
PH MUSICAL RE VIE% 0 VOLUME 19, N UMBER 10 l5 MA V 1979
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The stability of the inner Reissner-Nordstrom geometry is studied with test massless integer-spin. fields. .In
contrast to previous mathematical treatments we present physical arguments for the processes involved and
show that ray tracing and simple first-order scattering suffice to elucidate nsost of the results.
Monochromatic waves which are of small amplitude aiid ingoing near the outer horizon develop infinite

energy densities near the inriei' Cauchy horizon (as measured by a freely falling observer' ); Previous work has
shown that certain. derivatives of the field in a general (nonmonochromatic) disturbance must fall off
exponentially near the inner (Cauchy) horizon (r. = r ) if energy densities are to r~ain finite. Thus the
solution is unstable to physically reasonable perturbations which arise outside the black hole because such
perturbations, if localized near past nu11 infinity (g ), cannot be localized near r+, the outer horizon. The
mass-energy of an infalling disturbance would generate multipole moments on the biack hole. Price,

'Sibgatullin, and Alekseev have shown that such moments are radiated away as "tails" which travel outward
and are rescattered inward yielding a wave field with a time dependence t I', p & 0. This decay in time:is

sufficiently slow that the tails yield infinite energy densities on the Cauchy horizon. (The amplification of the
low-frequency tails upon interacting with t4e time-dependent potential between the horizons is an important
feature guaranteeing the infinite energy density. ) The interior structure of the analytically extended solution
is thus disrupted by finite external disturbances. Gursel et al. have further shown that even perturbations
which are. localized as they cross the outer horizon produce singularities at the inner horizon. By a ray-
tracing scheme we are able to show that this singUIlarity arises when the incoming radiation is first scattered
for r & r+ {i.e., just inside the outer horizon), whence the exponentially small scattered radiation is
efficiently rescattered when the potential becomes strong. The exponentially small first scattering near the
outer horizon is translated by the second. scattering into exponentially decaying waves near the inner horizon.
Their exponential decay is, however, so slow that the resultant energy density is singular on the horizon.

r

I. INTRODUCTION

The Reissner-Nordstrom (RN) geometry' repre
sents the u'nique asymptotically flat spherically
symmetric solution to the coupled Einstein-M3x-
well equations describing the spacetime geometry
outside of a spherical star with charge Q and mass

'The analytically extended electrovacuum solu-
tion (Fig. 1) possesses a topology which is not
Euclidean (provided M' &Q', which we assume
throughout this paper). The extended solution has
at least two null hypersurfaces acting as horizons.
The surface at r =x, is an event horizon causally
separating the interior (region III) from the ex-
terior (region I). The surface at r is a Cauchy
horizon" for initial data in region I (Ref. 2). In
this paper we are concerned with the evaluation of
test fields starting with initial data in region I and
evolving through. region III up to the Cauchy hori-
zon.

In the uncharged Schwarzschild case the time-
like (or null) histories of test objects falling inside
the outer horizon reach a curvative singularity
in a finite amount of time; the singularity lies to
the future of any point inside the future Schwarzs-

child horizon. In the Reissner-Nordstrom solu-
tion with Q'&M' the radial geodesic timelike path
of an uncharged black-hole perpetrator in fact
escapes the singularity, which it passes at a
finite proper distance and which can c'ausllly in-
fluence the timelike line only for a finite proper
time after it penetrates the inner horizon' at r .
Even more surprisingly, the timelike path may
eventually emerge into a distinct asymptotically
flat cosmology. (See for instance curve A of Fig.
1.)

A freely falling observer' in region III will see
the enti. re history of region I as he crosses r in
a finite lapse of proper time. 'This property of
the r surface has led to the speculation that it is
unstable, i.e., small perturbations in the initial-
value data of the RN solution will destroy the
Cauchy horizon. 'To verify this, Simpson and
Penrose' numerically investigated the evolution of
a spin-1 test field on the RN background. Their
results suggest that, independent of the initial
values, their test field Bnd its associated energy
density become singular on r„. This they interpret
as a generic property of region III and conclude
that the interior RN solution is unstable. (Mon-
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Reissner-Nordstrom solution there, and in this
sense the solution is unstable to such physically
natural perturbations.

'There have recently been several papers on this
problem, ""and these show that the Reissner-
Nordstrom solution is not stable (in the sense just
described) to external perturbations. In this paper
we present a heuristic view of the processes that
lead to this instability. We show that much of the
behavior of perturbing waves in this geometry can
be understood by simple ray tracing, and a first-
order Green's function analysis gives details suf-
ficient to see the fundamental instability.

