with u, =0 to calculate
the components B'. We get

B'=e' (-g) ' (M~F»-M)Fb~)i (21)

where e =- e =1, e =e =0. Now the frozen-xni2 2i ii 22

field condition (6) tells us that F„/F» = -M~/u'. Re-
calling the normalization condition u,u' +u~u =—1
we can rewrite (21) as

f3'=e"(-g) ' '(I') '4 (22)

It follows that J3 4, =B'4,, =0 by the antisymmet-
ry of e' . Thus 0 is constant along the magnetic
lines which means the lines lie in the equipoten-
tials of C. Therefore, the common equipotentials
of 0, 4, and 4 are also the MS's.

There is an alternative very consequential way of
establishing this. Consider for the moment a gen-
eral stationary axisymmetric flow with u'0 0. Let
Q be some conserved quantity such as A, C, E, L,
or D. Regarded as a field, it is a function only of
the x'. Because of this, we have by virtue of (11)

Q, B' = —Cn(u, -Au~)Q u . (28)

By the conservation law Q u =0, and therefore
Q, B =0. Thus Q is constant on the MS's of the
flow. Let us regard our model star with u'=0 as
the. limit u' 0 of some general stationary axisym-
metric flow. Then the equipotentials of Q must
coincide with the MS's of the model.

As an example let us take A. By comparing (10)
with (6) in the limit u'-0 we see that 0 =-A.
Thus the equipotentials of 0 must coincide with the
MS's of the star. We now turn our attention to 4
and 4. For general stationary axisymmetric flow
the condition (6}with c. = f, Q gives @ &gp = @ &It' = 0.
These conservation laws imply that for our model
star the equipotentials of 4 and 4 are also MS's.
We thus recover our previous results with little
effort. Clearly our procedure applies only if the
model with u' =0 is the limit of a sequence of mod-

This shows that the normals to the equipotentials
of 0 and 4 are parallel. By (18} the same is true
of the equipotentials of C and 4. Hence 0, C, and
4 have common equipotentials. This also means
that these quantities are functions of one another;
the functional relation follows from (18):

(2o)
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els with u'*0. There may exist "isolated" solu-
tions of the equations which cannot be obtained by
such a limit; for them the method would be mis-
leading. However, we would not expect isolated
solutions to be of physical interest since small
perturbations of their velocity fields would change
them drastically, and in the real world u' is never
exactly zero. Thus our procedure, which we dub
the "method of limiting magnetic surfaces, " should
be widely applicable.

The result that 0 is constant on MS's is the rel-
ativistic verision of Ferraro's theorem. ~ It was
given earlier by Soderholm. ' Related theorems
have been proved by Yodzis, 3 Banerji, and Ciubo-
tariu. Physically, Ferraro's theorem holds be-
cause the only way for the fluid to rotate differen-
tially without continually winding up the magnetic
lines frozen into it is for each MS which contains
the lines to rotate rigidly. We note that each such
MS is an electric equipotential.

V. CHEMICAL POTENTIAL

=-D =E—QL, (26)

where we have evaluated u' explicitly by means of
the normalization condition u u =- 1. Thus, if
we know the parameters E, L, and 0 for an MS,
we know p everywhere on it. From (26) it is clear
that D &0.

The square root on the left-hand side of (26) is
the red-shift factor with respect to infinity. Thus
(26) states that the red-shifted chemical potential
p, + is constant on MS's. This is physically reason-
able. The magnetic field cannot impede motion of
the highly conducting fluid along its lines. Thus

The distribution of p, —the chemical potential—
inside the star can easily be deduced from our pre-
vious results. Substituting (22) into (8) and recall-
ing the symmetries we get

