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We discuss the treatment of flavor-changing self-energies; both for leptons and for quarks in bound. states.

It is shown that finite self-energy effects can contribute to ES = 1 hadronic weak decays.

I. INTRODUCTION

Our present understanding of the observed had-
rons and their interactions is that they are mani-
festations of an underlying theory which is best
expressed in terms of quarks and gauge bosons.
So far the approximations to that theory are crude,
but are steadily becoming more sophisticated. One
problem which has not yet received adequate treat-
ment is the renormalization of quarks in bound
states. Infinite ultraviolet divergences are due to
the short-distanct behavior of the fields and can be
handled directly by renormalizing the underlying
Lagrangian. However, infrared effects (whether
infinite or finite) are not easily handled in this
way, and are best described by phenomenological
hadronic wave functions or structure functions.
This paper considers one small aspect of the gen-
eral problem: the renormalization and effects of
self-energies that change the quark flavor.

One motivation for this work arises from weak
nonleptonic processes. In the decay& of hyperons
and kaons, the change in strangeness and parity is
the same as would occur if the strange quark were
simply mixed with the down quark by the weak
interaction. Of course this does occur, but the
mixing is generally removed by a redefinition of
the quarks. " It has therefore been assumed that
the off-diagonal self-energy is unimportant in
weak processes. However, it is possible that the
mixing of the quarks would be different in mesons
and baryons, or would have some momentum de-
pendence. The standard redefinition of the fieMs
is then not possible, and an alternate procedure
must be found. We examine the situation some-
what more generally than in the past and find that
differences in self-energies can in fact lead to
weak decays.

In Sec. II, we describe the renormalization of
off-diagonal self-energies, first for leptons, and
then for bound states of quarks, ' The emphasis
is on finite effects, with the renormalization of
infinities assumed to have been taken care of in
the usual. way. Then, in Sec. III, the s-d mixing
is studied in relation to weak decays. Although

reliable calculations are beyond us, we show how

the self-energy may generate nonleptonic transi-
tions.

II. RENORMALIZATION

One of the attractiVe features of the combination
of quantum chromodynamics (@CD) and weak
gauge theories is the simple way that flavor-
changing infinities are removed from the theory. '
The infinities all occur in dimension-three and
-four operators, corresponding to a change in the
Lagrangian similar to

where L = (1+y, )/2 and 8 = (1 —y, )/2 are the left
and right projection operators. However, by per-
forming separate transformations (in general,
not unitary) on the left and right components of
the s and d fields, one can bring the fu11 Lagran-
gian to diagonal form

~QCD+ +~ ~QCD ~ (2)

where the prime means with renormalized masses
md vacuum angle. This is a very powerful re-
sult, as it implies that even in the presence of
4S we have a conserved quantum number which
can be called strangeness. &2 will not induce
strangeness- changing decays.

However, once infinities have been removed,
this procedure is not definite enough for a final .

finite renormalization. Iri general - ~ will de-
pen/ on momentum or, in a theory with confine-
ment, will depend on the environment in which
they are calculated. "Environment" is used to
mean "in a pion, " "in a kaon, " "in a proton. "
Diagonalization of the fields in one environment
will not be equivalent in another. In a theory
where particles are free and do not mix, as in
QED, the renormalization prescription is known:
One adjusts the parameters such that bare plus
radiative mass equals the experimentally mea-
sured mass, and such that the full propagator has
the standard form, when P' =m,„,'. This is the
experimental data which determine the renormal-
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P j
(4)

where A, is a matrix (which may contain Z, ) with
no momentum dependence and R(P} is regular at
the pole. From S ' S =SS '=1 we can write

(5)
P j

where the condition that S '8 be well behaved at
the pole requires that the column vector &, satis-
fy

S '(p)c(((p+m() =0

at p' =m j'. Decomposing & j into left and i'ight

portions,

Q —Q j~L+ Q j~B ~

(6)

(7)

we find that

[m(2A~(mi') —BR(m(')A„'(m, .')B (mi')]((, (~ =0,

[m,'AR(m (') —B~(m,.')A ~ '(m, ')B„(m,')]c(i =0 .

ized parameters. With flavor-changing processes
we need similar input.

