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Solutions of simple dual bootstrap models satisfying the Lee-Veneziano relation and the
smallness of cut discontinuities
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To investigate the t-dependent solutions of simple dual bootstrap models, we discuss two general
formulations, one without and one with cut cancellation for the Reggeon-particle amplitude at the planar
level. We discuss the possible corresponding production mechanisms. In contrast to Bishari s formulation,
both of our models recover the Lee-Veneziano relation, i.e., in the peak approximation the Pomeron
intercept is unity. The solutions based on an exponential form for the reduced triple-Reggeon vertex for both
models are discussed in detail. We also calculate the cut discontinuities for both of our models and for
Bishari's and show that at both the planar and cylinder levels they are small compared with the
corresponding pole residues. Precocious asymptotic planarity is also found in our solutions.

I. INTRODUCTION

In the past few years, the strong-interaction
dynamical approach of "dual unztarization and top.-
ological expansion"" has received considerable
attention. This method may be considered as
the extension of the important work of Lee and
Veneziano, who using certain approximations
derived the interesting result that the Pomeron
intercept is +~=1.' ' In the approximation of
neglecting momentum-transfer, t, dependence
(called peak approximation in this paper), the Lee-
Veneziano formulation turns out to be the first two
terms, i.e., planar plus cylinder, in the topologi-
cal expansion (TE).' Higher-order terms are
supposed to be suppressed by powers of 1/N
[SU(N) is the internal-symmetry group], and some
of these terms are further dynamically suppressed
due to f-channel exoticity.

Since its introduction, much work has been done
on this approach. For example, Chew and Rosen-
zweig' showed that the Pomeron-f identity is a
simple realization of the TE, i.e., up to the cylin-
der level the Pomeron is just the f trajectory re-'
normalized and mixed with the planar f ' trajectory
via the cylinder correction to the planar approxi-
mation. This Pomeron-f identity has already been
shown to be a viable scheme phenomenologically. ' '
The effects of SU(N)-symmetry breaking have been
investigated. "' ~ Inclusion of baryons" and the
next-higher-order term, the torus, ""have been
studied. The interesting property of asymptotic
planarity was pointed out, ' " and elaborated
on," "and its relevance to the Iizuka-Qkubo-
Zweig rule for decays of mesons has been inves-
tigated. ""

An important ingredient in the whole approach
of dual unitarization and topological expansion is

the constraint of planar bootstrap, i.e. , the input
Regge poles should not be further renormalized
by planar loop insertions, and therefore should be
bootstrapped with the planar output Regge
poles. ' '"" Since the input kernel is a Reggeon-
Reggeon cut, a natural question that arises is
does the output at the planar level contain only
poles, i.e., do the Reggeon-Reggeon cuts get
cancelled in the solution of the int'egral equation.
By choosing a specific form for the inhomogeneous
term, it.can be shown that such cut cancellation
does exist at the planar level. " However, the
generality of such a specifi, c choice and therefore
the generality of cut cancellation has been ques-
tioned within the multi-Regge cluster frame-
WOrk 2 5 s26

By choosing. an exponential form for the reduced
triple-Reggeon vertex, Bishari in an interesting
paper" was able to investigate analytically t-depen-
dent dual bootstrap equations up to the cylinder
level. His solution gives reasonable values for the
Pomeron intercept and slope, and satisfies asymp-
totic planarity. He also found that even if a cut-
cancellation mechanism exists at the planar level,
the same mechanism does not lead to cut cancel-
lation at the cylinder level. The problem of Po~-
eron calculation was also recently discussed by
Freeman and Zarmi. 2~~b~

However, as will be shown in the next section,
Bishari's formulation does not recover in the peak
approximation the nice Lee-Veneziano relation
of u~= 1. In this paper we discuss hvo formula-
tions of the dual bootstrap equations, one without
and one with the cut cancellation for Reggeon-par-
ticle amplitude at the planar level. We discuss
the possible production mechanisms which lead to
these two formulations. Both formulations, in con-
trast to Bishari's, recover in the peak approxi-

2778



SOLUTIONS OF SIMPLE DUAL BOOTSTRAP MODELS. . . 2779

mation the Lee-Veneziano relation. Following
Bishari's approach in solving this type of e(lua-
tions by choosing an exponential form for the re-
duced triple-Reggeon vertex, we solve these equa-
tions for the Pomeron intercept and slope. %e then
calculate the discontinuities of the Reggeon-Reg-
geon cuts at the cylinder level for both formula-
tions and found that they are small compared with
the corresponding pole residues. In the formula-
tion where a Reggeon-Reggeon cut does exist at
the planar level, this cut discontinuity also is cal-
culated and shown to be small compared with the
planar pole residue. Although planar self-con-
sistency requires that one should also bootstrap
the Reggeon-Reggeon amplitude, " we do not pur-
sue this investigation at this time. Also from
phenomenological point of view, irrespective of
whether there is cut or no cut at planar level,
there will be always cut present at cylinder level,
with small magnitude, as we shall see later. Fi-
nally, we provide further support for precocious
asymptotic planarity, """i.e., the cylinder con-
tribution is already small at t» 2 GeV'.

The theoretical formulation of the bootstrap
equations, . together with their solutions in integral
form, is presented in Sec. II. In Sec. III, based
on an exponential parametrization for the reduced
triple-Reggeon vertex, we investigate the solu-
tions, the cut discontinuities, and asymptotic plan-
arity. Section IV ends with a short summary.
Derivations of certain equations are contained in

Appendix A. Modification due to the no-double-
counting condition is discussed in Appendix B. In

Appendix C, we coinpare our formulation, which
incorporates the effect of finite-range interaction,
with those which do not incorporate this explicitly.

