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Flavoring and cylinder renormalizations of the Pomeron
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Flavoring and cylinder effects are synthesized in the context of the dual topological expansion. One finds a
modified picture of the Pomeron-f identity, where mixing among planar trajectories has a threshold energy.
A model is proposed incorporating these efFects and is shown to have desirable features. It is further
proposed that flavoring may be entirely a nonplanar phenomenon, Phenomenology bas|;d on this model shows
the Pomeron-f identity to be compatible with existing data on vector-meson production.

I. INTRODUCTION

In the framework of the dual topological unitariz-
ation program, ' it has been proposed that the
Pomeron and f Regge singularities are one and the
same. In this scheme, the f at the planar level is
degenerate with the p, A2, and ~, with intercept
around 0.5. In addition, another neutral trajectory
with quark content gs is presumed to lie below the

f and contain the f' and p. The f undergoes two
significant renormalizations which prompt us to
identify it with the Pomeron. The first effect is the
cylinder contribution, a first- order correction to
the planar pole. This contribution also mixes f arid

f'. The second effect has been termed flavoring, '
and is a threshold effect stemming from the higher
mass of the strange (and charmed) quarks and di-
quarks. These effects have heretofore been con-
sidered separately, although there has been specu-
lation that they are related. '4 We present here an
analysis of the combined effects, and show that the
two are interrelated in a significant way. The re-
sulting phenomenology differs from and improves
upon previous analyses, as will be indicated. This
synthesis may therefore solve the difficulties that
the model of Ref. 2 has had phenomenologically.
We go on to suggest that flavoring may Qe purely a
cylinder effect, and discuss the consequences of
this assumption.

We restrict ourselves for the moment to meson-
meson scattering, where the topological expansion
is well understood. Our results can be extended to
meson-baryon and baryon-baryon systems to the
extent that baryonium exchanges can be neglected.
We also ignore flavoring by BB- pairs. Our nu-
merical results will thus relate to moderate ener-
gies only (say, P„b s 50 GeV/c). Our findings are
that trajectories which are ideally mixed give the
full contribution to scattering am'plitudes below the
threshold energy for AK production. Above this
threshold, flavoring with cylinder topology induces
a mixing of these trajectories which can be de-

scribed either via complex poles or via an expan-
sion using the unflavored poles. Mixing between f
and f' is thus an energy-dependent phenomenon.
However, cylinder corrections involving non-
strange quarks have no such-threshold, and we
conclude that it is this effect which renormalizes
the f to its "unflavored" intercept around 0.85.
Such an intercept has been found to be quite suc-
cessful in describing low-energy data."

Because the concept of flavored and unflavored
poles can lead to confusion, let us review' at this
point the way in which thresholds are treated in
this and similar analyses. We know that there is a
minimum energy below which strange-particle
production cannot occur. Energy conservation
alone assures us that the KK threshold is above
np threshold. We will use KK pairs to represent
strange-particle production in general. The effect
is much more pronounced than mere energy con-
servation would predict, however, and observed
thresholds are markedly higher than one might
naively expect. The explanation lies in the under-
lying dynamics, generally presumed to be multi-
peripheral for the bulk of the cross section. Be-
cause multiperipheral dynamics greatly enhances
low-momentum transfers (i.e., small f, ), and be-
cause

~ f,„~ increases with the mass of the pro-
duced particles at fixed energy, heavy-particle
production is greatly disfavored at low energies.
It thus turns out to be a good approximation to say
that there exists a threshold for KK production
around P„b = 10 GeV/c, even though the kinematic
threshold is much lower and a small amount of KK
production does occur below 10 GeV/c.

Now consider a multiperipheral model for
. strange- and nonstrange-particle production. Let
us assume a threshold s,„below which strange par-
ticles are not produced. We will neglect any thres-
holds for nonstrange (mostly rr) production. We
can write the absorptive part of the forward ampli-
tude in terms of the multiparticle final states as
follows, using unitarity:
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A'„(s)is the amplitude for production of m KIY

pairs, along mith pg nonstrange particles. We are
also interested in the j-plane structure of the for-
ward amplitude, given with sufficient accuracy by
the Mellin transform

A(A= f dss ~A(s).
so

The inverse of (2) is

(2)

=A (s}+Q A'„(s) . (4)

Because every term A'(s) has a threshold of at
least s,„, A"'(s) is equal to the full amplitude for
s (st„, and is a good firs t approxi m ation to it for

s,„. We denote this lom-energy ampl. itude and
its poles by using a caret. Thus A"'(s}=-A(s).
Now, since production of m KK pairs has a thres-
hold on the order of (s,„), the series in Eq. (4)
truncates at any finite -energy, and it is advantage-
ous to write the amplitude at moderate energies as
a series:

A(s) =A(s) + A f(s) +A;(s) + ~ (5)

This series converges rapidly, and provides much
physical insight into the energy dependence of A(s}.