II. MATHEMATICAL PRELIMINARIES

We consider per turbations of the Reissner-
Nordstrom spacetime, which is described by the
metric

2M Q'
ds = —1 ——+—2 dt

y

2M Q'
+A' 1 ——+— + f" dG (2.1)

FIG. 1. Penrose-conformal diagram of an analytically
extended Reissner-Nordstr5m geometry. Region I (x & x,)
corresponds to an exterior static asymptotically flat
spacetmme, regionIII (~, &~&r ) is spatially homogene-
ous geometry evolving with a temporal coordinate r.
The curve A schematically gives the orbit of a geodesic
observer who falls into the hole, passes a finite space-
like distance from the timelike singularity at y= 0, and

emerges into another asymptotically flat region. Re-
gion III is a homogeneous cosmology of the Kantowski-
Sachs type.

'The perturbations consist of integer-spin mass-
less wave modes (i.e., massless scalar, or
coupled electromagnetic and gravitational wave
modes). Such perturbations may always be
written as Q = (I/r) Q„(r)e '"' where any angular
part has been factored out using the spherical
symmetry and where Q„ is a radial mode function
for the perturbation in question. '

A general perturbation is a superposition of
these ~ modes. The equation solved by Q„ is

(2.2)

crief, ' Zerilli, ' and Chandrasekhar' have develop-
ed analytical formalisms for gravitational and
electromagnetic perturbations on the RN back-
ground and have shown that the exterior RN solu-
tion is stable. 'The evolution of the fields and

geometry outside of a star undergoing nearly
spherical gravitational collapse has been given
by Price for the uncharged ca,se and by Bicak'
and Sibgatullin and Alekseev" for the charged case.
They find that the fields damp out as power laws
in time leaving a stable exterior geometry.
Novikov and Doroshevich" have extended Price' s
analysis to the interior of a Schwarzschild black
hole left in the wake of a, collapse and they also
find a stable interior geometry up to the curvature
singularity. ) In a situation where an arbitrarily
small perturbation in the exterior region leads
to a curvature singularity on r, a large change
has occurred from the regular behavior of the

where'

and r and t are the usual Reissner-Nordstrom
coordinates [extended across the horizons r, =M +
(M' —Q')' '] and z, = (r, —r )/2r, ' is the surface
gravity at r, . The important property of V(r) is
that it vanishes exponentially in r* at the horizons.

In fact, the potential consists of a factor (r —r, )

(r —r ) times terms which are nonzero and finite
at the horizons. For instance, the potential for
scalar perturbations P is

(I is the angular momentum eigenvalue. )
We shall be concerned with propagation between

the two horizons r, and r . An important point to
notice is that the potential vanishes just outside
the outer horizon x=r, . Because x* depends
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logarithmically on It' t'
I

and It' t'-
I

V(t'(r*))
vanishes expdnentially in.r* near the horizon:

may be written as Q = J (I/r)g„d(d S((d)e '"' with
8((t)) a mode constant. Via (2.8), the resultant
wa.ve nea, r the inner horizon has the form

V (~*)~ exp(2)(, t *), (r-r. )

r '))(

V(t *)~ exp(-2)( r*), (r-r )

(2.5)

. (2.6)

y l„-[g' '(f-~*)+g"(f +t*)]/ t (2.9)

Via (2.8), the Fourier transforms of g( ' and g"
are

and peaks at an r finitely separated from the hori-
zons. 'The results of our analysis depend on the
rate of the exponential decrease of the potential.
'The technique used here is applicable for arbitrary
exponential falloff. [V(t ) is also significant outside
r„and falls off as. l(l+1)/r' as t -~.]

The linearly independent solutions near the hori-
zons are $-=e""" e '"'f(t)--g(tat'*) where f(r) is
a slow function of r and g(t a t *) shows the general
(nondispersive) behavior for a general perturbation
near the horizons r, and r . It will be useful to
introduce null coordinates v =r*+ t, u =r~ —t. The
inner horizon r =r consists of two branches, the
"right" branch which has coordinate v =~, and
the "left" branch with u =~ (Fig. 1).

"The energy density in the scalar field as mea-
sured by a freely falling observer near a horizon
with four-velocity U' will be proportional to p
= (&f), U )(Q, t)U )+ —,Q Q*". Because tat'*= const
are null surfaces, the form g(ter*) of the solu-
tions near the horizons means that the energy
density is dominated by the WKB form

l P U

The same form holds for the electromagnetic
stress tensor and the effective stress tensor of the
gravitational perturbations.

