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The resonant 6-parity-violation efYect due to co and $ on the pion form factor is studied using the solution
of the Muskhelishvili-Omnes integral equation with inelastic unitarity. The relative phases of the so-called
co-p and f-p interference effects are accurately determined by anaiyticity and time-reversal invariance. For the
case of the e, the results are shown to be identical with those of the two-coupled-channel problem and also
with those obtained from the modified propagator (or mass-matrix) approach. Similar results but with
somewhat less accuracy are also valid for the $ effect on the pion form factor.

I. INTRODUCTION

The pf"oblem of m-p mixing, due to a large G-
parity-violating amplitude in +-2n transition,
was first suggested by Glashow' and was sub-
sequently observed by experiments. There have
been many theoretical studies of this problem. They
can be classified into two categories. The first
one' is similar to the signer-Weisskopf treat-
ment of resonances, ' which has previously been
used for the gZ phenomena, and is also suitable
for the treatment of the time development of the
system. The second one' is based on the propaga-
tor approach which 1eads directly to scattering
amplitudes. Using any of these methods, and using
the fact that the p width is much larger than the
~ width, the phase of the co-p interference is shown
to be essentially that of the p propagator function
evalu3ted at the & mass. This method will not
work in the hypothetical case where both cv and

p were equally narrow and in the practical case
of the g-p interference, owing to the approxi-
mation used in the calculation (see Sec. III).

The purpose of this paper is to give a more
general treatm. ent of this problem with the help of
.analyticity, unitarity, and time-reversal-invari-
ance properties of the pion form factor. Three
methods are presented. The first one is based on
the solution of the Muskhelishvili-Qmnes integral
equation with inelastic unitarity. ' ' A theorem is
established for the phase of the inelastic spectral
function due to G-parity-violation mixings, which
in turn enables us to calculate the ~-p interference
phase with precision. The second methods consists
in constructing a two-coupled-channel problem, '
mm-wm via p and Sm-Sw via m, with G-parity-
violation mixing. The solutions of the coupled
integral equations for the pion form factor and
the Sm form factor are then explicitly given. These
two methods give identical results. The last meth-
od is a modification of the usual propagator ap-
proach' and is shown to be equivalent to.the first
two methods. All three methods are valid for the

calculation of the phase of the ur-p interference,
and, with jess accuracy, the P-p interference. .

They also work for the case of two overlapping
resonances of comparable widths. The only re-
striction is that the inelastic factor g of the P-
wave trtr amplitude (ries" - I)/2i is approximately
unity.

Before solving this problem we would like to
make two comments on its experimental status
and methods of analysis:

(i) Recent experimental results at Orsay' give
the branching ratio of 2m in ~ decay as

B((0-2tr) = (2.1+0.9)%%uc, (I.la)
to be compared with the world-average value'
which comes mainly from photoproduction experi-
ments, "

B(to -trtt) = (1.02+ 0.19)%%uo, (1.11)
which is apparently more accurate than the Orsay
results. %e would like to point out that the value
of the branching ratio and also of the phase ob-
tained from photoproduction (hadronic processes)
requires more assumptions which must be verified
experimentally, namely the equality of p and u
photoproduction amplitudes (modulus and phase).
This assumption is not needed in e e experi-
ments. We therefore advocate that e'e results
og. the branching ratio and phase should be con-
sidered as direct measurements that can be used to
deduce the relative p and co photoproduction am-
plitude.

(ii) The pion form factor in the tc region can ex-
perimentally be parametrized as'

M,' —s —iM,F, M„' —s —2M„F„'

with& =(1.4+0.4) x10 s and A. =102'+l3'. While
this form is satisfactory for most purposes a more
adequate form, as will be shown, is

M,'(1+ 8) M
Ms — -'MI" M — -'M I'

p S 2 p p

(1.2)
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From the last Orsay results, ' X=102'+13 Mp
='?VV MeV, 0,=159 MeV, we deduce 8=8'+13'.
We shall show below that 8 =0 modulo n. Equation
(1.3) is preferred because the phase 8 does not
depend on the p mass and width which are ex-
perimentally determined with much uncertainty.