The leading pole in A(d) is denoted by d(. In the
one-channel case we are considering here, 8 and
its daughters are the only poles in A. We will
ignore daughter poles in this paper. e is called
the unflavored pole, and is a singularity of A, but
not of A. [Note that A'„(J) has a pole of order nt

Now if we sum the entire series in (1), we get the
full ampIitude, mhich corresponds to a J-plane
structure of a leading real pole (or several poles,
in general) accompanied by a series of complex-
conjugate pairs of poles. The latter arise from
the thresholds 8(s —s,„) in A'„„(s). Let us for
simplicity consider only a single-channel problem
for the moment, with only a single real pole e in
A(J). Because n is generated by all contributions
to A(s), including all flavors, we call n the "fla-
vored" pole. (If all nondiffractive thresholds are
included, o. is then the bare pole, appropriate as
input to the Hegge field theory. )

An alternative and very useful approach is to add
the two parts of Eq. (1) separately, leading to

A (s) =A"'(s) + A '(s)

+1 at J = o as indicated by the caret. ] Neverthe-
less, at low energies A(s) = A(s) =Ps", so it must
be that the combination of the real pole n and all
its accompanying complex poles is equivalent to the
unflavored pole e. This has been demonstrated
explicitly by Dash et al. ,

' mho have developed this
approach and explored many of its phenomenologi-
cal implications. In particular, it has been dem-
onstrated that an unflavored pole n with intercept
a(0) =—0.85 can be generated self-consistently in a
multiperipheral model, and that the corresponding
amplitude A(s) gives an excellent description of
lom-energy data. An important ingredient in this
model is the existence of only a single leading
vacuum pole —that is, the Pomeron and f are one
and the same.

Let us now consider a three-quark model in the
context of the dual topological expansion. At the
planar level, below flavoring thresholds (i.e., be-
low s,„),. we will have two leading poles, called by
Chem and Hosenzmeig no and e,. The former has
quark content uu and dd, and is fourfold degener-
ate. (I=1 and I=O are degenerate, as are C =+.)
The content of a3 is ss, and o., is doubly degener-
ate (C =a), with an intercept somewhat below
o.,(0). If we now add in the quark diagrams with
the topology of the cylinder, the degeneracies are
partly broken, and we might also expect some mix-
ing between eo and ~,. We will show, homever,
that this mixing does not occur below the KK
threshold. In other words, below KK threshold,
mhere A =A, we can mrite

A =A =Ao+ A3 ~

where the poles in Ao and A, are (n&, 8, 6&, a„)
and (n&, , n&), with quark contents (uu and dd) and

ss, respectively. Thus, the unflavored amplitude,
which equals the full amplitude below s,„, contains
ideally mixed poles. Above s,„, me can either
write the full amplitude in terms of its poles (real
and complex} or as a series analogous to Eq. (5).
The latter is far more illuminating. We will see
that some of the cylinder contributions to A' (s) do
in fact mix (ft and nz, (also &3 and p). Thus the
fully flavored poles are mixtures of all three
quarks, and can be identified with the f, f', &u, and

But at moderate energies, where the thres-
holds are important, the energy dependence is
neither that of 8 nor that of the flavored poles n&,
n, etc. One must either use flavored plus com-
plex poles, or unflavored poles plus the expansion
of Eq. (5). It is in. this sense that we say the mix-
ing is energy dependent.

In the following section, we use quark diagrams
to demonstrate the general mechanisms at work
here. In Sec. III me formulate a simple model in-
corporating these ideas and investigate some of
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its properties. Section IV is devoted to a prelim-
inary investigation of the phenomenological as-
pects of the model, including some actual fits to
total and partial cross sections. We discuss in the
concluding section the successes and failures of
the particular model and suggested impr'ovements.

II. FLAVORING AND THE CYLINDER

VFe begin our analysis by considering the quark
diagrams of Fig. 1. We assume a multiperipheral
mechanism for generating the various trajectories
through unitarity. Figure 1(a) shows a typical
planar diagram with no strange or heavier quarks.
Such diagrams generate the unrenormalized and
degenerate f, p, ~,A, trajectories which we call
collectively n, (t) [no(0) =0.5t. Figure 1(b) shows
the corresponding diagram for generating the f'
and p, which are ideally mixed and degenerate at
the planar level. (The use of the terms f, f', &o,

etc. here is potentially misleading, since n, and

n, are not poles of the full amplitude, and the full
poles are not planar nor ideally mixed. Since
ideal mixing works much better for t&0, there is
some sense in which we can label the trajectories
this way. For the moment, we do so for book-
keeping as we examine how the physical trajector-
ies evolve from the planar ones. ) One consequence
of the breaking of SU(3) is that the planar ss tra-
jectory, which we call n, following Chew and

Hosenzweig, ' is lower than no, with n, (0) =0.1-
0.2.