8

T~(s) = — ds, A'„(s,) f ds, A„(s,)
Sp Sp

where s, = coss(n, —n, ,) and in general n; -=o.(t, ),
c, = n(tI). In (2.1a) we choose to expand the asym-
ptotic behavior of the Beggeon loop in powers of

(s/swiss), where s', =s, —so. This shift from the
more commonly used s, variable to the present
s', variable is a simple way to get an exact factor-
izable kernel and at the same time satisfy the con-
straint of the finite-range interaction, and also
(as we shall see later) to realize duality and cut
cancellation associated with model II. Duality in
the present context states that the appropriately
weighted cluster-produc tion contribution can be
evaluated through a finite-mass sum rule (FMSH).
The 2 (s)'s are the absorptive part of the various
amplitudes. Subscripts i remind us that the rele-
vant Reggeons are at o, and o, , and the corr'e-
sponding quantities in general have t, and t', depen-
dence. The phase-space volume element, which
depends on t, and t,' is denoted by dp, . See E(I.
(A1) of Appendix A for details. In Appendix C,
we compare (2.1) with the case when s', is re-
placed by s,.

Performing the Mellin transform, we get the
"effective partial-wave amplitude, "

A»(J')-=]I dsA»(s)s ~ '=As»(Z)+T»(J), (2.2)
'p

A»(J)= )I dsA. »(s)s ~ ',
Sp

II. BOOTSTRAP EQUATIONS AND THEIR SOLUTIONS IN

INTEGRAL FORM 4a
0

4(b
0

4 A~b

A. Bootstrap equations

The dual bootstrap equations have been discussed
by many authors. However, the specific forms
differ in details among authors. Here we briefly
discuss our two formulations to establish our con-
ventions, and explicitly state the assumptions in-
volved.

First we look at the planar bootstrap equation.
This is depicted in Fig. 1(a). In terms of the ener-
gy variable, it reads (we leave out writing explicit-
ly the dependence on the overall t),

(b)

(c)

MODEL I:

MODEL II'

Sp

A»(s) =A»o(s)+ T„(s),

with

(2.1)
FIG. 1. Schematic illustration of the integral equa-

tions. (a) The integral equation at the planar level. (b)
The inhomogeneous terms, +0~, for models I snd II.
(c) The integral equation at the cylinder level.
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T„(z)=- dsT„(s)s ~ '
Sp

d p2 ds, &~ s, s', ' ds2A. » s, s,
Sp Sp S2

d42&i/2 ~
c A~(J)

c2
(2.3)

where

ac=—n +n' 1 (2.3a)

A~(&) =f,g,y, , -
with

fr=1~ 8'|=d|(n ncaa) ~

(2.4a)

(2.4b)
S

y~ = (s —so)"s ~ 'ds.
Sp

We note thatg, is a triple-Reggeon vertex.
Carrying out the integral explicitly, we get"

"-'-'"(:.-)"'
xEiZ+1, n+1;n+2; — —1

i
. (2.4c)

( s

S

&im-=dsiAia(s|)si ' ' ~ (2 3b)
Sp

Notice Bi, is not the Mellin transform of Ao (s,)
(see also Appendix 8).

Up to now, the formulation is general. The dif-
ferent formulations mentioned at the beginning of
this section correspond to different choices for the
Reggeon-particle inhomogeneous term, i.e., for
Artcc(s) orequivalentlyforAc~(J). We discuss two
choices. They correspond to two different pro-
duction mechanisms for the end particles of the
multiperipheral chain.

In model I, we assume that resonances or clust-
ers are also produced at the two ends of the multi-
peripheral chain and that their average spectrum
is, as that produced in the interior vertices g.ong
the multiperipheral chain, approximately given

by the extrapolation of the leading Regge-pole be-
havior down to the low-energy region. Taking into
account the most pronounced t, and t', dependence,
which is due to the first nonsense-zero factor, "
we parametrize the inhomogeneous term as

Ac~(s) =d, (n —n„)(s -s,)" 8(s —s) 0(s —s,) (2.4)

where n —= n (t) and d, = d(t, t„ti), which is pre-
sumably a smooth function of t ty and ty in the
kinematic region of interest. In turn,

In the limit of large s/so, 2c

"-:":.-')"';.'-. (:.)
"

r(n+1)r(Z- n)
r(J+1) s,

(2,,4d)

Ac~(s) =d,5(s -m'),
Rlld

A~(&) =f,g,yg-
Here as before, g, = d, (n —n„), but

y~= ' (m') ~ ' andf, =d1 - 1

1 O. nC

(2.5)

(2.5a)

(2.5b)

Since d, is the direct-channel-ground-state pole
residue, it is plausible that it should be a smooth
function of t, and t', . Furthermore, in order for
the Reggeon-Reggeon cut to cancel at the planar
level, one has to assume that d, and d, have the,
same dependences on t, and t,', such that their
ratio is independent of t, and t', . This will be as-
sumed for model II for the rest of the discussion
in this paper. Thus, for model II,

1
fi ~ g|=di(n nc|) ~0! —QCi

and
(2.5c)

where j may. depend on t. The inhomogeneous
terms, for models I and II are illustrated in Fig.
1(b).

If we compare the inhomogeneous terms (2.4)
and (2.5) in the two models, we find that model

Qne can explicitly check that as expected there
is no pole at J = a. . For our discussion below, it
suffices to know that y~ does not contain any t „
t', dependence, and it is a smooth function in t
at least for n) -1.