(4/u'), g
—+,g(p/u'), = o ~ (24}

This shows that the equipotentials of p,/u' coincide
with those of +, i.e., with the MS's. The same re-
sult follows from the method of limiting MS's.
According to it the quantity p(u, -Au~) appearing
in (12) must be constant on MS's. We already saw
that for u' 0, A =-O. Thus in the limit

u, -Au, =(u') '(u'u, +u'ug

=- (u'} '.
Hence p, /u is constant on MS's as we concluded
previously. The method of limiting MS's has the
advantage of determining the value of p, /u' on each
MS. By (12) and (25}

P*= P( gu 2k~m~ Zcefl }

equilibrium can be established only when the chem-
ical potential including gravitational and rotation
effects, p.*, becomes oonstant along the magnetic
lines. We note that the condition (26) does not con-
tain B explicitly. It thus applies as weI. l to an un-
magnetized star; in that case the surfaces of con-
stant p, g are those of constant A. We shall show in
Sec. VIII that for a uniformly rotating magnetized
star D is independent of MS. Thus p, + is constant
in the interior. This result is identical to that for
a uniformly rotating unmagnetized star. 2~

VI, VANISHING OF THE TOROIDAL FIELD AND OF
THE CONDUCTION CURRENT

The B, represent the poloidal field while B& and

B~ represent the toroidal field. It is easily shown
that due to the symmetry of our model the toroidal
field must be absent. From (4) it follows that
B u =0 in general. For a stationary axisymmet-
ric flow with u'=0 this gives

(27}

since u'4 0 and A =- O. We now regard the star as
the limit u' 0 of a sequence of general stationary
axisymmetric flows. Then (16) will be valid for
each flow in the sequence. In the limit B2 should
be nonvanishing throughout the star (except pos-
sibly on isolated surfaces). In light of (27) it fol-
lows from (16) that C —~ throughout the stellar
interior. However, because of their physical in-
terpretation E and L will always be bounded. It
then follows from (13}, (14), and (17) that B, =B~
=B'=B =0 inside our model star (by continuity
this will be true even on the isolated surfaces).
Thus there cannot be a toroidal field. It is clear
that this conclusion depends critically on the pos-
tulated absence of meridional circulation.

The exclusion of the toroidal field is surprising.
Models of ordinary stars with toroidal fields ean
be constructed, and it has been argued that a
purely poloidal configuration is magnetohydrody-
namically unstable. Furthermore, it is known
that the sun, and probably other main sequence
stars, have strong toroidal fields. Because of
these points, it has usually been assumed that a
toroidal field is a must for a neutron star. "0
This conclusion has been buttressed by the argu-
ment that differential rotation in the progenitor
stellar core as it collapses to the neutron star
should mind some of its poloidal fieM into a toro-
idal component that would augment the primordial
one. Our conclusion indicates that some of these
expectations are unwarranted. For a neutron star
in a stationary state the purely poloidal configura-
tion must be st;able as it is the only one possible.
Perhaps the disagreement arises from the wide-
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spread assumption of earlier works 5'26 that in the
star's interior there is no convection current. We
shall now see that such an assumption would be in-
consistent with our model.

Since u'=0 the result B,=Bt, =0 implies by (4)
that F =0. Substituting this into Mm+vell's equa-
tions (2) we get, in view of the symmetries, J4 =0:
the current is purely azimuthal just as the velocity.
We now show' that J ~u .

Let us consider a general stationary axisymmet-
ric flow for which not both u' vanish. We use the
freedom inherent in choosing the coordinates x' to
make one, r, constant on the axisymmetric sur-
faces tangent to the velocity, and the other, -z, con-
stant along the normals to the surfaces. Thus by
definition u" =0. For future convenience we iden--
tify. x' =z and x =r. For the present we regard the
conductivity o as finite. The .result (9):Et~ = 0 is
actually valid in this case also as may be verified
from (1}together with suitable boundary conditions.
Thus we have

'z
~Z, =oFt.u . (26)