For leptons we require a generalization of the
standard prescription. We can write the inverse
propagator in matrix form as

S '(p) =p[A((p')L+AR(pa)R] —B~(p')L -B„(p').R,
(3)

where A~, A„, B~, and B„are matrix functions
of p' in lepton flavor space. We require that near
the ith pole the propagator be in its usual form

wish we can rewrite the Lagrangian in terms of
the physical fields by a transformation:

z =salas.

With quarks the above method will not be ap-
plicable. We have no direct information about
quarks, and self-energies of isolated quarks are

.. not calculable because of infrared difficulties.
The experimental input that we do have involves
only bound states of quarks. This is of course a
disadvantage as we are only able to construct ap-
proximations to the true bound states. In prac-
tice, however, this will be acceptable because
the phenomena that we wish to discuss (e.g. , par-
ticle decay) also involve the composite states.

As an example, consider the scalar and pseudo-
scalar bosons. One can in principle calculate the
self-energy in this basis, and obtain the inverse
propagator for the bosons,

& '(p) =p'- M.'- Z.(p) —Z.(p), (12)

where M,' is the bare mass matrix for the mesons
calculated with Z~cD (in some approximation).
Z, (p) is the strong self-energy which results when
the strong states are taken off-shell, and we
choose it to be diagonal and to vanish at the strong-
'interaction pole. Z„(p) is the matrix self-energy
due to the weak interactions, and will couple to-
gether states of different strangeness and parity.
In this basis, the procedure is similar to that
given above. We require that, near a pole, the
propagator have the form

Both can be satisfied provided that 5

(13)

det[m, ' —B„(m. ,')AR '(m, ')B~(m(')A~ '(m, ')]=0.

This is the equation which locates the position of
the poles. The resulting eigenvectors &,~ and
n j~ tell us which combinations of left- and right-
handed bare fields make up the physical particle
whose pole this is. The physical field (denoted
hereafter by a tilde) is the one with definite pro-
pagation behavior and is given by

~i Z ( iL~(L iR~JR) (j
(10}

where ~~« is the jth component of j~. Note that
in general e~j w-&Jj because of the momentum de-
pendence in the equations for the eigenvectors.
If there were no momentum dependence the above
procedure would reduce to the standard diagonal-
ization of dimension-three and -four operators
that was mentioned bedore. At this stage if we

where u( is an eigenvector of a '(p'=m, ') with
eigenvalue zero:

& '(P' = m ')o. , = 0 .

For this to be possible we must have

det[p'-M, ' —Z, (p) —Z (p)]=0,

(14)

(15)

which will determine the location of the poles.
In principle this feeds back to determine the
parameters in the Lagrangian. This is in fact
just a generalization of the standard quark model
practice of fitting the parameters by calculating
bound-state masses. For baryons, the prescrip-
tion is the same as for leptons, except the basis
states include the ground-state baryons and all
the baryon resonances.

For weak mixing the effect of this analysis is
simple. The shift in the pole is second order in
the off-diagonal perturbation, so we will ignore
it and all other second-order corrections. The
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physical meson fields are expressible in terms
of the bare fields by

0,= 4, +g ~';4;,
gAj

(16)

where

&M (P'=M ') Ix.IM, (P2=v.2)&

M,. —M) —Z~q)(M) )
(17)

The possible momentum dependence in the weak
matrix elements may mean that the mixing is
more complicated than the usual treatment of,
say, &u-Q mixing, but this presents no real dif-
ficulty. In a quark model it means that we have
mixed the s and d quarks differently in different
particles, and the result cannot be described as
a simple redefinition of fields at the Lagrangian
level. It should be emphasized that, although the
focus of much of this paper is on quark or lepton
self-energies, for the mixing of the bound states
one must use the full Hamiltonian in Eq. (17).

The effects of the flavor mixing on semileptonic
processes is negligible, being an O(G~) correc-
tion. However, in nonlepionic decays it would
appear that the effects would be more important
since the states which are mixed in at order 6„
could decay through the strong interactions at O(1)
yielding a result of the same magnitude as the
standard contribution.