In model II, we assume the two end particles in
the multiperipheral chain maintain the identity of
the two incident particles (this we shall refer to as
"the leading-particle-dominance ansatz"). " More
specifically, denoting the leading-particle mass
squared by m', we have
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I has a nonsense zero in the residue function, while
in model II this is absent. We recalla' that the
planar amplitude which satisfies a finite-energy
sum rule (FESR) has a nonsense zero in the resi-
due. In this sense, the inhomogeneous term of
model I satisfies dual'ity, while that of model II
does not satisfy duality. This corresponds to the
fact that in model I we assume cluster production,
while in model II, we assume the leading-par-
ticle-dominance ansatz. We shall see in the next
section that it is the very presence or absence of
this nonsense zero which gives rise to cut cancel-
lation in model II, and no cut cancellation in mod-
el I.

For both models the Reggeon-Beggeon amplitude
in the kernel is assumed to take the same form.
In particular, from (2.4) and (2.4b) and factoriza-
tion, it is given by

h, (z, + 1)P,
f).gD's+ g) d4'2 J —n„ (2.8)

B. Solutions to the Bootstrap equations

Denote

erty. On the other hand, for model II, factorization
is not expected in viem of the leading-particle-
dominance ansatz. Model II gives essentially the
cut-cancellation type of models originally proposed
by Bishari and Veneziano, ' and subsequently furth-
er considered by various authors. ~ As these
authors observed, such type of models leads to cut
canc ellations.

The bootstrap equation up to the cylinder level
is depicted in Fig. 1(c). Denote the partial-wave
amplitude for the Beggeon-particle scattering up
to this level by P, (where the Reggeonsare , n, and

n, ). Ananlogous to (2.7), for the present case,

So

Aim(si) =gi(s) so) g~8(s sg)8(si sa) ~ (2 6) F ()—
)e 1 (2 9)

S

xa g).ga d x( ). 0)
Sp

(s -s,)
. C2

=gida(s -so)" "' =gib

(2.6a)

(2.6b)

R).=f).g)rz +gi d42 g'J-&C (2.7)

with f,=1 for model I and f, =(n —o.„) ' for model
II.

For model I, since Regge behavior is assumed
for both A~ and A. ~, they have common t, and t',

dependences as the result of the factorization prop-

where@, is a smooth function of t, and t2.
The result (2.6a) is just the expected FMSR re-

sult, consistent with the duality assumption stated
earlier. We also mention that the 1j(a n„) fa—c-
tor in- the same expression mill be playing a cru-
cial role in achieving the cut cancellation. This
factor can be traced to be due to the coincidence
of the branch point associated with the assumed
Regge power behavior in Ao~(s, ), and the branch
point of the weight factor (s',) 3'~2'. Such coin-
cidence is expected if we associate the branch
points in question mith the lowest physical thresh-
old. Within our parametrization this assumption
is implicitly incorporated through the introduction
of the s', variable in (2.la).

To simplify the notation, me denote the partial-
wave amplitude at the planar level by

R, =A,~(j) .
Our integral equation at the planar level nom takes
the general form

(2.ii)

The planar Begge pole occurs at J= n, or

(I)= JI dy
g' ) ) =I
n ncz

(2.12)

Equations (2.12) and (2.9) together with (2.7) give

(2.13)

where

F.(~) -F, (~)~I J—n

d~ I ~
I
cI

I I
I~

~cI

~

~
g,a,z, (~)

~'
(& —~.,)(o''- o'.,) (2.14)

This is the general expression for R„applicable
to both models I and II. In the case of model II,
(2.13) simplifies. From (2.5b), G~(l) =H~(1). In
turn we get the cut-cancellation result'~ 25

g.ri(& —n.,)
(&-n)(a -n. ,)

' (2.16)

For the Pomeron, making use of the analogous
steps leading to (2.11), we have

J' „ f,g,h,s, (l ) (2.10)
Cj.

where z, (X) = cos[Xw(n, —n, i)], and A. =1 and 0 cor-.
responding to the uncrossed and crossed Reggeon
loop, respectively. Note that z, (1)=z, and z, (0)
= 1. Also note that both Ez(X) and G~(X) have cuts
in the J plane.

From (2.7) we get
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(2.16)

The Pomeron pole occurs at J'=o.„—= o.~(t), or

which in the peak approximation reduces to

c/(Z —o.,')
0 /(g 0)( 0) 0 (: ) (a.ai)

F„(1)+F„(0)=J d(, ' ' (z, +1)=1.

(2.17)

Results (2.16) and .(2.17) are applicable for both
models I and II, where the only difference between
the two models is in the forms of QJ and y~ ..

It is instructive to recast (2.16) in a different
form. We write

giving the desired result

(2.22)

We now compare our model II with that of Bish-
ari. ' His planar bootstrap constraint, after taking
into account the relation g, h, =g,'(Bishari)/
(c(-o.„), is identical to our Eq (2..12) [or (2.18)
in the peak approximationj. From his Pomeron
equation, his Pomeron intercept is given by

or

, g~, [G, (1) +G, (0)l
1 flg)+J(g ~')JI (1) F (0)

(2.16a)
g,h, ( o-c.„)

1 ,7 n,|
which in the peak approximation becomes

(2.23)

y, 1+---'
P, f,g).y~ +——

1 1J 1 or

c(n, —n,')
0 g 0

C

(Z-o.g(Z-n,') = (1 —nJc.