The plan of this paper is organized as follows:
In Sec. II the phase of the p-~ interference is
calculated by using the solution of the Muskelishvili-
Omnes integral equation with G-parity-violating
contributions in the inhomogeneous term o. It
is shown that the corresponding part of o has the
phase e "and this enables us to calculate the
phase of the ~-p interference. In Sec. III a cou-
pled-channel problem' for the co-p mixing is for-
mulated in terms of the coupled 2m-2g and 3m

-3m amplitudes with a 2m 3~ mixing. U'nitary

coupled partial-wave amplitudes are constructed
which have both resonances in 2(( (p) and 3(( ((o)
channels. The 2m and 3m form factors are cal-
culated in terms of the constructed amplitudes.
It will be shown that the results obtained here are
equivalent to those in Sec. II. The inelastic effect
on the 2m channel due to the other I=1 channels
is parametrized in a simple manner. In Sec. IV
the usual mass-matrix formulation4 of the problem
is reexamined, and it will be modified to show
the equivalence of this method and those given
in previous sections. In Sec. V we discuss the
Q-mm effect in the pion form factor with the help
of the methods of the second section. It is shown
that there is essentially no change in the result
except that the Q-2(( amplitude is much smaller.

E(s)=e"(" 1+-s 2
s Pm-(s')Re(&si 6)

m 1+8
ds

S (S —S-Zt) (2 3)

where P stands for the principal-part integration
and where

s 5(s')ds'
(( s'(s' —s -ie) ' (2 4)

In the neighborhood of the co resonance, we can
further write o(s) as

o(s) = o(s)+ o(s), (2.5)

where o,(s) is the contribution of the G-parity-
violating intermediate states, whatever their
origin, which have an co resonantlike behavior
and 0'y is the remaining contribution which may
also include the nonresonant G-parity-violating
amplitudes besides the G -parity-conserving ones.
Because the effect of g is localized in the neigh-
borhood of the ro mass and is large, a special
method must be developed to handle this situation.
The modulus of p, is given by

I

x o(e'e -"(d")o(mm-"(o") . (2.6)

We shall later use the Breit-Wigner approximation
for the relevant cross sections. If we separate
the contributions of o, and o, to o in Eq. (2.3) we
ean write

E(s) = e"("[g,(s)+g, (s)], (2 "I)

II. SOLUTION OF THE MUSKHELISHVILINMNES

INTEGRAL EQUATION

Let us recall that the pion form factor E(s) is an
analytic function in the cut plane with its dis-
continuity across the cut purely imaginary, if
time-reversal invariance is assumed. The uni-
tarity condition may be written in the form

ImE(s) =f~(s)E(s) + o(s), (2.1)

s f~(s')E(s')+o(s') „,
w s'(s' —s —ie)

whose solution can be written'

(2.2)

where f(s) = (qf'" —I)/2i. 5 is the P-wave mv phase
shift and q the inelasticity factor of the P-wave
m channel. The first term in the right-hand side
of Eq. (2.1) is the contribution to the absorptive
part of E(s) of the (((( intermediate state. o(s)
is the inelastic spectral function which sums up
the remaining contributions. Assuming a once-
subtracted dispersion relation for E(s) we have a
linear integral equation,

whereg, (s) and g, (s), with g, (0) =1 andg, (0) =0,
are, respecitvely, the contribution of o, and o,.
g, can be shown to be nearly real in the p-co re-
gion. In fact Reg, is of the order of unity, while
from Eq. (2.3) Img, is bounded by

2,' o'
llmg

l

&
1 1+~ +u

(2.3)

If we assume p dominance, the contributions of
the m'y, qy, m'm m m, and m'v m'm' channels to o,
are proportional to the corresponding branching
ratios of p. I'(p~'y) and I'(p-qy) are less than
100 keg. ' I"(p-4m) is unknown; however, com-
parison with B(p'-4(() shows' that it must be less
th~ 1 Me&»en loll &0.04, md limgil '0.003,
since

l
e"

l

= 5 at-s = s„. Hence, the phase of g,
is less than 0.5' at s = s„. In the following we shall
set g, real. We shall show below that

l o,(s = s ) l

=1, so that 0, is negligible as compared to 0, at
the m mass.

We now want to show that as (1 -q), ,„«1the
phase of 0, is e ". This is a straightforward con-
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sequence of the final-state theorem" in the special
case where all channels are mutually orthogonal
under strong interactions. The transitions be-
tween different channels are due to 6-parity or
isospin violations. In this case, the final state
theorem states that to the first order in isospin-
breaking amplitudes the corresponding form
factors must have the phase e"~, where 5,. is the
eigenphase of the ith channel, and that the T„.
amplitudes must have the phase e"'&~~'. This
result can be generalized to the present situation
where channel 1 = mm is weakly coupled to a set of
channels which have large phase space, and strongly
coupled to channels which have little phase space.