Figure 1(c) is again a planar diagram, but now

we include strange-quark loops. The intermediate
state now contains strange particles, if we assume

the strange-quark loop cannot be contracted to the
topologically equivalent graph 1(a). The latter
possibility is considered at the end of the next sec-
tion. Since strange particles are heavier than non-
strange particles (mz & m~, m~q & mz) and must be
produced in pairs, a threshold energy must be
reached before strange particles can contribute to
the unitarity sum. Thereafter this new component
will renormalize the unflavored trajectory, as
discussed in Sec. I. This process is called flavor-
ing. The KI7 threshold is not high, say 10 GeV/c,
but the effect is important in describing the. energy
dependence of cross sections.

Figures 1(d) and 1(e) show examples of the sim-
plest nonplanar effects, referred to as cylinder
diagrams. We observe that cylinder loops involv-
ing strange quarks must also involve strange-par-
ticle production, and thus observe a threshold en-
ergy. Note that we cannot contract the strange-
quark loops into ordinary mesons here as suggest-
ed for Fig. 1(c). Nonstrange cylinder loops have a.

substantially lower threshold (usually neglected in
model calculations), and contribute at low ener-
gies.

Of the diagrams in Fig. 1, only 1(e) generates a
singularity which mixes (uu+dd) with ss (i.e.,
which mixes o., and n, ). We can coriclude from
this the following:

(a) Cylinder corrections renormalize no at low

energies but do not mix no and e3;
(b) Flavoring corrections (planar and nonplanar)

renormalize both eo and e, only above a certain
threshold energy;

(c) Mixing between oo and o.„ from cylinder cor-
rections, occurs only above the KA threshold en-
ergy

f it l )(0 4f It is thus natural to assume that the unflavored
Pomeron, nz IB&(0)=0.85t, is generated by all
nonstrange contributions, both planar and non-
planar. This unflavored Pomeron is ideally
mixed, as no mixing with n, has occurred.

An important special case occurs for Kw (KN)
scattering. Figure 2(a) shows a single-twist dia-
gram which mill mix e, and o., and-yet has the
same threshold as the planar diagram, Fig. 2(b).
This mixing will not renormalize the pole inter-
cepts, but will affect the couplings.

(e)
FIG. l. Quark diagrams representing various contri-

butions to the generation of Regge singularities. Bold
lines indicate strange quarks. The t channel runs left
to right.

&L~~~I&
Xf

(a) (b)

FIG. 2. Nonplanar (a) and planar (b) contributions to
&7r scattering with the same threshold energy.
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III. A MODIFIED CHEW-ROSENZWEIG MODEL

0

~(Z) = P V(J}p(ICP)"V(Z)

= V(Z)~(I-&Z) 'V(J ).

(8a)

(Bb)

{a}

FIG. 3. Contributions which renormalize the tra-
jectories no and +3. Strange quarks are represented by
bold lines. The di.agrams are arranged in the order

. that they appear in the kernel K [Eq. (6)].

We can now reformulate the model of Chew and
Rosenzweig' to incorporate both flavoring and
cylinder renormalizations in one kernel. SU(3}
breaking mill now be explicit in tQe kerne1, in con-
trast to the supposition of Ref. 2. We include the
terms diagramed in Fig. 3, which yield the com-
bined mixing and flavoring matrix for I=O. If we
make a simple exponential parametrization for the
threshold factors, we find a kernel for positive
charge conj ugation:

(2kg2 +G2e 2M ~kedge bJ

Z(Z)=
i

I . (6)
Wkgge M G2e '~~(I+k)jj

Here k is the cylinder strength (relative to plan-
ar), g and 6 are, the planar nonstrange- and
strange-meson couplings, respectively, and 5 is
the rapidity threshold required for production of a
single strange meson. That the diagonal terms in
G' have the twice this threshold (i.e., 2b) means
our strange particles are assumed to be produced
in uncorreIated pairs. An alternative formulation
will be considered belom. The two channels of this
matrix represent the ideally mixed I=0 states
(uu+dd)/W, ss, corresponding to oo and o.„re-
spectively. The I=1 kernel is just Q'e '~~. The
planar propagator matrix is

/'(&- o.) '

