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A new approach to Cabibbo mixing is proposed in the framework of an SU(4) X U(1) gauge theory. Instead
of introducing Cabibbo mixing in the quark mass matrix as is usually done in SU(2) X U(1), we take
advantage of the existence of the 12 additional gauge bosons and mix the gauge bosons in their mass matrix.
It is found that in the most general case there are four mixing angles which are in principle observable.
Among them one is the usual Cabibbo angle; another one is like it but is in a different sector. Two angles
are associated with CP nonconservation. By demanding that the Higgs potential have the most general form,
we show that in our theory Cabibbo mixing and CP and muon-nuInber nonconservation are inevitable. An
intimate connection between the Cabibbo angle and the muon-number-nonconserving p, ~ey process is
obtained. Possible experimental tests of our theory are suggested.

I. INTRODUCTION

This is the third in a series of papers' on the
unified gauge theory based on a spontaneously
broken SU(4) xU(1) symmetry. The subject con-
cerns the development of a general framework in
which the Cabibbo mixing in the conventional SU(2)
xU(1) sector can be understood as a result of a
global mixing of the gauge bosons in the larger
symmetry.

The origin of the Cabibbo angle is a mystery
that has not been fully understood up to now. It
is generally regarded as a measure of the mis-
match between the classification of the quark states
according to the strong and weak interactions.
Taken as a phenomenological fact, this mismatch
can conveniently be parametrized by a mixing
angle between the d and s quark fields. Insofar as
the weak-interaction processes in the usual SU(2)
xU(1) gauge theory are concerned, the mixing
could equally well have been between the u and c
quark fields, and there would be no difference.
This is not true if there are other gauge bosons in
a theory with higher symmetry, as we have shown
inthe caseof SU(4) x U(1) inpaper I, eventhoughthe
difference is hard to detect experimentally. Thus
there is a "freedom" in the description of the Cab-
ibbo phenomenon that needs to be fully investigated.

In usua1 gauge theories the mixing of quark fields
is achieved by an appropriate choice of the Higgs
couplings which appear in the quark mass matrix.
While the same procedure could also be used for
SU(4) x U(1) and, infact, was adopted inpaperI, we
note that the group is rich enough to permit the Cabib-
bo angle to be introduced by an alternative mecha-
nism. Because a large gauge group has more gauge
bosons, the procedure is to introduce effective Cabib-
bo mixing by mixing the gauge bosons. To illustrate
this idea which is central to our present approach, we

give here a simple example.
Consider the interactions of two of the SU(4)

xU(1) gauge fields W, and V, with the quarks; it
is given in paper I, Eq. (2.4),

W, (ud+cs) +V, (us- cd),

where y matrices and Lorentz indices have been
suppressed. Now if the physical boson fields W,
and V, are linear combinations of S", and V, ac-
cording to

W, =cosOcW, +sinl9c V+,
(1.2)

V, = —sin&ca, +cosmic V„.4

then (1.1) can be reexpressed in terms of W, and
V, as

W, [u(d cos8c + s sin8c) + c(s cos8c —d sin8c)],

+ V, [u(s cos8c —d sin8c) —c(d cos8c + s sin8c)].

(1.3)

Evidently, a mixture of the gauge fields identified
as the physical bosons leads to the usual Cabibbo
mixing. Note that the quark fields are eigenstates
of the quark mass matrix, and are '"mixed" in
(1.3) only as a result of diagonalizing the boson
mass matrix. This example contains the essence
of our approach. In this paper we consider the
most general mixing of the bosons that is possible.
In such a theory the "freedom" mentioned above,
of course, disappears.

Our strategy is to break SU(4) x U(1) down to the
SU(2) x U(1) of Weinberg and Salam. ' In general
there are many candidate subgroups. However,
since we require the charge operator to be one of
the generators of SU(2) x U(1), . only a subset of
them is acceptable. The various SU(2) xU(1) sub-
groups in this subset are related by transforma-
tions which leave the charge operator invariant.
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II; ALGEBRA

The algebra of SU(4) in the canonical basis is

[Fl q EJ] Sf'»F3 q Zl Jq )3 Iq ' ' ' I 15 (2.1)

It will not come as a surprise to find that these
transformations form a subgroup themselves,
comprising two disjoint SU(2) subgroups, one
acting in the (d, s) subspace, the other in the (u, c)
subspace. We shall make the most general rota-
tions in this SU(2) xSU(2) subspace, and examine
the observable consequences of mixing the gauge
bosons of SU(4). The usual Cabibbo angle becomes
just one of four possible angles that are in princi-
ple measurable when viewed in this more general
framework. Two of the others are associated with
CP nonconservation. As in the conventional pic-
ture of the Cabibbo angle, these four angles give
a measure of the mismatch between the diagonal
bases of the mass matrices for the quarks and the-
gauge bosons.