It is the physical states P which have the definite
propagation behavior, and we would therefore like
to study their matrix elements. This could be dif-
ficult, as it would require the calculation of the
mixing angles. However, Feinberg, Kabir, and
Weinberg have shown that one obtains the same
results if one calculates amplitudes using the
bare, unmixed states when all particles are on
their mass shell (up to a renormalization constant
of order of Gz'). The proof uses the Lehmann-
Symanzik- Zimmermann reduction on the bare
states, e.g. ,

,„,&v p& IK~&, =-i d'xd'yd~ze "~""(-
&q' +m, ')e "i'(—qz'+M ')I'. (-k'+m~')e '~',

where we have integrated by parts twice, and 1" is defined by

1„,=&o IT(4,!.)~,(y)~„( ))Io&.

Written in terms of the physical fields,

I „,= &o IT(4,(.)e,(y)4, ( )) Io&

(19)

g [n!&0Ir&, (x)y;(y)4 (z)) Io&+,.&o IT(&;(x)& (y)4 (z» lo& +,&o IT(e;(x)y, (y)y, (z)) Io&].

U we look at the last term, where Q, replaces Q„,
we note that vertices involving Q, have a pole at
m, but not at the kaon mass, so we may let k'
-nzE' in the numerator and obtain a vanishing
result for an on-shell kaon. The other terms are
disposed of similarly, leaving

,„,&v,.v, Iz„&„=,„,gr, &,. I g,&,„. (21)

'The mixed in fields do not contribute to transi-
tions when all the external fields are on their
mass shell. 'This justifies the usual procedure of
calculating with the bare states.

When used with the diagonalization theorem for
dimension-three and -four operators [Eq. (2)]
this becomes even more useful. Matrix elements
of a Hamiltonian given by Eq. (1) must vanish
when calculated between bare states (i.e., those
states formed before the rotation which diagonal-
izes the fields). This resolves the problem of how

to handle self-energies: One simply proceeds to
calculate them using the bare states. Any term
which are removable by a redefinition of. the fields
[i.e., equivalent to Eq. (1)]wiB disappear, if the

calculation is done correctly, and any effect

which remains constitutes a physical transition.
As an example of this in 1.eptons, one can easily
verify that if all the Feynman diagrams for
p, —ey are calculated using an interaction analo-
gous to Eq. (1), the sum is zero. ' In addition it
is well known that when one uses a Hamiltonian
consisting of a scalar density, the parity-conserv-
ing hyperon decay amplitudes vanish. 4 We will
return to this problem in the next section.

There is one situation where calculations with
bare states are not correct, and the flavor mixing
should be accounted for. This occurs when one of
the particles is taken off its mass shell, as is
done with the pion in the standard current-algebra
manipulations of nonleptonic amplitudes. ' Here

.„,&Plt,.(q) I~&,„=i d x." ( q+m, ')&8ly, (x) I»

=i d'x e "'"(—q'+ m, ')

&III';( )+Q e, ( ) I». (22)

The new terms can be accounted for by multiplying
and dj.vjding by q -re& to obtain
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,„,(Bm, (q) iA)„=,„,(Bw'(q) (A)„
2 m2gq -m,

q —mj

x „(QM4)(q) ~A)), . (23)

EI
Hw

The last series of terms is the off-shell scatter-
ing amplitudes for processes that take place via
the strong interactions. With n,'. -O(G~) they are
the same order of.magnitude as the first term.
When one takes the q -0 limit one may use the
soft-pion techniques on the first piece, but one
should also include the new terms. These are of
the order of m, '/m~', and in many cases could
be neglected. However, care shouM be taken to
ascertain that this is the case.

8 w

(b)

III. WEAK DECAYS

U,C pl
I

I

(a)

(b)

(c)

FIG. l. Examples of quark self-energy diagrams. In
(b) and (c), G is a gluon. The dotted lines indicate that
these processes take place inside of a hadron, in th6
presence of other quarks.