We consider the energy density measured by
freely falling observers when radiation falls into
the hole from outside x, (We exc. lude radiation
energy from region II into region III; region II is
causally disconnected from region I.) Thus our
"initial" conditions are

ty
l

—z ((d)e-i'(t+r ) (2 'I)

corresponding to waves propagating "leftward"
(Fig. 2) across t', from region I to region III. We
solve the differential equation (2.2) for the ampli-
tudes of right- and left-going waves on r:

e-b&(t+r ) E & &-ts&(tr)-e . ~ „e + (2.8)

Our boundary conditions require ingoing waves
at the horizon r, . Our modes are normalized as
in Eq. (2.8) by demanding that the coefficient of
the (i+r*) term near t' be unity. The differential
equation for a pa.rticular frequency then determines
the coefficients T((d) and E((d).

Because of the structure of the r horizon, and
because the scattering effectively occurs at finite
r &r, the two terms in (2.8) refer to separated
regions of the extended spacetime. The total wave

g( ' = R(&u)g(') = e((d)E ((d) . (2.10)

The remainder of this paper will concentrate on
the evaluation of g' ' and g" nea, r the inner hori-
zon.

Consider a radia. lly freely falling observer. His
four-velocity is given by

a,nd

dt &r'
d) (r —r, )(r —t' )

(2.11)

U" =—=p l

E' - (t —r.)(r —r )/r'
l

' ~ ', (2.12)

(,) rg"', (r —r, )(r —r )
'~'

U g'= E+ E-
(r —r, )(r —r ) I

(2.13)

where the prime denotes a differentiation with
respect to the argument of g"' and the upper
(lower) signs are to be taken together. For E &0
(an infalling observer) (2.13) calculated for g" is
finite at the horizons. g" corresponds to a wave
packet infalling with the observer. On the other
hand, the calculation for g' ', with& &0, diverges
at r=r if the radiation is monochromatic, or in
fact if the radiation defined by g' ' falls off slowly
enough. As the observer crosses the left branch
of the t' horizon, his coordinates obey dr"/dt = —1

[cf. Eqs. (2.3), (2.11) and (2.12)]. Hence

-u = t —r*= -2r*+ const

'lnlr —t' l+ const.

where P =+1 gives the sign of the square root. 'The

value of P inverts at the turning points in r. How-
ever, because of the timelike character of r in
region III, P = -1 in all of region IIL From (2.11),
(2.12), and Fig. 1 we see that if E &0 the world
line enters region III from region I and exits re-
gion III through the left-hand (t=-~, i.e. , u=~)
branch of the inner horizon r . If E&0 the world
line enters region III from region II and exits via,
the right-hand (f =+~, i.e. , t) =~) branch r . The
case E =0 gives a world line which moves (at
constant f) through region III (and its copies) pass-
ing through the bifurcation points of the horizon.

The energy measured near the horizon by one of
these observers in region II is proportional to the
square of
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Reverting to null coordinates:

U g' ' = const && g' ' (u) exp(+ a' u) (2.14)

III. STABILITY OF THE INNER HORIZON

Gursel et aL."and McNamara"'" have shown

that initial data consisting of an inverse-power-
law decay in time after an initial onset reaches
the inner horizon with a decaying power-law com-
ponent in v which gua, rantees that the v = ~ horizon
is singula, r. Since power-law tails a.re a. ubiquitous
feature of propagation outside the black hole, ' "
this result guarantees the instability of the inner
structure of real holes which are in contact with
the radiation content of the universe.

There is a straightforward physical explanation
of the fact that the tails can disrupt the horizon
by propagating past the spacetime region where
the inner potential is strong. From the viewpoint
of the radial equation, each frequency mode
scatters off a simple, bounded, localized (in r*)
potential, which falls off exponentially on both
sides of its region of significance. The coordina, te
x is a, timelike coordinate in the region between
the horizons, and the potential (which displays the
nature of propagation in this spacetime) is thus

actually spatially homogeneous and time dependent.
'This in no way changes the mathematical analysis
of wave propagation in this region, but the physical
requirements dictate a change in boundary condi-
tion from the simple one-dimensional scattering
problem suggested by Eq. (2.2). For waves falling
inward from outside the black hole, .the natural
behavior near the x, horizon is e '"" e '"', since
the potential near r r, (i.e. , -r*- -~) is pro-
portional to exp(+21!,r*). Near r we expect waves
(after traveling through the interaction region) to
be traveling across both branches of the r horizon.
It is seen that the equivalent one-dimensional
scattering problem has the incident wave from the

side of the potential. 'The conserva, 'tion of

as the observer crosses the horizon u = ~ (v re-
mains finite). Hence g' ' must decay at least as
fast as exp(-v u) as u =~ is approached; otherwise
unbounded energy densities arise.