(a- o.,) ' j
and the amplitude is given by

n~= o.o+2g k =0.85 (at t =0). . (10)

n, is unchanged (so a&, ——n~). The negative-charge-
conjugation (C =-) poles are

o'~ = &0- 2g'I k I ~ (11)

Qg = Q'3. (12)

If we include the effects of flavoring, we find two
leading real poles and a series of complex poles
for each value of C, as in one-channel models of
threshold effects. Phenomenological studies' indi-
cate that KK flavoring ought to raise 6& to n&

=1.0. We can accomplish this mith a reasonable
set of parameters. For example, if we let &=0.7,
k=1, a, =0.2, o0=0.5, we find aj (flavored) =1.0,
e =0.53, and an asymptotic (i.e., P =50-GeV/c)
mixing angle of e, =IV'. g, is defined such that

(f) = cos 9, [0) + sing,
~
3) . (13)

'The fact that these numbers are reasonable is en-
cou ragan g.

One problem we face with the present model is
that the J =1 trajectories, though uriaffected by the
cylinder, will be flavored by the planar diagrams
such that ep 0 5 Qp 0 65, with the above par'am-
eters. Such threshold behavior is not observed: p-
exchange cross sections are very well fitted by a
single real pole near —,'.' We therefore wish to
consider the possibility' that the planar flavoring
contributions [Figs. 3(b) and 3(e)j do not have a
significant threshold. For example, a planar KE
pair may be bound or resonate. The pair is dual
to ordinary mesons, and it may be improper to
consider the (us)(su) states in Fig. 3(b) to be liter-
al K and K mesons. Even if not resonant, the pair
as correlated and may very well have a low invari-
ant mass (-2m~). In either case, we might expect
this planar KE pair to exhibit itself as a relatively
low mass unit, so that it is probable that the thres-
hold factors for Figs. 3(b) and 3(e) are less than
shown in Eq. (6). In contrast, the K's produced
via a twist must be uncorrelated, with strarige-
particle (or p) exchanges between them, and here
the full threshold factor is appropriate (m«
»2m„). If these considerations are valid, we can

V(g) is the coupling to external particles, and is
shown to explicitly depend on J. This dependence
must be included for consistency, since we may
have K production at the end of the multiperipheral
ladder, as in Fig. 1(c). For C =-, the amplitude
is obtained by replacing k by (-k).

If we ignore flavoring, by setting Q =0, we find
poles as solutions of

{Z-~, —2g'k)(Z- ~,) =0.
%e see that eo is renormalized by the cylinder to
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modify the kernel of Eq. (6) by dropping the thres-
hold factors for Fig. 3(b), 3(e) and including all
planar contributions in no and n3. The physical
case may be intermediate between these extremes.
The kernel is then

(2Kk)'i2e az -)
K'(Z) =+ (14)

((2K/) ~ e K e~~~ j
where we have absorbed g and G into k and K, re-
spectively.

When we apply these considerations to our mod-
el, we find some interesting consequences which
are attractive phenomenologically. Specifically,
the unflavored ~(a„) is now shifted down much
less, and the mixing angle 8, is more realistic.
For example, with n, =0.2, n, =0.6, and 5=1, we
find o.&=0.85, e =0.35. The flavored parameters
are then 9,=28.5', I9 =-21.8, e =0.52, e&, =0.48,
and o&=1.0. The p becomes entirely complex in
this approach. The I=1 trajectories (p, A, ) are
fixed at 0.6 in this version, and undergo no flavor-
ing,

The fact that realistic numbers are obtained with
this simple model is encouraging, even without
detailed phenomenology. Before approaching the
available data, however, we should point out some
of the shortcomings of our present formulation of
this model. Most important is our omission of in-
terference diagrams, those with twists on the pro-
duced particles. As shown by Eylon and others, '
an SU(3)-symmetric model cannot generate an ~
at all if it neglects these terms. We have done so
here primarily so that we can have a tractable
model, without a large number of channels. The
sensitivity of the (u and P to details of the model
warns us that this sector (i.e., C =-) may not be
well treated in our model. We will see that this is
in fact the case. Other obvious omissions are such
things as cuts and associated production, found to
be small but noticeable effects in earlier work;
and our treatment of thresholds, via an exponential
in J, is of course the simplest possible. Judging
from other fits using similar models, we should
not expect these latter effects to prevent us from
achieving a reasonable description of data, and
thus testing the basic content of the model.