In this section we will study the strangeness-
changing self-energy and see that it may 'Lead to
observable transitions. Previously we have seen
that if the self-energy behaves as an operator of

dimension three or four, its effect must vanish

when calculated for on-shell states. However,
environmental deyendences of the self-energy
may cause deviations from this simple behavior,
and may result in nonzero effects. The archetype
for this program is the Lamb shift, which may be

thought of as the difference between the self-ener-

gy of a free electron and that of one bound in an

atomic 8 state.
For strangeness-changing effects, we will use

the weak Hamiltonian of the Weinberg-Salam mo-

(c)

FIG. 2. Pole diagrams for 8 J3'~. (a) and (b) are
baryon poles, and (e) is a kaon pole.

del. ' Some contributions to the quark self-energy
are given in Fig. 1. The dashed lines are to re-
mind us that these diagrams are to be evaluated
in a specific bound state (either a meson or a
baryon). The bound-state wave functions and prop-
agators appropriate to that state must be used.
Because of the short range of the S" propagator,
only the short-distance piece of the fermion
propagator will be relevant for Fig. l(a). Thus,
this diagram will not be sensitive to the large-
scale properties of the bound state and any en-
vironmental dependences to the self- energy' will
be suppressed by powers of M~. However, in
Figs. 1(b) and l(c) the light quarks and gluon
propagators and wave functions are drasticaOy
affected by confinement, and will depend on bound-
state properties (such as the hadronic radius).
Thus we would expect significant differences if
these latter diagrams were calculated in a baryon
or in a meson. We will give below an explicit
calculation of the experimental effects connected
with these diagrams.

Because the bound-state parameters are de-
termined by the collective action of all the quarks, „
it could be argued that the effects described in
this section are not true self-energies effects but
rather are a class of nonperturbative interactions
with other quarks. The difference is only semant-
ic, but in fact these diagrams have been neglected
in past studies because of a feeDng that self-ener-
gies should not be included. We will see thai
they should not be overlooked.

The most straightforward example is the parity-
conserving (pc) amplitude in hyperon decay. We
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will treat this in a pole model and only include
the lowest baryon and meson octets. The appro-
priate diagrams are given in Fig. 2. The weak
matrix elements which are needed are of the form

&B /X„fB&, &. JX./f~&,

which we will denote by

(24)

The pc amplitudes are then

B(+0) +~ 0& -A& +~AE E+D Z~K s rM ~ M
2 2m+ mE mp mK m

+e-EA A. n +s E ED E n +Z nk K 7}B(~)= ' — —.2m+ mg mE 1Rp'

B(g+) I' ll+ 8 ff+nn E+e Nff+A E Ae ~e+EOE+ Eon

w+ m+ m mE

B( -) gg AE x c Zw x & RA ZxlLE KwNi - M
2 2'm g mE msgr mp mK

(25)

The remaining amplitudes are given by the &I = —,
'

sum rules.
The above is general and could be used with any

Hamiltonian, but we wish to specialize to the
study of self-energies. It is known that if the weak
Hamiltonian is a scalar density all the amplitudes
vanish. 4 This is a demonstration of the results of
the previous section, and we may use it to sim-
plify the amplitudes. We will assume, as is true
in the following calculation, that the self-energy
has the 'same SU(3) transformation as a scalar
density, but a different magnitude for mesons and
baryons. Thus

B(AO) = (1+2f)C,
ml

B(Z ) = (2f-1)C,

A calculation of the self-energy in hadrons
within the MIT bag model can be extracted from
the quark-sea work of the author and Golowich. '
The gluon propagator in the bag is known, ' and
the propagators for the virtual quarks are given
by summing over ali possible intermediate-state
modes. The coupling constant is that found in the
MIT fit to hadron masses, ' and for simplicity all
light-quark masses are taken to be zero. If we
neglect charm for the moment, a simple and gen-
eral feature can be extracted. The only dimen-
sional parameter which enters the calculation is
the hadronic radius R, so that by dimensional
analysis alone the self-energy must be of the form

KG~self- energy =
3 (28)

(self-energy)~ =,~f(m, R),EG~
(29)

with f(0) =1. The charm contribution tends to
cancel that of the light quarks, leaving