We shall recover our star by passing to the limit
o' and u' 0. However, this limit must be
taken while respecting the condition that the diffu-
sion time for the magnetic field T be large corn»-

pared to the time scales of i.nterest. Now

T =4wol2, (29)

where l ts the typical size of the system. We clear-
ly want QT»2m so that the field will not diffuse out
in a few revolutions. Likewise, we want Tu"» l so
that the fluid traverses the region of interest be-
fore sizable diffusion takes place. Thus 00» l 2

and (ru'» l '. Thus in taking our limit we must
first let 0' and then»». u'» 0. In order that J, re-
main bounded during the first limit we must have
E„=O(tt '). Thus upon taking the second limit
cEt -0. In exact analogy we can show that oE~- 0.
Thus for our m'odel Jt =au„J~ =au~, and since
Z, =O [see (17)j»

VII. DISTRIBUTION OF THE MAGNETIC FIELD

In the limit a of Sec. VI the constantr sur-
faces coincide with the MS's since by (11}the B'
are parallel to the u'; the constant z surfaces are
orthogonal to the MS's. This will remain true as
u'. —0 and we recover our model star. Since r and
z are orthogonal coordinates, the line element for
the star can be written as

ds =g«dt +2gt~dtdg+g~~dQ

=- (g„„hut} 'uo%', „, (35)

+g,Pz +g dr,
where account has been taken of (17). Now C, 4,
Q, D, E, and L can depend only on r since they
are constant on MS's. For any such quantity Q,
B Q, =0, and since Q „40 in general, it follows
that B"=0.

fn view of this (8) takes the form

[( +)t/2~BI] (32)

where -g=g«g«~ and &=g« —g«g~~ &0. We2

also note that g„'/2B'= (B2)'/2= B. Reca—lling (26)
snd the fact that D, ,=0 we can integrate (32} to get

B=B,(r)(a ~) "'(u') ', (33)

where Bo(r} is an undetermined function, and

u'=( gt -t2gt, Q-gt, Q't)»' '. (34)

Equation (33) determines B everywhere within each
MS in terms of its value at one point which fixes
Bp for that MS. To connect the different MS's we
need to determine Bo(r}.

We shall write the nontrivial Maxwell equations
(2) in terms of B. Since C, ,=@,,=0 we have E"
=F ' =Ft, =F~, =0 while F~„=- 4 „and F« ———4,„
=0@,„, the last equahty following from (20). A

simple calculation gives

J =Eu . (3o) =(Zn ~) (gtt +Ztt»@+, t=(//lt» t u } ut+, t»

We conclude that the current is purely a convec-
tion current. We must clearly have ~+ 0, for if
e were to vanish everywhere in the interior, J ='0,
and by Maxwell's equations there would be no mag-
netic field. Thus a rotating magnetized NS must
be electrically charged just as predicted by the
Newtonian models. t Comparing (30) with (6) we
see that E /t J =0: The Lorentz force vanishes.
Thus due to the high symmetry of the problem. ,
the magnetic field obeys the force-free condition.
A different argument showing that this condition
should hold in an NS interior has been given earl-
ier by Easson for a Newtonian nonrotating star.

where we have used the relations

g /' =- (&grr) g ot» etc ~»'
t

ut =(gtt +gttf1)u

ut» —.(gt t, +gt, »tQ)u
t

But from (22) and our definition of B we have

+)t/2Be ut(g+ )t/2B

Then Mmovell's equations take the form

(36)

(39)

(40)
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(g„' 'u B),=-4''(-g)' '=-4mu'{-g)' ',

(41)

(g„'~2utB) „=4' (-g)'~ =4tteu ( g}' . (42)

By combining these we get our basic result

Q(g„'~2u~B),„+(g„'~2u tB),„=0.

Let us now carry out the differentiation in (43)
explicitly. After rearrangement we get

(lnB), „=-2{lng„),„

In that case (48) may be used directly; for fixed
z it determines B0 for the various MS's up to a
constant overall factor. (This factor is actually
the arbitrary parameter of the model. ) Then the
distribution of B may be determined by using (33).
Implicit in all we have said is the assumption that

. the shape of the MS's is known so that the coordin-
ate system (r, z) cari be constructed, and g„„and
g„determined. Thus we turn our attention to de-
ducing an equation for the MS's.