Theorem. " LetEbe a set of inelastic channels
k (e.g. ; odd G parity) which are orthogonal to rrv

and to all other inelastic channels j (e.g. , even
G parity), but are not necessarily mutually or-
thogonal. If time-reversal invariance holds for
all matrix elements T» and T», the contribution
a~ of K to the inelastic spectral function of the
pion form factor has the phase-6, i.e., cr~=
+ ~(r„~ e ", to a precision better than [(I -q)/2]'r'.

Proof of the tkeoxem. The channels k=3rr,
etc. (k running from 2 to K) are weakly coupled
to 1, since they have opposite G parity. 0~
denotes the sum

(2.9)

where I" „ is the k-channel form factor, p~ its
phase-space factor, and g~ the matrix element
of the transition ww-k. The intermediate states
k are eigenstates of the isospin. The G-parity-
violation effect is described by the transition
amplitudes. Let us write the inelastic spectral
function, defined in E(l. (2.1), under the form

0'=g~+ E p T*i
~

j&E
(2.10)

where j =4m, etc. Assuming time-reversal invari-
.ance for all T„.transition amplitudes, we have

K

ImTr. = T~~p~P~",. + QT)gpr T+~;+ Q T)~p T*) ) (2.11)
j&E

hence,

(2.12)

The second and third terms of E(l. (2.12) are of
second order in G-parity violation and should be
negligible, as compared to the first and fourth
ones. Generally speaking, assuming that the ma-
trix elements T~,. are of the order of T», we find
from

~ p, T,, ~

~ [(1 —q').p,./4t), ]'r' that the fourth
term is less than ~(rz

~
[(1—r}2)/4]'~2 sup (p,./p, )'t2.

Hence the theorem is proved. We can translate
these conditions in terms of physical quantities
as follows: In the ~-p interference problem this
theorem is valid as long as I'(ur -4)r)/I'((0=2v) is
of the order of unity. This is a very weak as-
sumption since this ratio should be much smaller
than 10 ' owing to phase-space arguments; in this
case o, = ~(r,

~

e " to a very good precision [better
than (1 —q)/2]. In the case of tbe Q effect the
corresponding ratio, I'[Q-KK(I=1)]/&(Q —)rrr),
should be of the order of unity because the ratio
of the phase-space factors cancels the Zweig-
rule violation factor [of course I'((t) -4rr)/I'(@
-27r) is expected to be much smaller than one be-
cause of the phase-space factors]. Hence for the
(t) effect we expect cr, -—

~
(r,

~

e "to a precision of
about [(1 —q)/2]'12.

Let us now calculate g,(s). From the above
theorem Re((r,s")=+ ~o, ~, the modulus of (r, can
be calculated from E(l. (2.6) in the Breit-Wigner
approximation. One gets

M I'
I'„(s —s„)'+M„'I'„2 ' (2.13)

with

Putting E(l. (2.15) into the integrand of E(l. (2.3) the
function e ~ cancels with

~

e""'
~

and the pion form

x [B((o e'e )B-((A) rrrr) ]'r'-,

where g, = (s -4m, ')'t'/)ts . This approximation
is valid if the resonance is narrow over the re-
gion of interest, which is indeed the case con-
sidered blare, since I"„=10 MeV «1,= 150 MeV.
It is also useful to modify E(l. (2.13) so that it can
be used for a more general situation. This can be
done by noticing that (r, = Tf~+» and k in this case
can be approximated by the 3)r channel (in the
form of the u& resonance). T» has the phase of
5, + 5,. Using the analytic property of T» we can
write

T„=T„(0) exp(—f,(, .—
)

(Il, + Il,)).

This re(luires that Eq. (2.13) is modified to

M~I'2
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factor is given by

F(s) —eu(s), g (s)+ e P+l&(y)RB s
1+q(s„) s„-s —iM„I'„

(2.16)
with no condition on the ratio I'„/I', . If T» has a
zero near the & mass the above calculation is not
modified: If e is multiplied by a polynomial, the
result of the integration remains unchanged ex-
cept that the final expression is multiplied by the

same polynomial. Hence if o, has a zero near the
~ mass, g, will have a zero at the same energy.
Present experimental evidence does not show such
a zero exists.