In order to compare this model with experiment,
w'e wi1.1 have to make some specific assumptions
concerning t dependence and baryon couplings.
This will be done in the next section, but let us
first consider some general features of this ap™
proach which lead us to believe it will improve
upon earlier models. In particular, it'has been
shown that the model of Chew and Rosenzweig,
while successful in describing total cross sections,
fails to adequately fit vector-meson production

processes (PN- VN) W. e can demonstrate qualita-
tively why we believe the situation mill be some-
what improved with the present version, and will
show in the next section that a decent fit to PÃ-VN can be realized with a specific realization of
our model. The remarks in the following para-
graphs refer to both versions of the present model,
unless otherwise noted.

First, consider the energy dependence of the to-
tal cross sections. Since e&, does not couple to mn

or NN, we will have no contributions from it to
o(mN) or o(NN) below KK threshold Ab. ove this
threshold, its contribution can almost certainly be
neglected relative to that of Bf, and we are left
with a description of nN and NN scattering in terms
of nonstrange poles. In particular, the vacuum-
exchange part of o(vN) and o(AN) will be described
by -the bare Pomeron plus flavoring corrections,
very much as in Ref. 3. On the other hand, 6&,
will contribute to g(KN), through diagrams of the
type of Fig. 2(a). Since this term is proportional
to (s ~ —s ~'), the f ' contribution is negative and
will lead to a flatter v(KN), as observed In R.ef.
3, this flattening was effected by eikonal cuts,
which will not be needed here. 'The higher-energy
behavior of o(KN) will be essentially that of o.z, as
in Ref. 3. Thus, we expect the vacuum contribu-
tion to o(vN); o(NN), and a(KN) to behave much
as they did in earlier fits. The relative normaliz-
ations will be free, but once fixed will determine
the PN- VN couplings.

The C =- contributions to the cross section can
be compared to appropriate combinations of KN
cross sections. These tend to behave roughly as
s ' ', with little evidence of flavoring. We are led
to conclude, then, that the second version of our
model will be more successful, as in this instance
the cu does not undergo very much fiavoring (o.
=0.35, o'„=0.52). However, we must keep in mind
that the C =- sector is not well treated when we
neglected interference diagrams.

Turning now to the processes PN -VN, we can
use pN- pN to fix the co parameters. Presuming
this is successful (again, with n -0.5, this de-
scription is known to work), we are left with the
problem of fitting the %*data. The primary dif-
ficulties revealed by previous analyses" are the
overall normalization (too large), and the energy
dependence (u falls too slowly). We can expect in
the present model that the cross section will even-
tually be dominated by the Pomeron, which will

. not decouple since it will not be pure singlet (ac-
cording to total cross sections). As for the over-
all normalization, the analysis of Tan et al.'
found that the best fit was obtained if there was no
mixing of ~, and n, in the C = —sector. Since we
have no mixing here below KK threshold, we can
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hope that our normalization will likewise be satis-
factory. While we also have no mixing in the posi-
tive C sector (in contrast to Ref. 10), this will be
partially offset by the contribution of Fig. 2(a) ~

More specifically, while the planar f contributions
will be enhanced over f' below KK threshold, the
contribution of Fig. 2(a) goes like (-s ~+ s'~),
partially canceling this enhancement. T hese quali-
tative features appear to be just what are required
to describe K* data, but because this model is
more complex than that without thresholds, it is
quite impossible to say for sure that a reasonable
description can be obtained without doing a detailed
phenomenology. Our attempt at this is described
in the next section.
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IV. A PHENOMENOLOGICAL ANALYSIS

In light of the considerations of the previous sec-
tion, we choose the second formulation of our
model for data fitting. Thus, all flavoring is in
the cylinder. The amplitude is obtained from Eqs.
(3), (8a), (7), and (14). In order to fit total cross
sections, we need only choose our particle cou-
plings V(J). We make the simple choices (C = a)

—g (I

t' I/2 )
} 1/W)

s-Bz
(15)

1

( 1/2

~-I/W
The meson vertices are fixed by SU(3), with g and

g representing the PP and Pp couplings, respec-
tively. We couple nucleons only to nonstrange tra-
jectories, and allow for different couplings for C

We include a threshold term e ~~ for the nu-
cleon. This is the only way to allow for different
energy dependences of g(wN) and o(NN). The pa-
rameter sa in Eq. (2) is fixed at 1 GeV'. Explicit
formulas are listed in the Appendix.

We first fit the vacuum-exchange cross sections"

P
I b (GeV/c)

FIG. 4. Vacuum-exchange parts of the total cross
sections NN, xN, and K¹
The free parameters are B, k, g, P', and b. k is
fixed by the planar flavoring to be 0.125 (az- o'0

=2k). Our normalization is

o(s) ~ ™A(s,0).1

S
(17)

, Unfortunately, when we look at the theoretical
cross section, we .find that the "w problem" has
materialized here in the form of an unrealistic P
pole. Specifically, the P becomes complex with an
intercept whose real part is around 0.4. This
.causes a totally unrealistic C = - amplitude. Our
approach to this problem is to assume that inclu-

TABLE I. Fitted parameters.