(a.a4)

(2.26)

where

x (R, + R,C,~R, + R,C 2~R,C,~R, + ' ' ' ),
(2.16b)

(2.16c)

Making use of (2.18), we find the solution to be

() 3(k ()
—1 + Me(1 —(2 ())

I' (a.ae)

which gives n~= 0.81, if a nominal value of 0, 0= —,
'

is used.
For the Pomeron equation, if we compare ours„

Eq. (2.21), with Bishari's Eq. (2.24), we get

0 (a.ie)

with no= n(0) and c., =—ac(, l. So—
C=1 —Q0 ~ (2.19)

On the other hand, the Pomeron intercept is
given by the zero of the denominator of the Pomer-
on equation (2.16a), which is again applicable for
both models. It leads to

C
(0)

1J' g G (1)

Equation (2.16b) indicates that we can also regard
, the Pomeron as the iteration of a suitably defined
Heggeon term R, together with a suitably normal-
ized cylinder kernel C~.

We now verify explicitly that both models recover
in the peak approximation the Lee-Veneziano re-
lation of o.o~= i. Notice that (2.12) is applicable
to both models. At t=0, t, =t,'. Sos, (A.)=1 for
both X=1 and X=O. From (2.12), in the peak ap-
proximation we have

& g/ours
=

0c - ~-ec

(2.27)

o'c|)(s (s.ia)

We see that the difference is a factor (J'-o,,')/c,
which from (2.18) is unity only for J'= c(,. In gen-
eral, and in particular for J = n~, this factor is
not unity.

III. SIMPLE SOLUTIONS, CUT DISCONTINUITIES, AND

ASYMPTOTIC PLANARITY
4

We divide this section into three parts. In part
A we discuss the Pomeron intercept and its slope,
in part B we estimate the cut contribution to the
amplitude at both the planar level and cylinder
level, and in part C we discuss quantitatively the
approach to asymptotic planarity in our models.

A. Pomeron intercept and its slope

We recall from (2.4b) and (2.6a) the quantity

z f~4 g.I,/(& ~.,)
Jdf) @~it~/(J &c|)(& &(;|)

(2.20) where as stated after (2.4) d, is presumably a
smooth function of t, f» t ,'. Since (s —sJ" "&& . is
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also a smooth function of t, ty ty we parametrize
the product d, (s —sg" ~j by an exponential and
write

g g g2(~ ~ )eat+ b(ty+ 0 f} (S.lb)

gpss'=gi'=g hi(n —n„)(s —so) '" "'&& . (S.lc)

Here, k, g, and b are constants, and the Hegge
trajectory is z = no+ z't. This form was first con-
sidered by Bishari" in connection with dual boot-
strap equations.

For later comparison with the triple-Reggeon ver-
tex g~~~ that various people have extracted from
phenomenological analysis, we note that

Thus

g, =k(n —n„)(s —sJ &~ &-ci) l2

x exp[2at+ —,'b(t~+ f ',)] . (S.ld)

(3.2a)

a = --,' (b+ v'cl. "/5) . (3.2b)

The conditions for output Pomeron pole, (2.17),
gives [see Eq. (A10) in Appendix A]

The smooth function g,/(n —n„) is what we called
the "reduced triple-Reggeon vertex. "

The planar bootstrap equation (2.12) gives [see
Eq. (A5) in Appendix A] Bishari's conditions,

1=,[n~-n]exp, (n~ n, ) -exp, (a~-o.,) 1+exp
b

Q
(3.3)

(3 4)

where o.,=—n,'+ o, 'f/2, with n,'=2o, ,- I as defined earlier.
Equation (3.3) is exact. Later in the discussion on asymptotic planarity, we will solve it by a numerical

method. For now, we concentrate on the region of small f and solve the linearized version of (3.3}.
For small t, (3.3) can be written as [see (A15) in Appendix A]

1-(a —a) +, exp, (a -a, ) z, —,(n —a, ) 1 — (a —u, ) I.m (y't 2b b b w'0. 't

Now assuming that in this region the Pomeron trajectory is linear in t, n~= o.~+ o.~t, we can expand the
right-hand side of (3.4) in powers of t, and set the coefficient of each power tO zero. This gives, up to
first order in f, the following two equations (see Appendix A for details):

2b 0 b -l 5
(~~ —Qo) exp ~POIE&, Po =1 (3.5a)

(3.5b)

where P,= o. ~o —o.,', and E,(x) is the exponential in-
tegral function. " This linearized approximation

will later be shown to be well justified for ~f~

s 0.5 GeV'.
For large z, '2

z, (c )- e '/z . (3.6)

If we evaluate (3.5a} in the peak approximation,
i.e., let b-~, then (3.5a) becomes

2 (cR ~ —Q 0) =P o
= (x~ 2(x o+ 1, (3.7)

or

no~=1,

recovering the expected Lee-Veneziano relation.
%e take no to be its nominal value of 0.5. Then

for each value of b jn', (3.5a) gives a solution for
n~. Then from (3.5b) one can solve for n~/n'.
In Fig. 2(a) we plot no~ and n~/a' versus 5/n'. To
make a direct comparison between n~ and 0.~, we
plot Fig. 2(b). Some discrete values of b/n', are
also shown along the curve. For example, we find
that for o.~ increasing from 1.10 to 1.35, n~jn'
decreases from 1.20 to 0.02.