-(u, „+Qu,, „)(u, +Qu, )-'. (44)
VIII. THE EQUATION FOR THE MAGNETIC SURFACES

We now make use of u u~ =- 1 in the form

u, +Quo=- (u') '

to write

(ut, „+Qut„„)(u+Qut) '=u'[u~Q, „+(I/ut), „]. (46)

Substituting (46) and (33) into (44) and rearranging
terms we get the following equation for Bo..

(lnBO), ,= gzln[g„„h(ut)t/g„j), „

B,(r) =—B(z)D(u')'(g„„&/g„)' (48)

where B is some function of z. It cannot be taken
as constant for the. following reason. Since both
the left-hand side and the last term of (4V) depend
only on x, the expression in curly brackets must
be a sum of two functions, g(r} and h(z). Thus

—u ugQ, ~.

For a uniformly rotating star A, „=O and the equa-
tion can be integrated easily. Actually we can do
better; according to Eq. (61) to be derived in Sec.
VIII, the last term in (47) equals [In(-D)] „. Thus
we can integrate (4V} in general to get

f r/f = 2 (u ) (gtt, r + 2gte, iQ +gee, rQ ) (52)

We compare this with the acceleration vector. Be-
cause of the symmetries and because u'=0,

a = —r«ttu'u

As mentioned in Sec. VII we can always replace
the coordinate z by some function of itself. It will
be advantageous here to use this freedom to choose
a z coordinate which molds itself to the magnetic
field strength. To this end consider the expression
e ~"tB„,Btt. Because B, =B~ =0 and f and Q deriv-
atives vanish, it vanishes identically: B is vor-
ticity-free. By Frobenius's theorem it follows
that-8 must be orthogonal to a family of surfaces:

B~= z, o,
where z labels the surfaces and f is some scalar.
According to (51) z is constant along the normals
to MS's (vectors orthogonal to B ). Thus we may
identify z as defined here with the coordinate z of
Sec. VII. We see that B,=f; also, B,B'=B' so
B'=B2/f. It then follows that g„=f/B .

To determine f let us substitute this form of g„
into (44} and simplify with the help of (46), (34),
and (39). We get after some cancellations

g„&(u')'/g. .=g(r)~(z) (49)
=- a(u } (gtt. a+2gtt, tQ+gt t.eQ ) ~ (53)

Therefore, in order that Bo in (48) depend only on

x, we must take B=B+h ~ where B* is a constant.
Substituting (48) into (33) we get

B=- Bt Du'(g, P) '~2.

This formula determines B at all points in the
star's interior in terms of B~, an arbitrary para-
meter which fixes the overall strength of the field.
We note that under the coordinate transformation
r-E(r) andz-G(z}, g„g„(G') '. But clearly
D and 4 do not change. Thus by (49) }'t-1't(G') .
Therefore, B is unaffected as we would expect.
For numerical models (50) may not be a conven-
ient formula because the determination of h by
separation of variables in (49) may be unfeasible.

ar =-f, r/f (54)

r„'.B'/4—v

Since g„=f2/B2 we have

rt —f /f B2 ~ JB2

In view of (54) and (56), (55) simplifies to

(p+P)f, ./f =I .'

(55)

(56)

(57}

To evaluate a„we bring in Euler's equations (7);
because B„=B"=0 the xth component, takes the
form

(p+P +B'/4tt)a„=- (P +B'/8v), „
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We now recall the definition of p, (Sec. II), dp
= pdn, and the equality p+P =np .Differentiating
the latter and substituting the former we get ndp,

=dP. Thus (57) is equivalent to

(58)

(59)

we have used up. the freedom of coordinate trans-
formation of z. That our z is well behaved can be
seen directly from (59}: g g ~ 4 0 provided p, 4 ~
and BIO which we always assume. Thus z grows
monotonically along the magnetic lines as a good
coordinate should.