R;[1-f(m~, }]
'

R,'[1-f(m~, )] (30)

This demonstrates how the desired effect can oc-
cur. To obtain the magnitude we complete the
calculation using bag-model parameters. We
find

This vanishes in the absence of confinement
(R-~) as must be the case for massless guarks.
Since the radius of baryons (R = 5 GeV ') and
mesons (R=3.3 GeV ') is different in the bag mo-
del this portion of the self-energy will be differ-
ent in these two cases by a large amount. (The
scalar density is independent of R in the massless
limit. ) For charmed guarks in the intermediate
state, the self-energy contains another dimension-
al parameter m„so that

B(Z;)=0,
(26)

m„,=6 x10 '9 C, +C

B(:--)= (4f- 1)C,
m g

where g and f describe the strong vertex (g'/4&
=14.6, f—= ~2) and

&t jzs /z'&

( /d fK&
(27}

Even at this stage we can see that this mechanism
cannot be the complete description of the P-wave
processes. The amplitude for Z'-Nr' has no
meson pole and hence vanishes by our assump-
tions, contrary to experiment. However, it is
still important to determine the role of the self-
energy even if it is not the unique contribution.

f(m, R~) = 0.11,
f(m,R,) =+ O.2O, (31)

C =-9x 10 '/ * m~.
f'C +C

B(A')8 s =-7.3 x 10 ' (32)

Here C. and C are the QCD correction factors
due to the short-distance behavior of the Hamil-
tonian. ' Because the SU(3) structure of the amp-
litudes is incorrectly given, there is no unique
way to compare this with experiment. However,
it contributes a significant fraction to most de-
cays, the largest being (using C =2, C, =1/~
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compared to the experimental value

B(A'),„„=22.5 + 0.5 x 10 '. (33)

The sign is opposite that of the usual comparison
of I'-wave amplitudes extracted from S-wave amp-
litudes in the soft-pion limit. We see that self-
energy diagrams can be a significant contribution
to weak decays.

Other decays can be treated less satisfactorily
with present techniques. There are two reasons
for this. For parity-violating processes, such
as S-wave hyperon decay and K-2r, the self-
energy mixing is between the ground-state par-
ticles and odd-parity excited states. In the case
of the parity-violating S wave, the pole-model
formalism would apply, with the poles being neg-
ative-parity N*'s and the strange scalar meson,
states which are on dubious footing in quark mo-
dels. '. The phenomenology of this'0 [and also of
K-2» (Ref. 11)]is worked out, but it would be
difficult to perform a reasonable self-energy cal-
culation beyond the simple dependence on the
radius quoted above.

The other problem occurs in kaon decay. There
we no longer have the interplay of baryon and
meson amplitudes. For example, a pole model
for K-3w involves a pion pole (with M», evaluated
at p'=m»') and kaon poles (with M», at p'=m, ').
The K—r mixing due to a scalar density in chiral
SU(3) x SU(3) is assumed to contain no momentum
dependence. Therefore any correct evaluation of
the K~ self;energy which does not involve mo-
mentum dependence will lead to the same K-3r
amplitude as the scalar density (namely zero).

It is possible for the self-energy to generate a
nonzero amplitude proportional to [M»,(P2 = m»')
-M», (p' —m, ')], but present techniques are inad-
equate to handle this. We must hope for improved
technologies if we wish to understand better the
role of the self-energies in hadronic decays.

IV. CONCLUSION

To discuss the finite renormalization of flavor-
changing self-energies, one must specify the ex-
perimental data which determine the parameters
of the theory. These are found by studying the

particles which propagate freely. For quark bound

states, the prescription reduces to a generaliza-
tion of the quark-model procedure of determining
Lagrangian parameters by calculating bound- state
effects. ' However, it is not necessary to calculate
the weak mixing between hadrons. When using the

bare, unmixed states any effects whi. ch are re-
movable by a redefinition of the quark fields will
cancel (for on-mass-shell states). In Sec. II we

used this to show how "environmental" dependences
of the self-energy can lead to transition ampli-
tudes in strangeness-changing processes.
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