We fit representative data by expanding A(s) as in
Eq. (4), with the results as shown in Fig. 4 ~ The
parameters are listed in Table I ~ We see that the .

cross- section fits, though perhaps not as good as
Ref. 3, are quite satisfactory. We have simultan-
eously fitted the K multiplicity in p ~„ to check
that the energy dependence of g is correlated to
the flavoring due to KK production. The resultant
multiplicity is shown in Fig. 5.

We next turn to the negative-C, I= 0 cross sec-
tion. We wish to fit

o (KN) =- [o(K p) —o(K'p)+o(K n) —o(K'n)]/4.

(18)

and

o,(NN} = [o(pp) +&r(pp)]/2,

o, (mN) = [o(m'p)+o(m p)]/2,

o,(KN) = [o(K'p) +o(K p) +cr(K'n) +o(K n)]/4.

g= 5.16
g= 0.89
P+= 11.2
P = 10,85
y+= 1.05

K(0) = 2.44
k (0) = 0.125
B = 0.22

= 0.98
= 3.0
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FIG. 5. E multiplicity in NN scattering, plotted
versus I |gb o

sion of interfer'ence diagrams will fix the C =—
sector without seriously affecting the rest, as was
indicated in Eylon's analysis. ' In order to proceed
with the analysis, we keep the &, which is reason-
able, and drop the p, which is unrealistic in this
model. This is the only correction we mill apply
to the model. Having done this, we have the re-
sulting fit shown in Fig. 6. The only free param-
eter is P, which is given the value listed in Table
I.

The effects of flavoring are evident in Figs. 4
- through 6. Without flavoring, we would have sim-

ple power-law dependence of a on s. In the fits of
Ref. 10 the departure from power-law behavior was
due to the f' contribution, absent here. The fact
that the effective ~ intercept is never far from 0.5
allows us to achieve an acceptable fit to o„(KN}
over a wide range of energies. The flattening of
ao(KN) is evident. In general, the quantitative fea-
tures of the total cross sections are well fitted.
We could look at the nonvacuum contributions to
o(vN) and o(NN), but this would involve not only the
& but also the p trajectory. Since we are not pri-
marily interested in the p, we will not pursue this
analysis here. We note that our o.

~
is reasonable

and does not get flavored, and expect that with a
new free parameter P~ we should have no trouble
fitting these additional data. We move now to the
more challenging problem of vector-meson cross

K(f) =Ko —1.5t,

k(t) =ko- 0.2t.
(19)

[Recall that K(t} always appears in combination
with e ~~, so K»k. ] The resultant leading tra-
jectories are shown in Fig. 7. They are approxi-
mately linear out to t =-1 (GeV/c)', and for our
numerical work we use the approximations

oq(f) = 1.02+0.23t,

o, (t) =0.49+0.89t,

o. (f) =0.53+0.96t.

(20)

As input, we use

sections.
In order to study vector-meson cross sections,

we must make some assumptions about the t-de-
pendence of our model. We choose b and g, our
threshold parameters, to be independent of t. The
parameters pc and g will be given exponential f
dependence. K and k must also vary with g, in a
way which is qualitatively understood on general
grounds. ' We expect 4 and K to increase as t
--~, so that the poles approach exact SU(3} sym-
metry. For t & 0, according to the hypothesis of
asymptotic planarity, k and K -0. The exact form
of this t dependence is not known, so.we choose it
to be linear in the region of interest to us. We fix
the slopes by demanding that the flavored trajec-
tories be reasonable. Previous work has shown
that the unflavored Pomeron (az) has a slope,
around 0.5, while the flavored Pomeron has a
somewhat smaller slope. Flavoring becomes more
significant for t & 0 because the t . effects are not
as important. Furthermore, we expect the flavored
&u and f' to have slopes around 1. This can be ac-
complished if we choose

6
V

c5 4

3

2
CF

1

I . [ I I e ) ~

s I a . I a I s I I I

10 15 20 25 30
-1.0 -0.

-1.0

- 0.8

.~ 0.6

.0.4

- 0.2

-. t(Gev )

P
~ b

(GeV/c)

FIG. 6. The co contribution to the EN total cross
section. We plot qe versus laboratory momentum,
where q is the center-of-mass momentum. The flat-
ness of qo indicates that the amplitude is proportional
toe s.