Let us substitute g„=p /B and (46) into (44)
and rearrange terms to get

[in(p, /u')], =—u'u~Q, „. (60}

But according to (26) this is the same as

[»(f/p)]„=o
which states that f/p, depends on z only. We lose
no generality in taking f= p, , for if f equals p mul-
tiplied by some function of z, we can absorb this
function in the defining relation (51}by replacing
z with an appropriate function of itself. Thus in
arriving at

IX. MAGNETIC STRUCTURE OF A MODEL
NEUTRON STAR

We mentioned in See. III that the magnetic field
affects negligibly the metric of a realistic model
NS. And we showed in Sec. VI that the I.orentz
force on the fluid vanishes. It follows that the geo-
metry and fluid structure of a magnetic NS model
coincide with those of some nonmagnetic model
star. The converse is not generally true. Suppose
we are given a nonmagnetic model; if we determine
the equipotentials of U and define t' and z, there is
no guarantee that the separability condition (49)
will hold. If it does not, then the model cannot be
"dressed" with a magnetic field. The strategy for
constructing a magnetic NS model then is to select
from the arsenal of nonmagnetic models2 one which
does satisfy (49), and to determine the magnetic
field distribution by means of (50).

Assuming one has done this, what is the struc-
ture of the magnetic field'P In order to make the
essential points clear, we confine our treatment
to post-Newtonian order, thus assuming that the
star's gravitational field is weak. Then the metric
can be written in cylindrical coordinates as 9'

ds = —(1+2V)dt2 —2a&R2dtdg

[ln(-D)] „=-u'uzQ, „. (61)
+(1—2V)(R d&f& +dR2+dg2) (63)

This is the equation we wanted. Since D and 0 de-
pend only on r, it states that u'u~ must be constant
on MS's. Defining the time and axial Killing vec-
tors t =6, and q =5~, respectively, and the
auxiliary vector field f = P+ Qg, we fihd that

u'u~ =U=( ft' } '-gqvP (62)

Thus the MS's of the star are the equipotentials of
the coordinate invariant U. If the geometry is
known, these can be calculated and the coordinates
r and z defined. Then one can calculate B by Ineans
of (50). For this last purpose the coordinate z de-
fined by (59) is ill suited, for it g„~B ' and so B
cancels out of (50). We must thus use a "less per-
fect" z.

We notice that for a uniformly rotating star
(Q, „=O) Eq. (61) implies D is independent of MS
(since f is parallel to u, it cannot be null so U
cannot blow up). We made use of this fact in Sec.
V. The fact that both sides of (61) vanish means
that the equation by itself does not establish the
constancy of U on MS's. To handle this case we
consider a star which rotates nearly uniformly so
that Q „ is small. Then [ln(-D)] „(Q,„) ' will be
constant on MS's. In the limit 0 „0we recover
our uniformly rotating star with U bounded and
constant on MS's.

where V is the Newtonian potential (V«1 by as-
sumption}, and &o is the angular frequency mea-
suring the dragging of inertial frames. We shall
assume the star rotates uniformly and slowly in the
sense that (QR) « ~V

~
inside the star (an excellent

assumption even for the fastest pulsars). As a
consequence V and u will both be spherically sym-
metric, i.e., functions of R +Z only. We note
that &o/Q is O(V).2~ To O(V) and neglecting (QR)
compared to V we get

U =QR2(1 —4V- &o/Q). (64)

Were we to neglect gravitation, we would get U(r)
=OR showing that the MS's are right cylinders
(R =const) in the Minkowski metric. In this limit
the magnetic lines are straight and parallel to the
rotation axis. Gravitation distorts the cylinders.
In view of (64) we can take the coordinate r to be

r =R(1 —2V- &o/2Q) (65

[that is, r = (U/Q)'~2]. To find out how the metric
radius of an MS changes as we go from the center
of the polar region, let us calculate g to O(V)
according to gas =g~(8r/BR):

g„„=1+2 (V+4V'R2) +(&@+2&@'R2)/Q,

where a prime denotes the derivative with respect
to the argument R +Z . We know that V is nega-
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tive inside the star and increases outward (V' & 0).
For the nearly homogeneous interior of an NS, 0