If we choose a nominal value of 0.5 for a~/n'
and o. '= 1 GeV ', our solution gives o.o~ = 1.27 (cor-
responding to 5 =3.2 GeV '). In this simple mod-
el, the Pomeron intercept turns out to be a little
high. However, we emphasize that our numerical
result follows from the particular parametrization
[see (S.lb) and (S.lc)] of g„ the triple-Reggeon



CHARLES B. CHIU, MONOWAR HOSSAIN, AND DON M. TOW 19

l.2-

- I.2

I PI
- 0.8

I.O

0.5

—0.4 CPT

I,O 6 8
b/o('

IO

0

O. I

1.2
0.05

0.8

OP
0.2 0.6 0.8 LO l.2

I

I.05 I 25 l.50 I.551.0
l l l I

I.I5 ISO
0

CXp

FIG. 2. (a) u~~ and u~/u' versus b/u'. (b) u~/u'
versus e&. Discrete b/a' values are labeled along
the curve.

-t, (68V'&

FIG. 3. Various parametrizations of the t
&

dependence
of the triple-Reggeon vertex: CPT (Ref. 2), RR (Ref.
33), FF (Ref. 34), our case a and case b (see text).

vertex, which was chosen so that we can do the
integrals analytically. Hopefully, with a more
realistic choice for g, , a more realistic n~
emerges. The results of Ref. 19 suggest that this
may indeed be the case. This problem deserves
further investigation.

In Fig. 3 we plot the t, dependence of g, (0, t„t,)
at t= 0. We choose 5 = 3.2 GeV ' as discussed in
the previous paragraph. For s, the cluster-mass
cutoff, we consider two cases. Case a: ln(s -s,)
=1 (or s=3 GeV'); case b: ln(s-s, )=2
(or s= 6 GeV'). These two curves are plotted in

Fig. 3 along with several other parametrizations
discussed in the literature. ' ' The parametriza-
tions of Refs. 2, 33, and 34 are, respectively,
(1 —1.6t )'& e"'& and 0.6e'"'+ 0.2e" In these
three references their parametrizations are actually
for the product of g, and two externalparticle-par-
ticle-Reggeon vertices. Because of the nonleading
nature of the triple-Beggeon contribution, there is
large uncertainty in estimating its t, dependence.
Notice that Ref. 2's parametrization is very much
different from those of Refs. 33 and 34; this may
be partly due to the differences coming from dif-
ferent energy ranges and different reactions con-
sidered. Our value of 5/u' is well within the range
of values these authors have considered.

(3.6)

where the superscript I denotes model I; F~(A.) is
the same for both models and is given by (A17).
Then (2.11) gives the planar partial-wave ampli-
tude

G,'(~) =F, (X),

I~i(&)-
1 F (1). (3.9)

For the partial-wave amplitude up to the cylinder
level, (2.16) gives

pr ~ gO'J.
1 —2F~ (1)

(3.10)

Next we consider model II. From (2.16) we can
rewrite R",-(j) as

(3.11)

Using (2.10), (2.12), and (2.14) we get

in the Reggeon-Reggeon-cut region. We shall cal-
culate the discontinuities of these cuts. In this
part we shall restrict ourselves to t = 0, thus
s,(1)=s,(0) =1.

We first start with model I. In this case from
(2.9) and (2.10)

B. Cut discontinuities
G"(X) =H (1)=J J

0
(3.12)

We now proceed to look at the J dependence of
the amplitudes away from the pole, in particular,

From (2.16) and (3.12), the corresponding partial-
wave amplitude up to the cylinder level is given by
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o, n-„(J-n, )[1- 2F~ (1)]
such that the Pomeron residue is unity. The dis-
continuity of A(Z) is defined as

1 1 1

n, n—„J—n, (J —o, /[1 —2F~ (l.)]
~(J) = (1/2f) [A(J+ f~) -W(J —I~)] . (3.14)

(3.13)

As discussed in Appendix A, the function F~ (1)
has a cut in the J plane along the real axis for
-~ & J' ~ a, . Therefore, the amplitudes R,'(J'),
p,'(J), and P~«(J) also have these cuts, and we want
to calculate the discontinuities across these cuts.
In view of (3.11), R", (Z) has no cut.

Since we will compare the cut discontinuity with
the pole residue, we work with a normalized par-
tial-wave amplitude A(J), where A(Z) is normalized

In all cases considered' has the general fogm

where B and C are regular in J, and D~ and D,
are real quantities. Therefore,

(3.15)

To compare with Bishari's work, "we note that
his Pomeron amplitude P is given by

constant
J —o.,—(1+n'/b -J) —(b/n')(J -6,)'exp[(b/c. ')(J —n, )]E,((b/o. ')(J —c.,)) ' (3.18)

From the discontinuity of the E,(z) function [Eq.
(A18)], the discontinuities in our models as well
as in Bishari's model can then be easily calculat-
ed.

We plot in Fig. 4 the discontinuities for R,', P,',
Pii and P& as a function of J from the branch
point J= 0 down to -1.

Near the branch point J=a,'=0, ~~~ is the larg-
est, and ~~ and ~~ are comparable. For the latter
two, from (3.10) and (3.13) and the normalization
convention for 4, there is the relation

'0
~rr &s &o ~gJ—a 0

I I I I I I I I I '
I I

The corresponding power behavior in the full
amplitude associated with the discontinuity in

the partial-wave amplitude at J is s' (when applied
to an internal link in a multiperipheral. chain, s
should be replaced by the subenergy s,.„,). Be-
cause the tip of the cut lies approximately —,

' and

1 unit below the Reggeon and Pomeron poles, re-
spectively, the cut contribution is already much

suppressed by this energy factor.
Now we want to show that even without taking

into account this energy factor, the area under the
cut discontinuity function shown is already sig-
nificantly less than the pole contribution in the
same partial-wave amplitude. More precisely,
we consider the ratio

-QS -0.6 -0,4

8Lp

-0.2

- O.I

O,I

-0.2

- -0,5

where for definiteness we take

de J,
and it is to be compared with the pole contribution
in the same amplitude given by m', with x being
the pole residue. For the Pomeron amplitude, by
construction the residue of the pole is ~ =1. For

. the Reggeon inR', its pole residue isx=0.48. We
then find & P 08 P 03~ P 02~ and P 04 for R
P", and P, respectively. Thus, the contribution
of the cut is indeed very negligible both at the
planar and at the cylinder levels.