The phase of the (d-p interference is given by the
relative phase of the two terms in the square
brackets of the right-hand side of Eq. (2.16).
Since the phase of g, (s) is less than 0.5' the in-
terference effect is given by the co propagator.
Let us now rewrite Eg. (2.16) as

F(s) eu(s)+ (s) 1+ ( (+)ePu(s~))-)2B S

1+@(s„) s„—s —iM„r„ (2.17)

with 1+8=(1+6)g,(s) and

2B IM; -M„' —tM,I, I

1+)7(s„) Mp'(1+ 8)
(2, 19)

Experimental results give 1+g =1.2, as also ex-
pected by theoretical calculations. ". Etluation (2.17)
shows that 0 =0' and this is our theoretical pre-
diction.

Until now experimental results have been analy-
zed with E(s) written under the form' "

(1+8)M,', , s

The modulus of the product
I
e"")g,(s)

I
is an ex-

perimentally measurable quantity and hence in-
dependent of dynamics. The factor 8 defined in
Eg. (2.14) can be deduced directly from the ex-
perimental measurements of the magnitude of the
interference, and hence the branching ratio of
~ decay into the mm channel is determined in-
dependently of the dynamics of the pion form fac-
tor.

%e now turn to the analysis of the last experi-
mental results. If we neglect the G-parity-vio-
lation effect on the e" factor, we can put in a first
approximation:

(1+6)M, 2

M, -s-zm, r, '

where 1+5 = 1.09 is the finite-width correction
factor. '4 We rewrite Eg. (2.17) in the form of
Eg. (1.3):

M,'(1+8),.
~ s

M -s -sMprp s„-s-sM„r„'
(2.18)

M„'r„'
X

(M„' —s)'+M„'I „' ' (2.22)

we find for F(s) the same expression as in vector-
dominance-model calculations, except that now
the phase X is predicted to be equal to 5. %e can
now compare the results of our formalism to the
latest Qr say experimental results'. X = 102'
+13', with M, =VVV MeV, M„=783.5 MeV, and
I', =159 MeV. With these values one finds 6(s„)
=94; hence we predict X=94'. The agreement
is indeed very good. As will be shown later in
a simple model, the electromagnetic G-parity-
violation effect on the e""' factor can give rise
to a correction on the experimental value of X

of about O'. This is only a matter of definition.
It also affects the measurement of the magnitude
of the interference effect and hence of B(co-2m) by
a correction of the order of 1-cos6' which is less
than 1%. Lastly let us recall that the most recent
Orsay results' is B(&u -2m) = (2.1 +0.9)%. This
justifies, a posterio) i, ln, I

« lcr, I
since Eq. (2.14)

gives l&x, (s„) I
=1.0+0.3 to be compared to Io, l

&0.04, and —,'(1 -)7') «1 since Eg. (2.22) gives
—,'[I -q'(s„)]=2%.

As a further check for the validity of the method
presented above we shall make again the calcula-
tion in a slightly different way. %'ith the condition
of time-reversal invariance it is possible- to write
an integral equation for g in terms of

I
0

I
only,

Neglecting Ie""' "" 'I, and 2[1-B(~-2v)]/
[I+)7(s„)], since in the Breit-Wigner approximation,

g2 = [I -B((o-2v)]B(td-2w)

From Ec[s. (2.16) and (2.14) we have

eu(s)-u(s„)
I [1 -B((y ~vv)]

2

1+)7(s„)

&& [8(u-ee)B(co-)Tw)]' 2
s+

" . (2.21)
6 r„

Ql

(2.2

A' '(1 =n') ~ 2% a d l&2 I
~~ l~) I

we shall neglect
the second term in the right-hand side of Eq.
(2.23) and take lo'I = I~2

I

T"en Eq. (2.23) re-
duces to
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ilmg i

= (2.24)

and assuming a once-subtracted dispersion rela-
tion for g we find

III. MULTICHANNEL APPROACH TO THE m-p MIXING

In this part we use the I/f construction' to study
the co-p mixing problem. Actually w'e shall con-
sider three channels for completeness: "1"and
"2"denote the J=1 mm and 3m states, which are,
respectively, coupled to the p and ~ resonances,
and "3"represents the 4g I=1 channels. However,
we consider only the violation of G-parity from
the 2m-3m transitions and neglect those from the
4m-3m ones. As a review let us consider the elas-
tic single-channel m case:

(3.1)T =—e i sin5fo ~

»
p

1 P

j.