V' should be nearly constant (Poisson equation).
Thus V+4V'B will undoubtedly increase as we
move from the central to the polar region. Numer-
ical calculations ok NS models have shown that
&o/Q~ ~V~.20 Thus the V dependent term in (66)
dominates the v dependent one. Since g~' dr
gives the metric distance between MS's separated
by dr we conclude that the effect of gravitation is
to cause the magnetic lines to flare out toward the
polar regions,

What about the field strength'P We shall employ
(33} to see how B varies along an MS. Simple cal-
culations to O(V) with neglect of (QR)2 give

'/2 =R =r(1 + 2V+ &/2 (67)

-((o+ a)'R')/Q) r '.
Exactly the same argument used in the preceding
paragraph shows that B decreases as we move
from the central to the polar regions —just what
would be expected since the lines flare out. Thus
the effect of gravitation is to enhance the field
strength in the central region as compared to the
poles, and to cause a divergence of the lines toward
the poles. What about the distribution of 8 normal
to magnetic surfaces'P This can be inferred from
(50}. We know that Du' = p. . Si-nce h = h(z), B
changes in the r direction as p, (g„) ' . Neglecting
gravitational effects we expect, p. to be nearly con-
stant since p «p and thus p, approximates. the bary-
on mass. Also, g„can be identified with g» —1.
Thus 8 is nearly constant in the r direction. Re-
taining V to first order should be reflected in a
modest variation of 8 in the r direction.

Our results provide a justification of the widely
employed Deutsch model30 of a magnetic star which
assumes the field inside is uniform and parallel to
the rotation axis. What we have shown is that; this
is indeed the only possible configuration if the flow
is azimuthal and gravitational effects are neglected.
That such a, conclusion is not trivial can be seen
from the numerous papers proposing more com-
plicated interior configurations. 3' The relevance
of such configurations for neutron stars is doubt-
ful. Our results also demonstrate that calcula-
tions employing the Deutsch model. for a gravita-

(68)

Were we to neglect V we would find upon substitu-
ting (66}-(68}into (33) that B is constant on each
MS, which is consistent with the fact that the lines
are straight in this approximation. If we now re-
tain V we find

B=Bo(r)[1—2(V+2V'R )

E =- puq+E~ ——Eg+E@,

I = puq +L~ —L~+L~, (71}

where we have lumped into E~ and I & all the mag-
netic contributions; thus E& and L& are the pure
fluid contributions. By (26) Lr ——Du u ~ which is
seen &y (62) to be constant on MS's. Thus t.u is
also i onstant on MS's. I et us now substitute (70)
and (71) into (15) and compare with (12) to get
(recall that A = -Q)

EF —QL~ -—-D.

(72)

(73)

These show that E& and E& are both constants on
MS's. Thus the fluid and magnetic parts of E and
L are separately MS constants subject to the rela-
tions (72) and (73). A further relation is obtained
by taking tbe differential of (73),

dEJ —QdLy —L~dQ - dD, (74)

and noticing that the right-hand side vane. shes by
(61). Thus

de/dI z —Q. (75)

This sort of relation is well known from the mech-
anics of rotating bodies %here it applies to changes

ting NS ' are off by only mild factors. 2 Recalling
that for a typical NS V is of order 0.1, we see that
the error incurred in assuming a uniform field is
some 20-30% [see (69)]. This is not too bad given
the present state of the art. The claim often made
that fields inside pulsars may be considerably
stronger than t.he polar values -10' 0 3 is seen
to be without grounds. There is no toroidal field
and gravitational effects cause only a modest cen-
tral enhancement of the poloidal field. Finally,
our results support the use of a dipole exterior
field for an NS. ' Such a field is the appropriate
one for a uniform interior field in flat spacetime. "
If gravitational effects were included, we would
expect the exterior field to be distorted slightly,
but to preserve its topology. There is no indica™
tion that a quadrupole field is to be expected.