C. Asymptotic planarity

FIG. 4. The normalized discontinuity functions versus
J. See text for the definitions of the various d's.

Here we investigate the asymptotic planarity
in our model. Equation (3.3) can be rewritten as



2786 CHARLES B. CHIU, MONOWAR HOSSAIN, AND DON M. TOW

b b 40 5Ã g ~
& A

1 = X exp (X+ 1 —n + 'n'—t), —.—exp — (X+ 1 —n + 'n'—t) 1+ exp
Q Q 28 ~l 0 2 2bse

(3.1V)

where X-=o. —n.
It is instructive to compare the planar and the

cylinder contributions in the integrand. Note that
the planar contribution has an extra factor of
exp(v'o. 'st/3bw), which stems from the planar Reg-
geon phase factors. This extra factor grows ex-
ponentially with t, in the positive-t region, re-
sulting in the dominance of the planar term, - or
asymptotic planarity. On the other hand, in the
negative-t region, the same factor gives a rela-
tive suppression for the planar contribution.

Using (3.6) and (A13), after some algebra (3.17)
gives

~g I2t
X = n J, - n & const x (1 - n + 'n' t) exp—

(3.18)

which gives the rate of the approach to asymptotic
planarity. A behavior similar to (3.18) was al-
ready given in Bef. 17.

To get a detailed picture of the t dependence of
the trajectory n~, we solve X numerically from
(3.17). The resultant n~, together with the input

Beggeon trajectory a = —,'+n't, is plotted in Fig.
5.

We see that for
~ f ~

s 0.5 GeV, the Pomeron tra-
jectory is approximately linear and thus justifies
the linear approximation used previously [see
(3.5a) and (3.5b)] to solve for n~~ and n~ at t = 0.
We find that the error in (o.~ —o.) is ~4% in this
range of t.
. As usual if we identify the A, and f mesons to

be the spin-2 particles on the n and n~ trajector-
ies, respectively, our curves give

I„'-M,'= 0.2 GeV',

(where we set o,
' = 1 GeV '), while the experimental

value is 0.1 GeV .
It is remarkable. that the predicted value is of

the right sign and within a factor of 2 of the ex-
perimental value. Note that a lower n~ may make
the agreement even better.

The positive-t behavior of n~ shown here is
very similar to the result of Tsou, "who instead
of solving the integral equations, iterated up to
eleven loops and also used a different parametriza-
tion for the triple-Reggeon vertex. This indicates
that this positive-t behavior is relatively insen-
sitive to different parametrizations for
g, (t, t„t',). On the other hand, for ts -0.5 GeV
our e~ bends downward, whereas hers stays up.
We attribute this difference to be due to the dif-
ferent parametrizations used for g,. For this
reason, in this region n~ is indicated by a dotted
line in Fig. 5.

IV. SUMMARY

-0 6--

FIG. 5. The calculated Pomeron trajectory function
in a Chew-Frautschi plot. The dashed curve is ob-
tained based on the linear approximation discussed in
Sec. III A. The solid curve is obtained by the numerical
calculation of Sec. III C. The planar Beggeon trajectory
is given by &=0.5+a't. The f andA2 are the spin-2
particles. The form. of n& for t &-0.5 GeV depends
more sensitively on the parametrization used for the
triple-Reggeon vertex {see text).

We have presented two formulations of the dual
bootstrap equations for the Beggeon-particle am-
plitude: one without and one with cut cancellation
at the planar level. Both formulations in the peak
approximation recover the Lee-Veneziano relation
of n~~= 1. Choosing an exponential form for the
reduced triple-Reggeon vertex, we solved these
equations. We showed how the discontinuities of
the Beggeon-Beggeon cuts can be calculated. We
found that at the cylinder level, the cut discon-
tinuity in both models (and also in Bishari's) is
small compared with the Pomeron-pole residue.
Even though in model I the Beggeon-Reggeon cut
is not cancelled at the planar level, we found that



SOLUTIONS OF SIMPLE DUAL BOOTSTRAP MODELS. . .

its discontinuity is small compared with the plan-
ar-pole residue. This important result indicates
that the planar-pole bootstrap constraint can be
satisfied to a good approximation even if there
is no eut-cancellation mechanism. We provided
further quantitative support for precocious asymp-
totic planarity in the positive-t region; we also
found that in the large negative-t region, n~ de-
pends more sensitively on the parametrization of
the triple-Reggeon vertex.

Note added. For completeness, we include here
a brief discussion for the Reggeon-Reggeon case.
We recall that the distinction between models I
and II lies in the choice of the production mechan-
ism of the leading particle (i.e., the end particle
along the multiperipheral chain). Since the Reg-
geon-Reggeon amplitude. never. involves the leading
particle (which by definition is joined on to the ex-
ternal particles), the bootstrap equations for the
Reggeon-Reggeon amplitude are identical in both
cases. From the definition of the kernel given in

(2.6), the Reggeon-Reggeon integral equation an-
alogous to (2.'t) is given by

13 +1g3~J g1 d 2
g2~2 2~23
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APPENDIX A: THE FJ(X) FUNCTIONS, REGGEON, AND

POMERON CONSTRAINT CONDITIONS

We recall that the E~(X) functions are defined

) f d,b,e, (b)

C1
(2.9)

where X=1 or 0, z, (1)=-cosm(n -n', ), ands, (0) =1.
In this Appendix we give the derivations of F&(1)
and Ez (0) for the parametrization considered in
Sec. III,

g,h, = k'(n —n„) exp[at+ b(t, + t ',)]. (3.1b)

For completeness, we will also include the details
leading to the Reggeon condition (3.2) and the Pom-
eron equations (3.3) and (3.5).