where p, =(s —4M, ')' i's 'i' is the J'= 1 vv state
phase-space factor. The inverse amplitude 1/T»
has, as well as Tyy both right- and left-hand

E=e" 1+ 8 e PQ(sg) }"s„. Mr„.
(2.25}

Equations (2.25) and (2.16}differ from each other
only by the change of 2/(I+ q) into I/vp, a dif-
ference of the second order in —,'(1 —q); in addition

g, is replaced by unity. The result of Eq. (2.25)
can be improved by iterations of Eq. (2.23); The
first one gives a correction of 0.1/0, which is
negligible. This short discussion shows the pre-
cision of the method which is developed in this
paragraph; this precision is mainly due to the
smallness of —,'(1 -q).

cuts. Along the right-hand cut,
1—= &(s) —ip, (s) .
ll

(3.2)

At s = s, 1'» goes through a resonance of width
I',. Hence I/T» may be written

1 1=—[M,'-s iM—,r „„(s)]+r(s),
ll I

with K, p(s) =M,I', „(s), and' "h(M ') = 0 and

(3.3)

—h(s)
d

GTs s=Np2

—0

$2e '2 —1
2. M„r„„(s)'

For simplicity we set I',(s) = I', „(s) and r„(s)
= I'„„(s).With these definitions the 1/t matrix
can be written as

M,' —s —iM, I",(s)(1
A(s)

e(s)

A(s) &(s)

M„' —s —iM„I'„(s) 0

a'(s))

(3 5)
where A(s), e(s), and a(s) are slowly varying
functions. From unitarity A(s) and &(s) are real.
Since 2m-4m transitions are small we shall work
only to linear order in &(s). It is straightforward
to show

Since we are only interested in the u-p energy
region we shall, from now on, neglect h(s). Let
us define

q e2$6y

» 2i Mr „(s)
(3'.4)

1

M,2 —s —iM,I',(s) —A'(s)/t [M„' —s —iM„I'„(s)] '

-A(s)
[M,' —s - iM,r,(s)][M„'—s —zM„r (s)] —A'(s) '

(
-e(s)a(s)

M,' - s - zM,r,(s) -A'(s)/[M„'- s - iM„I'„(s)] '

t„(s)=a(s) .
Owing to the lack of phase space of the 4m state we set t»(s) re».

The integral equation for the form factors E,

(3 6)

&ip J

has the solution

(3.8)F,(s) = QT, ,(s) (Cs),
e

where the C&(s) have left-hand cuts that cancel those of the T,~(s). Since we neglect the left-hand c«s in
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C,K, C, (K,K,)' @A(s)
s iM,I, -A'/(M. *-s-iM„r„) (M; -s-iM, 'I,)(M'„-s-iM„r„)-A'

C,a(s)e(s)
M,' —s —iM,I', -Ao/(M„. o —s —iM„I'„) '

where K, is defined by K,p„(s)=M„I' (s). Similar forms are valid for E, and F,. We can recombine the
first and third terms in the right-hand side of Eq. (3.9) to get

(3.9)

C K, ' Coa(s)c(s) C, ~fK,
'~' A(s)

M,'-s-iM, r,(s) Ao(s)/IM„'-s-iM„I'„(s)] C,K, C, lK, M„'-s-iM„I'„(s) '

(3.10)

the neighborhood of the p and + resonances we can take the C, as constants. '" The pion form factor can
be written

The factor which multiplies the square brackets
in this equation has, by definition, the phase P of
f= (qe'" -1)/2i. However, the relation

1-g 1
fg(@ -s) =1

shows that 6 and p do not differ significantly since
1-g/2s 2%%uo and 6=90'. Hence, it is interesting
to compare Eqs. (3.10) and (2.16). g, (s) can be
identified with 1 —Coat/C, K, and 28se ~""&'/(I + q)
with -A(s)C,v'K, /C, v'K, . If we neglect G-parity
violation we find

C,v'K, /C, v'K, = [I"(&o-e'e )/I'(p-e'e )]' '
which is equal to about —,', and B(&u-2v) = 0.02
gives A = 0.15M,(I',I'„)'~'.

To the first order in A the phase of the inter-
ference, as defined in Eq. (1.2), is 6(s„). How-
ever, if we develop Eq. (3.10) to second order
in A we find

~=6(s„)+6'.
As we have already said those 6' are not significant
from an experimental point of view. However,
this shows how sensitive is the prediction and
the measurement of X in Eq. (1.2) to the param-
etrization of e""', i.e., of 5. A difference of O. V
between the phases of M,'-s -iM,I', and

M,'-s -iM,I', -A'/(M„' —s -iM„I' )

at s = s„ leads to a difference of several degrees
in the final result on I,. The consequence of this
uncertainty is only of academic interest as pre-
viously discussed in Sec. II.