- ~ -0.2

..-0.4

..-0.6
FIG. 7. Leading (real) trajectories generated by the

mOdel.
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Re n(t) . Im 0.(t)

C=+

(f')
1.02+ 0.23t
0.49+ 0.89t
0.01 -0..24t

-0.42 -0.27t
2.31-0.'16t
5.53-0.08t

0.53+ 0.96t
-0.25 -0.24t
-0.55-0.27t

0.43+ 0.18t

3.98-0.2t
7.18-0.12t
1.04 -0.26t

~Not used in fits.

nz(t) = 0.85+ 0.6f,

n„(t) = 0.36+1.4t,

a'3(f) =0.2+f = ay, (f)t,

and

e,(f) =0.6+f.
Note that e„(f)= e,(f)+2&(f}.

We cannot use Eq. (4) for this part of the analy-
sis, since the real parts of the amplitude do not
observe the thresholds (except in an approximate
way, as shown in Ref. 2). We must instead use the
full amplitude, which we represent in terms of its
poles. We take the first two complex conjugate
pairs of poles in addition to the real poles listed
in Eq. (20) above. The expressions for the com-
plex poles are listed in Table II. Note their nega-
tive slopes, reflecting the increased flavoring as
g~ ~OQ ~

We then write our amplitude as

0.16

0.12

CO

0.08.

TABLE II. Poles in the full amplitude are at the values
below. Complex poles occur in conjugate pairs; orily the
leading pairs are listed.

A(s, ti= f ~
.— EIZ)e A(Jt),

(22)&] e i"N &] D' &]

where N/D' is the residue of the ith Regge pole,
with

D'( o', ) = (23)
g=n. (g)

g(o.} is the signature factor. The functions N and
D' are given in the appendix, along with a more
detailed description of the parametrization.

We are now ready to compare these amplitudes
to the vector-meson data. We have three new pa-
rameters: g, y', and y (y' are the exponential
slopes —see Appendix). We fix g and y by fitting
the v contribution to (do/dt)(vN- pÃ)." The re-
sulting fit is shown in Fig. 8 and the parameters
are as given in Table I. There remains only the
parameter y' to vary in order to achieve a fit to
the K* data. " Qne finds a fairly good fit with a
reasonable value of y', as seen in Figs. 9-12. We
have fitted differential cross sections for both K'
and K processes at several energies. We show
representative examples in Figs. 9 and 10, and the
integrated cross sections in Figs. 11 and 12. We
find that our normalization is not bad, although the
model is now too small at lower energies. (It was
too large in Ref. 10.) The energy dependence is
not bad, but it is clear that the Pomeron compon-
ent is becoming increasingly important at higher
energies. If the trend of the data does not shift to
a less rapid fall at higher energies, the model and
data will be in significant disagreement by around
P„b=100 GeV/c. This prediction would seem to
hold for any form of the model in which the Pomer-
on is identified with the f and must play a signifi-
cant role in K" processes.

If we relax the restriction that the f and f' re-
sidues have the same g dependence, we get a
slightly improved fit with y =-2.4, y =1.1. This
larger value of the Pomeron diffractive slope is
somewhat more conventional. We also should point
out that we have- ignored unnatural-parity- exchange
contributions to this process, which are known to
be present in the data at about the I(P/&& level. This
should have no appreciable effect on our results.

0.04 . ,

0.0
I

O. l
I

0.2
Itl (GeV2)

I

0.3 0.4

. FIG. 8. The co contribution to (do/dt)(nN pN).

V. SUMMARY AND CONCLUSIONS

We have formulated in general terms the relation
between flavoring and cylinder .effects, and found

mixing of trajectories to be a flavoring effect. In
other words, trajectories which are ideally mixed
at the planar level will exhibit mixing only above
the threshold energy for strange-particle produc-
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FIG. 11. Integrated cross section for E p E* p

plotted versus incident momentum.

tion. A specific model was constructed along the
lines of that of Ghew and Rosenzweig, and found to
have generally desirable features. If we assumed
that flavoring effects were to be found only in
cylinder topologies, our model became more fav-
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FIG. 10. (da/dt)(K+p X *+p) at representative in-
cident momenta.
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FIG. 12. o(K+p E ~+p) versus incident momentum.
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orable phenomenologically, and in fact was shown
to be in reasonable agreement with experiment,
except for some difficulty with the [d-(([) sector. To
the extent that our treatment of the "u problem"
was valid, we can conclude that the model and ex-
periment are compatible for total cross sections
and for vector-meson production up to at least 40
GeV/c, but that measurements of K* production
at only moderately higher energies will be crucial
in testing the model. Incorporating flavoring into
the Chem-Rosenzmeig model has proved to have
desirable effects on the overall phenomenology.