Similar analysis for an observer with & &0 who
crosses the right (v =~) horizon at constant u
shows that g( ' gives finite-energy densities there
but g" must fall as fast as exp(-z v) if unbounded

energy densities are to be avoided.
Returning to Eqs. (2.11), (2.12), and (2.13), we

note that an observer of the & = 0 type sees

u @ ~„o-(r —r )
' 'g'"'(ter*).

Since such an observer has t= const, we require
that g' fall off faster than (r —r )'t'o- exp[!! (-r*)]

c
d

+ ~2 g gg y
g

Q
~Oft y + (3.1)

with outgoing" boundary cond!tions (assuming an
e '"' time dependence) is

e $N(x' 3I )&1
2i co

1
e )au(r -y )

F2&

(3.2)

For a. first-order process involving the potential
V, g„acts as a Green's function. For instance,
consider the deviation from a wave of the form
Q „=e '"' treating V as an infinitesimal pertur-

the Wronskian in Eq. (2.2) implies ~&~'+ ~R~'= l.
[See Eqs. (2.7) and (2.8).] Hence the magnitude
of the wave entering across r, (i.e. ~T ~) is always
less than that of the wave which propagates left-
ward after the encounter with the effective region
of the time-dependent potential.

'The time dependence of the potential gives an
amplification of the incident wave. This amplifi-
cation is greatest for those frequencies most
strongly affected by the potential, i.e. , for low
frequencies (roughly,

~
~~ &M). These are just

the frequencies which are important in the tails,
which are low-f requency phenomena. Hence we
have a physical explanation of the disruptiveness
of the t ' tails. The geometry amplifies just those
waves which lead to its destruction. [Ref. 14 shows
that &(&o) and T(&o) are finite at &o-O.]

The results just quoted show that the inner re-
gions of the extended Hei. ssner-wordstrom solu-
tion are disrupted by infinite local energy densities
when physically reasonable radiation —with power-
law tails in time —falls across the outer horizon.
Gursel et al."have shown further that even the
data which are bounded in time as they cross the
outer horizon r. (e.g. , a, sharply peaked Gaussian
in time near the outer horizon) yield divergent
energy densities at the inner horizon. The Gaussian
gives a finite energy density on the u =~ horizon
(the left branch of r = r ) But .a divergent flux is
obtained near v =~, the right branch of the horizon.

Our qualitative investigation of this behavior
must thus consider the radiation following rays
which are parallel to and near the horizons. Such
rays correspond, in the scattering picture, to the
energy scattered in the regions where the potential
V(r(r*)) is exponentially small. It turns out that a,

first-order calculation which treats the exponen-
tially small potential as a perturbation —together
with some intuition —. leads to the elegant results
of Refs. 12-14.

For this purpose, we notice that the solution to
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bation. If the total wave is written as 4 „=(t)„+g„
we have to first order

(3.3)

An important calculation is the one in which
there is an exponentially decaying potentia) V,e"'
for y*- -~. For simplicity of calculation we sup-
pose the potential vanishes for y*~ 0. Then, if
r* &0, a trivia. 1 integration yields

er low
toil

ottered
ion
I

A similar calculation for the same incident (t) may
be carried out for r*&0, but a,ssuming a, potential
V Vpe with V = 0 for y*&0. Then

d line

emitter

(g4) 0. s (@IF e )(t'
2$+ I(,'+ 2i(d K

e f tl(tt'

0
2i(d(e+ 2i(d)

' (3.5)

A partial diagram of the ray traces that are im-
portant at the left branch of r,is shown in Fig. 2.
These are the waves which G'ursel et a/. "found
are not divergent at this horizon. 'The rays which
are parallel to the horizon are associated with
waves produced by interaction with the potential
near there. Because the potential is exponentially
decreasing [~exp(-21(: r*)] near the horizon, the
situation is like that described by Eq. (3.5). The
zero-order wave Q„ is multiplied by e '"' (to give
a wave moving across r, to the left), and the
resultant scattering toward the right branch of
the r horizon is the e'"'" "term appearing in

g„e '"' with the g„of Eq. (3.5).
For purposes of evaluating the scattered waves

we may take a pulse in (t) which is simply Q
=5(r" +t). The correction to the wave will be (t)

= (1/2v) J g„d&u. To calculate the energy density
associated with the rightward-moving wave, we
differentiate the Fourier transform of the last
term in Eq. (3.5) with respect to u:

( ), 1 "V e~""
g' i'(u) =— —9 . da&.