The two-body phase-space volume element is
given by

with yz defined in (2.4b). Analogous to (2.13), the
solution is given by

+ gx.8'8'z
13 g lg 3~4'

, 8(SC)
d(t)~=

6 2dt, dt', ~~

In high-energy small-angle approximation, "
(Al)

R 13 is symmetric with respect to the indices 1 and

3, as expected. Notice that the Beggeon-loop in-
tegrations in both numerator and denominator cor-
respond to cuts in J plane. There is no cut can-
cellation here.

Since the completion of this work, the results of
including the t . effects and of avoiding the double
counting have been calculated" and found to give
a lower value of the Pomeron intercept (closer
to one) and also a reasonable value for the slope.

8g) (2l+ 1)P, (cos8)P, (cos8i)P, (cos8',)K s

db bJO(bu))JO(bu)JO(bv),
0

where u' = -t„v = -t '„and u)' = —t. The factor N
is associated with the SU(N) symmetry assumed.
For a planar loop, N i:s the number of windows.
On the other hand, : for the cylinder loops, N is
present only when the crossed channel is an SU(N)

singlet. This is the ease in the present work.
We start with the following two triple-Fourier-

Bessel-transform identities. Let z = x+ iy.

I()(;,y)=&e '"'e ' "')-= dbbd ((ee) j deee '" d (be) dvve ' "d (bv)
0 0

dbbd (bv) eep(- b')

exp —x+ (A3)

Notice that f(x, y) is real and it-is an even function of y. Also,
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I(x, y;p)=
e- gu2 z+v2

P+u +v
=e~" dx' exp —P+u'+v'x' exp -iy u' —v'

I

)0O J 2
=e'*, exp[-(p --,' t)x'] exp, f

x
2x' (A4)

where p —f/2) 0. Again I(x, y;p) is real and it is an even function of y. Both identities are obtained through
integrations over negative t, and t,' regions. Thus, t is confined to the region t (0. The I's will be analy-
tically continued to the positive-t region.

Now we evaluate E„(1). From (2.9), (S.lb), and (AS) we get

NkE„(1)= 8
e"(exp[-b(u'+ v')] cosign'(u' —v'))

Nn' .. . Nn2 -
b (xn')'

e"I(b, xc(') = exp a+ —+ f .
8~ 32mb

This leads to (3.2).
For general J', from (2.9) and (3.1b),

E (1) = e' Re 1 — exp[-(b+i)rn')u ]exp[-(b -iirc(')v ]
Nk J —n 2 1 2

8~ ac&

NA' .t( 8Q e 8+92 2

= 1 — e"!Z—o.)8~&' p+u +v

with

p= (1/o")(J -2o.0+1)1 x=b, and y=)Tn', z =x+iy.

And

(A5)

(A6)

(A6a)

(A'7)

Making use of (A3) to (A5) we can rewrite (A6) and (A7) as

F (1)=1—,exp(
I™t)(0 —n) exp( —,(F —n, )) J exp(, (J —e,)n )exp) ) (A8)

-m e'2t b b
E~(0) = exp 1-—,(J c() exp-—,Q' —o,)

From (A8), (A9), and (2.17), the Pomeron condition gives

, (ne-n) exp(, (ne-n, )) J —" exp(, (ne-n, )n) 1+exp('™1)

exp

which is E(l. (3.3).
To proceed further, we make use of the exponential integral function defined by"

Z„(e)=J dte /(", e=0, 1,0, . . . ,
1

which satisfy the recursion relation

Z„.,( ) = (1/u)[e-'-zZ„(z)].

We can now rewrite (A9) as

( )=Fex0( xp1-, () —n)exp, (J-n, ) X, ——,(Z-n, ))
(-xn't ' b b b

»»mali f, the lastfactor ex(pw'n "f)/2bu ) in (A8) can be expanded, and (A8) becomes

(1)=1-Fxexp
- (I-n) e, exp, (J-n.) 1- (F-n, ) F,)~, ',F-n))-r e."t ' r'a't b b w'0. 't & b,

2b . 2 0.' n' 2

(A9)

(A10)

(A11)

(A12)

(A13)

(A14)
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In this small-t approximation, the Pomeron cond)ition 1= E „(1)+E (0) becomes

&'n't 2b b b r n't,1=(a~-n) ' +, exp, (aJ, -n, ) E, , (n~ n-, ) 1- (n~-n, ) +O(t'),
4 (A1 5)

which is Eq. (3.4). Setting n~= ac~+ a~t and expanding the right-hand side of (A15) in powers of t, and using
Z, (z+bz)=E, (z) —(e '/z)sz, we get

exP, P0 E, , P0 + +0 t', A/6

where po—= nc~ —nc. This gives the Pomeron conditions (3.5a) and (3.5b) of text.
From (A13) and (A14) note that at t=0, we get

E, (1)=E,(0)=1 — —,(Z age-xp, (J-n,') Z, , (Z-n,') .b b 0 b
(AlV)