IV. METHOD OF THE PROPAGATOR OR MASS MATRIX

particular we want to show that this result is
general and not due to the smallness of the u
width as compared with the p one.

In this method one considers the 2 x 2 mass ma-
trix% of the p and (d resonances. Its eigen-
vectors are the physical intermediate states, the
propagators of which are defined by the cor-
responding eigenvalues. Let us set

fs
!

(4.1)

p .„.]
in the basis of the pure isospin states Ipo) and
Iooo); soo, s„o, and M' are complex and their
imaginary parts are proportional to the on-mass-
shell part of the corresponding self-energy
operators.

It is necessary to know the value of BeM' to cal-
culate B(a&-2v), but we shall show below that the
phase of the interference is independent of HeM'.
To simplify our discussion we consider 2m and
Sm channels only. Then

Ims, o = -Qo
I
2v)'p„- Qo I

3v)'p„,

Ims„o = -((uo
I
2v)'p„- ((oo I

3o)'p„, (4.2)

where the matrix elements g'I2v), (p'I3v),
(&uoI2o), and (&ooI3m) are real, and whe~e the phase-
space factors are denoted by p„and p„ for the
2n and 3m channels. One obtains the eigenvectors
I p) ~d

I
~) f.om

I po& ~d I~o& by a «mpiex non-
unitary transformation

Ip&= Ip &-nI &,

I~)=rI~'&+nIp'&,

with
We now present a short review of the method

of the propagator to show its equivalence with
the method of the 1/f matrix of Sec. III, and,
hence, that no approximation is needed to get the
result on the phase of the co-p interference"; in

7 +n -1

3P
7 -'g s 0-sp

(4.4)

(4.5)
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~ and q are complex, and because the G-parity
violation is small, I.I

=1 and IgI «1.
The corresponding eigenvalues of % are s, and

Sco

sists in setting Iq I
«1 and

I
r

I

= 1. Equation (4.5)
becomes

(4.9)

7 SPO -'g S~O
p ~2 q2

Schmo ~ SPDs
~2 q2

(4.6)
We have

&y I p.&&p. I
2~& —n&y I

~'&&p.
I

2v&

s -s
P

This is equivalent to

SPo = T SP+g S

S~o = T S +'g SP.
(4 7)

z &yIp&Q 2~&,
S —SP

where the states (p
I

The approximation

&y I
~&&~ I2v&

S —S

and g)
I

are dual to Ip) and

used by Gourdin et al. con-

With these relations it is straightforward to cal-
culate the pion form factor

, &y I
~.&&~'

I
2~&+ n&y I ~.&&p'

I
2~&

S~ —S (4.10)

M' Ml-" -&

'
P P&ooI2~&

Ql hl ( 0 3 )

the two terms multiplying with 1/(s„—s) are
equal to

(4.11)

The second set of terms on the right-hand side is
small compared to the first one. Since

HeM' —tM,r, —tM„I „
&&u' 2m& . Q, 3s& &yI~')&p'I 2v&

(4.12)

-i Re)UP

M,i', (4.13)

This gives rise to a cancellation, up to the order
of M„I'„/M, I',. The term which is proportional
to (p'I Sm& can be argued to be small. Then the
factor of 1/(s„—s) in Eg. (4.10) reduces to

Let us define t by

o2m 0

0 &uP IS~)j ( 0

0

&&u'
I Sm&f

(4.16)

This is the result of Gourdin et al. This can-
cellation is only possible because I', » I'„.

However, one can transform Eq. (4.8) so that
to write I', under the form

SP —'S S~ -S (4.14)

(4.15)

where H= (yIp'&&p'I 2@& is a real constant, and &
is a real slowly varying linear function of s. If
X does not have its zero near the (d mass, this
result is the same as in Sec. II and III, and the
phase A, , as defined in Eg. (1.2), is found to be
equal to 5. This result is obtained without any
approximation, unlike that established by Gourdin
et al.4

Let us now show that in detail. We begin first
by computing the T matrix in the propagator ap-
proach and show that it is unitary. By definition,