2v „4i (~ +i~) (3.6)

g( ~ ) ~

fx e~ttl~g (3.7)

which is just rapid enough falloff that this wave

This g( ' enters Eq. (2. 13) to yield the observed
energy density. %e shall evaluate this integral
by complex contour integration. An observer
measuring g can always be located near the u =~
horizon so that u=r* —t &0. Then the integral may
be closed in the upper half plane. Closing the
contour in the upper half plane picks up the resi-
due at the pole &u= fz /2, and for large u

FIG. 2. A wave packet is scattered from the potential
in the exterior region I, then proceeds into region III
where further scattering occurs. The scattered radia-
tion inregion I will be rescattered into the hole, to give
a "tail" which has a power-law (in time) decay. The
energy density near the right branch of the w horizon
(i.e., near e = ~ where v =~*+i) due to these tails decays
sufficiently slowly so that infinite energy densities are
developed near the v =~ horizon. Even if such tails are
somehow suppressed so that the pulse is manufactured
to have finite duration as it crosses ~„ further scat-
tering near r, gives waves which are then rescattered
at ~*=0 to give waves traveling near the v = ~ horizon.
Such waves have infinite energy density there. (The
waves scattered just before the initial pulse crosses

travel rightward parallel to the u =~ horizon, i.e.,
parallel to the left branch of the r„horizon, yielding a

finite energy density as u -~.)

does give finite energy at the horizon.
'The calculation of Ref. 14 shows that for a 5-

function wave across the outer (r, ) horizon, there
is near the right branch of the inner horizon a.

leftward-traveling wave falling off as exp[-a,
x(y*+ t)] as the horizonis approached [(r*+t)- ~].
Figure 2 shows how this wave arises. 'The inward-
falling wave (leftward traveling in the diagram)
at r, is scattered near r, by the exponentially
small potential there. This produces radiation
which travels rightward parallel to and just inside
the outer horizon r, (r*=-~). These waves travel
toward larger values of r*, and at r*-0, when the
potential is strong, the waves are scattered again
so that they are leftward traveling. The origin of
time can be adjusted so that the inital scattering
at r*=r,*=-~ occurs for r*+t=0. After the first
scattering the radiation travels along the ray
r*- t = const=2r*p. The second scattering takes
place in the strong potential near r* = 0. After this
second scattering the ray traveling leftward near
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vr f~(r+-t)
Voe

4'L (d (K+ —i (d )
(3.8)

A 5(i+r*) input then yields a rightward-traveling
wave

y &4 (r+- t)
. ——-dc'.

„4i&u(~, —iv))
(3.9)

he second scattering translates this into a left-
ward-traveling wave, which near the horizon
(large v) has the behavior

Again we calculate the derivative

(3.10)

For large v the exponential decreases if ~ has a
negative imaginary part. Hence we evaluate this
integral by contour integration in the lower half

the right branch of the x=r horizon has r*+ t
= const =-2r,*. Hence the second scattering trans-
l.ates a function of the form x* —t =2m,* to one of
the form r" +t= 2-ra~ (i.e. , u is replaced by -v).
This second scattering occurs in a strong-field
region of the potential and may be assumed to be
essentially 100% effective as indicated by the
physics of the process. We make this assumption,
which is justified by calculations' '" and now con-
centrate on the first scattering. We idealize the
potential to a decaying exponential of the form
V,e'"+" (r*-—~) and assume that it vanishes for
x~ &0. 'The waves are scattered rightward can be
investigated by evaluating the field (corresponding
to e'"'*) in Eq. (3.4), at the point t'*=0+ &. Since
v = 2v, here, we find a Fourier component of the
form

plane. 'This procedure encloses the pole at (d

= -iK, . 'The residue from this pole yields

+(+)' (&) CC e v«+ (3.11)

These are the waves which Gursel et a/. "found
to have a divergent energy density on the right
horizon. Our result of Eels. (3.7) and (3.11)
demonstrates analytically —but with physically
reasonable approximation —what was shown by
computer analysis in Ref. 14.
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lV. CONCLUSIONS

'The lack of stability within perturbation theory
of course does not logically imply that a perturbed
Heissner-Nordstrom solution cannot have a causal
structure similar" to that in Fig. 1. Using the
word instability, we meant that large changes from
the background situation were implied by the in-
finite energy densities arising from finite per-
turbations. By now it is amply clear that the inner
structure is unstable in that sense.

In this paper we have attempted to show that
physical intuition and simple calculation can ex-
plain most of the results that have been found con-
cerning the inner stability of the Reissner-Nord-
strom solution. We have had to make some
simplif ying but physically reasonable assumptions.
Nonetheless, we are excited and encouraged by
the end simplicity of the results and by their
direct physical explanation and interpretation.
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