X. RELATIONS BETVfEEN MAGNETIC SURFACE
CONSTANTS

Quantities such as E, I, , Q, C and 4 that are
constant on MS's can be regarded as functions of
one another. To know the forms of these functions
is to know a great deal about the structure of the
star. One step in the direction of finding these
functions is Eq. (20} relating C, 4, and Q. It shows
that for uniform rotation 4 and 4 are linearly re-
lated. I et us seek some other such relations.

To this effect let us write E and L as given by
(13) and (14) in the form
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Bp —4,„, (77)

where the sign has been chosen to be negative be-
cause Bo&0, and by (40) 4',„&0 granted the con
vention B'& 0. Thus naturally enough the "scale
of the magnetic field on a MS", Bp, is the deriva-
tive of the magnetic potential C. Of interest in the
theory of pulsars is the electrostatic potential dif-
ference between two points on the star's surface.
This is just the difference of 4 at the two appro-
priate values of r, r„andr2. Taking (20) and

(76) into account we find

r2
4 (r2}—C (r, ) =- QBu (g„„h)'~2dr,

f

which is the relativistic version of the famous
Goldreich-Julian formula [Eq. (11) in Ref. 4].

(78)

of the total energy and angular momentum. Here
it refers tochanges of E~ and I~ in going from MS
to Ms. For constant Q we get from (72) and (75)
a relation just like (75} for E and L themselves.

Although we know that E„and L& are MS con-
stants, we have been unable to compute them ex-
plicitly because they involve CB, and CB~ which
clearly are defined only by a suitable limiting pro-
cedure+ Expllclt calculat1on of E~ ox' I y might
yield some constant combination of B and metric
factors which might be more transparent than (50)
in describing the variation of the magnetic field.
However, from the point of view of finding E and
L we do not need E& and L&, for we expect E&
«Ez and L„«Lz (magnetic energy density neg-
ligible compared to fluid energy density; see Sec.
III).

A rather mysterious MS constant is Bp of (33).
Let us find out how it relates to the others. Let
us calculate B2 by means of (22}; we get

B'=(g„&) '(u') '(+„)'. (76)

Comparing with (33) we see that

Let us now consider an interesting relation be-
tween the charge density e and L&. Working with
the special coordinate s of Sec. VIII we substitute
g„=p, /B into (41) and rearrange the expression
to get

BL~.r
4'pu'(&, g„„}" (79)

,'Bu'g„(Q--(o)
~

df, (81)

where we have used the fact that g~~ 0 at the
axis of symmetry x=0. In (81}dl =g„~„dz is
the element of proper length along the MS, and
&u =-g, ~/g~~ is again the frequency of dragging of
inertial frames. Now g«gives the squared cir-
cumferential radius of the MS. Thus the relativ-
istic formula (81) differs from the integral of (80)
only in the appearance of the red-shift factor u'

and in that 0 —u, the angular velocity with respect
to the local inertial frames, appears instead of G.

The overall sign of this expression is ultimately
fixed by the convention implicit in (40) that the mag-
netic field points in the positive s direction. When
the rotation is counterclockwise (clockwise} as
seen from the north magnetic pole, L& will be
positive (negative). We also expect that if ~Q

~
does

not decrease outward too fast, ~L„~ will grow out-
ward. In this case e is negative (positive}. If we
evaluate (79) in the Newtonian limit using (63) with
r=R and assuming 0,&

—0 we get

e =—QB/2m= const, (80}

which is the classical result.
To visualize the relativistic effects on the charge

distribution we integrate (41) to find the total
charge dq enclosed inside an MS labeled by r be-
tween z and z +dz. In view of (39) we get

2F

dq = —(4m)
' J'(-g}'~2dg dr Cz

0 0
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