&f Ip&c I~& &bI~&&~I~&
s P 6)

then we have

1 1t„=(rn, „+q)' + (7' -qn„)'
P1,1t., = (ra„n)' -+ (7'+no'„)', (4 17)

1t„=t„=(v qn, .)(vo,.——q)
P

1
+ (ra„+rt)(r+ qn „)

&(o' 2m&
2r (po 2 )

Q' Sw&

&(o' Sn&
'

By straightforward calculations one finds
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(
1 1

~2 [spy+ n3~ s(p —~ns~—Q2 Q3)

~I ~

~»

~

~
~

~

~~

~

~

~

~
~

~

~0 ~
2

~

~ 21 1
» [s„a+n„'s~—2M n„

22 ( 2r 3s'j

—s(1+n„')],

—s(1+n ')]

—s„on~ —s~n„+ s(n„+ns, )].

(4.18)

Using Eq. (4.2) we have

1
Im — = -('p'

~

2rr&'p„,
11

1
Im — = -((d'

~
Sm&'p„,

22

&i (1
lm~ — = 1m~ — = 0.

12 E 21

(4.19)

T» = ('po
~

2rr&2
1

P

T„=(p'
~

2m&&(u'
~

Srr&

(4.23)

M' —s„n„-s.n„+s (n,.+ n„)
(s -s )(s —(0)

hence, F, can be written under the form of Eq.
(4.14), with

E,—C1T„+C2T,2.

From Eq. (4.3), (4.8), and (4.17) one has

&y I p.&
= c,y. 1

2m&+ c,g
&y i

(o'& = C,&(o'
i
Srr&+ C,&(o'

i Sm&,

l.e ]

(y I p'&&~'13~& - &y I ~'&rp. 13~&

&p' 12rr&&(u' I Srr& —(p' I Srr&&((r'12rr& '

(y I ((r'& (p'12m& —&y I p'&&~'12rr&

&p'12m&&(u'13rr& —('p'13rr&&((r'12m&

From Eq. (4.16) we get

(4.20)

(4.21)

(4.22)

This is equivalent to the uriitarity relations in the
previous sections. However, notice that the dia-
gonals (I/f) «differ from Sec. III by terms of the
second order in 6-parity-violation parameters.
The off-diagonal terms are of the first order as
expected. We see that, by coristruction, the
zeros of det(1/f) are s, and s„, the poles of E,
in Eq. (4.8). From Eq. (4.5), which defines the
&-p mixing parameters, s„and s, are the roots
of (s„o-s)(s~ —s) -M~. In Sec. III the poles of
E, are the roots of

(M —s —iMpI' p)(M„—s —iM„I'„)—A

in the notations of that section. This shows the
correspondence between s,o, s„o, and M' and the
parameters of Sec. III, M,' —iM,I'„M„'—iM„l"„,
and ~, whatever the values of a„and z„are;
this is evidence for the equivalence between the
mixing models of Sec. III and IV. For the sake
of simplicity, from now on we shall keep only
terms of the first order. Then (I/t)» = s, —s,
(1/t) „=s„—s, and A = M' —s n„—s,n„+ s (n„
+ n~). We are now in a position to calculate E„
which we shall write as in Sec. III,

~= &yi'&&'I2.» --' ".' "'. '"',
&ylp'& &~'13~& ' (4.24)

V. THE P-p INTERFERENCE PROBLEM

In this final part we briefly show how to apply
the formalism of Sec. II to the Q-p interference

&yl(d'& " (ylp'& "
x [M' —s„n„-s,n„+s(n„+n„)].

It can be shown that similar results are obtained
without approximation. Calculations are more
tedious but H remains a real constant and X a
real linear function of s. We now verify that the
zero of X is far from s„, so that in this method the
phase X of the (d-p interference, as defined in
Eq. (1.2), is found again to be equal to 5. To the
first order the zero of X is determined by

(s —s„)(n„+n„)=(s, —s„)n„-M'. (4.25)

Since (I/f)» is real, Eq. (4.25) is also real and
the zero of X does not depend on the widths of p
and co. From the experimental results' HeM2

=0.6M,l"„, and Eq. (4.25) becomes

s -M 2=M 1 2+2, +0.6
40 fd 4)

21r 31r

The zero of X will be within the range of the &
resonance only i.f e„and n„ take values of the
order of unity, i.e., if G-parity-violating pro-
cesses are comparable with strong interactions,
which cannot be.