E,(-uka se).=-Ei(u)+sag u& 0

where

(A18)

The function E,(z) has a cut in the z plane along
the negative real axis. Setting s =u+ iv, the cut
is from u = -~ to 0. The complex value of Z~(z)
just above and below the cut is given by

The corresponding partial-wave amplitude is given
by

S

T„(J)=f dc' dsiA (s,)s', "
Sp

,, ; z, A..(d)

(X J-~s c2
0

cO

Ei(u) = -p dt, u& 0

g8
=y, +I~+ P n!n (A19)

ft'a&.~(~)
2 ~ -nc2

Thus, instead of (2.6a), we have

(B3)

with the Euler constant yo= 0.5VV. . . . From (A13)
and (A14) we see that E~(0) and E~(1) have a cut
in J' for -~&J & n, In ca.lculating E,(u) for positive
argument, we have used the approximate formula
(5.1.54) of Ref. 32. For the negative argument,
the above series expansion is used.

S —QCf -J'

d'iAuK)'x "' "' =Z @ (B4)12 1 12 1 I

with

(p -SJ" ~c2 g l ~ca-~

APPENDIX B: MODIFICATIONS DUE TO THE

NO-DOUBLE-COUNTING CONDITION
Ct~2- J

=d, (s -s,)" "c2
sp

(B5)

s, & s, & s and s, & s, & ss,/s .
Thus, analogous to (2.1a), we now have

S ssp/ s
Tu(s) = — ds,A~(s, ) ds, A.„(s,)S

0 sp

x f gc, (; )"""',

For completeness we mention that it is straight-
forward to incorporate the no-double-counting con-
dition for the planar integral equation formulated in
the energy plane (see, e.g. , the particular version
discussed recently by Freeman, Zarmi, and Vene-
ziano'ct'~). In terms of our notations, this con-
dition states that

We see that imposing this no-double-counting con-
dition amounts to redefining h„which now con-
tains an extra slowly varying multiplicative fac-
tor (s/sg cm . It is interesting to note that in
the leading order of s Js, h, reduces to

d S J CfC2SJ a
2 2 0

Hence, h, is independent of s atZ=n, and the
planar bootstrap condition (2.12) is independent of
cluster size s, as it is expected' ' from no-
double-counting condition (81).

In the case of Pomeron, there is no restriction
due to double counting, and our derivation in the
text remains unaltered.
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APPENDIX C: FINITE-RANGE ANALYTICITY AND S(-S~

SYMMETRIC FORMULATION

Our integral equation (2.1) [or (82)] is formulated
with the explicit inclusion of finite threshold ener-
gy Ws, . This is motivated by the fact that, in the
Froissart-Gribov projection of the t-channel par-
tial-wave amplitude, there is a gap between the
branch point of the weight function, the second-
kind Legendre function, and the lowest s-channel
singuLarity. This gap reflects the finite-range
nature of strong interaction. Ke shall refer to the
incorporation of this finite gap as the "finite-range
apalyticity" requirement. To impose this require-
ment and obtain desired kernels, our ig.tegral
equations involve the s', variable, so variables s,
and s, are not treated on a symmetric footing.

What is the effect of this asymmetric formula-
tion'P One. can easily check that our kernel B»
given in Eq. (2.2b) and the corresponding expres-
sion obtained when replacing s', by sy are the same
to leading power in (sjs,). So this asymmetry
only induces corrections in lower order of (s/s, ).
This is acceptable, since correction of the same
order is also expected from the very asymptotic
expansion used in deriving the integral equation.

Nevertheless, one might still want to ask whether
it is possible to write down the integral equation
and to arrive at the desired kernel starting from
a manifestly s,-s, symmetric framework. This
possibility has been investigated previously (see,
for example, Ref. 22). However, to our knowledge
one has achieved this only at the expense of neg-
lecting the finite-range analyticity requirement.
For completeness, we include below a brief dis-
cussion for this sy s2 symmetric formulation. The
purpose of our discussion here is merely to illus-
trate those essential approximations involved in
arriving at the desired kernel. Most approxima-
tions enumerated have also been implicitly as-
sumed for the derivation of the kernel used in the
text.

We begin with the expression similar to the one
given in Ref. 24(c),

S

8 0

J I

go (s ) s cg+cKg+ c2+cc2 n p12 1 1 22 S~ 12 ' (C2)

For our present discussion, it suffices to specify
that the function U~ has only right-hand discon-
tinuity in s, . And again setting p, r = 0, the Regge
asymptotic behavior of U~ is given by

p ( jr )C-Cj S Ct~-&X2

where g, and g, are triple-Begge-vertex functions.
Making use of the above expressions, one finds
the corresponding kernel is given by

8

Q

@CD-CKC~

-g,g, sinn(n n, —n',—n, n,'-)—
CQ

S" ~C

[-g~ S1117f(n~+ nI) jgm
&ca

(C4)
t

In the last step the pole-dominance approximation
is made, which amounts to evaluating the numer-
ator at o. = n„. Thus, we arrive at the desired
kernel (2.3b) with the appropriate pole denominator
and factorizable residue as that used in the text.

(C1)

where "a" is a scale factor. Here the approxima-
tion of replacing the transverse mass-squared
s, ~ =s, +P~,' by s, has already been made. Notice
the right-hand side would be completely symmetric
with respect to s, and s„ if one were to set T'

= v as. For present consideration, s is large, but
it is independent of s. Since the lower limits start
from zero, the finite-range analyticity require-
ment is ignored here. A careful application of the
Steinmann relation" reveals that one should write
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