The model which proved best from a phenomeno-
logical standpoint mas that which had only non-
planar flavoring. It then follomed that the p and A,
underwent no flavoring, as observed for the p.'
The (d mas shifted only slightly by flavoring, again
in accord with total-cross-section measurements.
We can make further observations. For one, it
follows from Fig. 1(e) that a K and K will not in

general be produced adjacent to one another in
cylinder diagrams. It mas shown in Ref. 14 that
this is in fact required if inclusive data are to be
explained by the same mechanism which is respon-
sible for rising total cross sections. We also ob-
serve that only Okubo-Zweig-Iizuka- (OZI) rule-
forbidden KK production will occur. This can be
tested by comparing PCK production (allowed) to
(KK)(KK). The latter is at least partly cylinder
and OZI- rule forbidden. Unfortunately, phase
space for these processes is limited at current en-
ergies. It is known that OZI-rule-forbidden g
production (no accompanying KK) predominates
over pKK,"but this could be due to phase space.

We have ignored baryon-antibaryon production
in this model, primarily because a topological ex-
pansion for baryons is not yet full established.

here is every indication, however, that baryon-
ium mixing mill follow the same general pattern as
strangeness mixing —i.e., there mill be a thres-
hold for the mixing, namely the baryon-antibaryon
effective threshold (around P„b= 100 GeV/c). We
have examined this process in the context of the
ordered S matrix of Chew et g$. ,

"and do in fact
find this threshold effect to be present, though in
an altered form. The theory is not yet sufficiently
developed to lead to quantitative analysis, how-
ever, and we do not pursue it here. We should

note, however, that it ip only the imaginary parts
of amplitudes that have thresholds. It mas found
in Ref. 3 that real parts do behave as if they mere
roughly observing threshoMs, by interpolating be-
tween the unflavored Red. and the flavored ReA.
But there remains the possibility that new high-
mass thresholds such as baryon-antibaryon pro-
duction can affect the phenomenology of K* pro-
duction at moderate momenta such as p'„b-40
GeV/c.

APPENDIX

We list here the formulas used in our analysis.
For the total cross sections, we have the following
relation for the absorptive part of the forward am-
plitude:

A(s) =
2 . e~rA(Z),dJ

A, (J)=V, (J)P(J')(I-KP) 'V (8),

mhere

(A1)

(A2)

K=C I

( 12K' )1/2 e- M

[ (&-~) '

o

(A3)

(A4)

where

e~, C=+
CV =

Ae4) y

(A5)

We expand (1-KP) ' and evaluate the integrals to
get the amplitudes
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e)„„=i)' exp[eie(Y — B) 2g( )) eee [e" ee"(eK —1)]),
(2K')"2

where g = I'- 2(b +B), 6 = n& —n„Y'= ln(s/so).

A,„=g() e' 'ee ~ (e,), [eS" eee"e(e,))-1)l},(2K')'"

(A 6)

(A V)
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AJ,„=-,'gP eo"&+8(z,) (e'~ f-e'& ~)+, 8(z, )fe'+ 3+e'~&(z,s-1)](2K')"', .-,. 2K'

2K(K~)"2+, 8(z, ) e'3"x- e'3"3(z,b, +1)+ —
~

[e'3 &(z, —2/a)+e'~ &(z, +2/a)] (A8)

where z„=Y- B—nb. We have kept all terms in the
expansion (4) of the text up to and including one
produced KK pair. Comparison with Fig. 6 shows
that one KK pair is sufficient to account for the
multiplicity up to the energies considered in this
paper.

The total cross section is obtained from D'(n) = 8D,
g=n

(A14)

A(J, t) has poles where D(J, t) vanishes. Near the
pole, we write

(A13)

where

o(s) = ' A(s).0.389
S

(AQ) Then

The vector-meson production amplitudes are de-
rived from

T(s, ~) =Q (( o)e" "&(a()/D'(n, ).

The numerator functions are

(A15)

T(s, t)=

with

. ~(J)e'"X(J, t),
21rz

(A 10)
„=gp v'-te (o.' —o., +Ke '~)e~ ',

(A16)
$(J) = —(e '~~ + 1)/sine J . (A 11)

&zP-4c*~=g& & ~ e f~(~ o-'3+Ke

K, k, a, and e, are given t dependence as de-
scribed in the text. Then we write

A(J, E) =N(J, f)I/D(J, $)

+ (Kk)'~'e b"]e~ ' (A17)

Finally, we get the differential cross section
from

with (A 12)

D(J, t)=(J- a, )(J- n)-C(J- a)Ke "~-2Kke "~.
do 0.389
dt g s (A18)
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