This shows the relation between the 1/t matrix
and the mass matrix approaches in the study of the
g-p mixing. The result on the phase of the inter-
ference is simply a direct consequence of unita-
rity, arid is quite independent of the respective
p and ~ widths, as was discussed in Sec. II.
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problem in the pion form factor. %e start with
a remark: Equation (2.1) holds strictly for the
form factor F(s), which is by definition equal to
the product of the vertex function and the cor-
rection due to the photon propagator. The scat-
tering amplitudes that appear in the same equation
must contain also electromagnetic correction.
However, this effect cannot be measured experi-
mentally. We must use the unitarity Eq. (2.1) for
the vertex function with the electromagnetic effect
switched off; the complete pion form factor is
obtained after it is multiplied by the hadronie
correction to the photon propagator. This is of
no importance in the ~-p ease since it induces a
very small correction to the amplitude of the in-
terference, i.e. , to the measurement of B(v vv-)

which is anyway very imprecise, and none to
the phase. In the p-p interference problem the

g branching ratio into 2v, B(P-vv), is so small
that the hadronic correction to the photon pro-
pagator leads to an interference effect of the
same order, or even larger than that induced by
the G -parity-violating hadronic transitions. To
the first order the hadronic correction to the
photon propagator is given by

contributions.
Again we write for the inelastic spectral func-

tion 0'y

0'= 0'g+0'2
q (5.4)

M~~I'q2

(so —s)'+M~'I'~' ' (5.5)

where o, represents the sum of the I=1 inelastic
channels contributions, including @~~K, and o,
that of the electromagnetic and G-parity-violating
channels which have a resonant behavior at the

P mass, including o~»+». It has been shown in a
previous paper" that one can calculate the disper-
sive integral over Re(a, e") in the approximation
where the ~m channel dominates the other in-
elastic I=1 channels, in very good agreement
with experimental data. At the Q mass one finds
that g„which we recall is defined as in Eqs. (2.3)
and (2.7), is about 1.2 and has a phase less than

a few degrees. From our theorem in Sec. II we

know that O,e" is real, and using the Breit-%igner
approximation to evaluate

1 3 s Mol'(P-e'e )
1+77(S) lX S~ S~ —8 —'tM~I ~

that is, numerically, '
1 =1 5.3 x 10-4 s

lss(s) '
ss —s-SM, S', )'

(5 1)

(5.2)

we find, up to the sign ambiguity,

g, =I,q,
— [B(y -ese )B(y-vv)]'~'12

4 e-Ps(sy)
M s -s —iM I'

tw l=x
+KK +K'+ +KK ~ (5 3)

where gKK and OKK are pure isospin 1=0 and I=1

%e now turn to the G-parity-violating inter-
ferenee effect on the pion form factor. Neglecting,
in a first approximation, the electromagnetic mass
difference of E' and E' we divide the K'E and
E'FP channels into pure isospin states, so that
the EZ contribution to the inelastic spectral func-
tion of the pion form factor may be written as

i.e. , numei. ically, '

g, =+4.1 x 10-'[B(y-vv) ]'"
s~ -s -iM~I'~

The total pion form factor is given by

1
&(s) =- -&'(s) [g,(s) +a, (s)]1+v(s)

and may be approximately written

(5.7)

(5 6)

3 I'~, +4e z"(sg) B(&f) vv) a/2 s
E(s) =E'(s)g, (s) + — ' B(y-e'e ),i, ,~. . . , -1 (5 9)

Hence if it is parametrized under the usual experi-
mental form,

equal to 9.5 && 10 'f+65[B(Q —vv)]'~' —lj. The for-
malisms of Sec. III and IV lead to the same result.

+ =+', ++~'
s ~

—s —sM@I'~
(5.10)

VI. CONCLUSION
with E' approximated by a Frazer and Fulco"
formula or a Gounaris and Sakurai formula'4 we
find that the so-called phase of the interference
A. is equaL to 5, that is, A. = 160 . A is approximately

In this paper we have presented a new method
based on the solution of the Muskelishvili-Qmnes
equation with inelastic unitarity to calculate the
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&o-p and P-p interferences. It is quite general
and model independent since it depends only on the
assumption of analyticity, unitarity, and time-
reversal invariance; it also allows us to treat the
inelastic G-parity-violating and G-parity-conser-
ving corrections to the pion form factor on the
same footing. Our result is the same as that ob-
tained by other methods which require more as-
sumptions, namely I/f matrix construction for

resonant 2w and 3m channels and a mass-matrix
formalism for the mixing of resonances.
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