We shall study the nature of the Higgs fields and
determine how their expectation values give rise
to the pattern of symmetry breaking that we want.
Moreover, we shall examine the geometrical
properties of the Higgs multiplets and find a con-
nection between the mixing angles and the angles
that specify the orientations of the Higgs multi-
plets, i.e. , the orientation of the vacuum. We
also study the most general SU(4) x U(1)-invariant
Higgs potential, and it is of particular significance
that the potential forces upon the theory the ex-
istence- of Cabibbo mixing and CP nonconservation.
Thus in our theory both of these physical phenom-
ena have their origin in the spontaneous break-
down of a higher symmetry.

This paper is organized as follows. In Sec. II
we discuss the algebra of SU(4) in a basis that is
particularly suitable for our considerations in the
paper. The general rotations in the subspace that
leave the charge operator invariant are then dis-
cussed in Sec. III. The rotation angles are related
to the observable angles such as the Cabibbo angle
in Sec. IV, where it is found that there are at most
four observable angles. In Sec. V the connection of
the foregoing with the Higgs fields is established.
We develop there the relationship between the
Cabibbo angle and the orientations of the Higgs
fields, and in Sec. VI the connection with CP non-
conservation is investigated. In Sec. VII the Higgs
potential is considered; we find there that in our
theory Cabibbo mixing and CP nonconservation are
inevitable. Some simple examples of the general
mixings are considered in detail in Sec. VIII,
where we also give the phenomenological conse-
quences of our theory of the mixing of the gauge
bosons. Conclusions are given in Sec. IX.

(G}-=(G'. , G', 9, , 9',}, (2.2)

where n =0, 1, 2, 3 and i =1,2, 3. They are defined
in terms of the I'» by

G'=(E +F )+i(E -F ),
G', =+ i[(E,+E„)~ i(E, —F33)],

G,
' = (F» —E„)s i(E, +Fj3),

G', =+ i[(F,—F„)+ i(F, +F„)],

(2.3)

G' =F, +
3 F, —(3)' 'F35,1/2

9, =E„e,=-,'(-E, +&3F,),

(2.4)

(2.5)
~a

I I 1 2 1/293 Fy5y 93 F3 ~ E3 (3) F35

(2.6)

This is the same set of generators introduced
already in paper I, written here in more convenient
notation.

We first consider the following set of commuta-
tion relations that can be established from (2.1):

[G+, G„]=2G3, n not summed

[G', c'.]=+G'„,

[G', 9,]=[c',9', ] =0,

(2.7)

(2.8)

Ie( 9,]=i&„,e, ,

[9(,eq] =it, q 9„, (2.9)

[Q„e,'] = 0.
We see from (2.7) that for every n the set (G'„, G3}
forms an SU(2) algebra. Similarly, on account of
(2.9),~ (9,}and fe',.}are the elements of the algebra
of SU(2) xSU(2). The charge operator Q is'

Q G3+E (2.10)

where F, is the U(1) generator of the SU(4) x U(1).
We therefore see from (2.8) that transformations
under the group SU(2) xSU(2) mentioned above
leave Q invariant. We shall find that this particu-
lar group is the one relevant for introducing Cab-
ibbo mixing in the most general way.

Let us, for definiteness, use 9 to denote the
group SU(2) xSU(2) generated by (9„9&}.It is the
covering group of SQ(4), whose generators I, 5 are

I
Lo» =-8»+8»

(2.11)
«~3(93+93)-

where the structure constants f,»a. re given, for
example, in Ref. 3. For our purposes in this paper
it is more convenient to consider the algebra in a
different basis, which for later reference we shall
call the standard basis. In that basis the 15 ele-
ments of the algebra are denoted by the set
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with L„s=-Lz„, and n, P=O, . . . , 3. They, of
course, satisfy the algebraic relations

IL 8 L~~l=i(68„L a+6 &La~

—6 ~Lsp —6spL q). (2.12)

It is straightforward to establish that under the
group 9 the generators G' defined in (2.3) trans-
form as four-dimensional vectors

where

v = (1,io,), for n = (0, i) . (3.2)

Note that r ESU(2), but are not Hermitian.
We now apply this transformation to our inter-

action Lagrangian. In the canonical basis the
coupling of the. quarks to the SU(4) gauge bosons
is

[L~B, Gy] =i(68yG'„- 6~yGa}. (2.13)
j.5

g, = S', qX;q, (3.3)

It is now clear that the advantage of the standard
basis (2.2) is that the set (9„9$generates the sub-
group 9 under which Os (or Q) is invariant, and
under which G' rotate as vectors.

The remaining commutation relations in the
standard basis are

where

(3.4)

[G„,G ~] =+6 82O -2i L„a,
[O'„, G', ] =O. (2.14)

It now follows that the algebra of (2.7) is invariant
under 9, for if under 9 we have

(2.16)

where A 8 specifies a four-dimensional rotation,
satisfying

C

The y matrices, Lorentz indices, and coupling
constant g/v 2 have been suppressed for brevity.
Throughout this paper the fields of (3.4) refer to
the physical quarks. No mixing in the quark mass
matrix will be introduced.

In analogy to (2.2) we express the gauge bosons
in the standard basis, i.e. ,

(2.16)~aa~ay =&By ~

then the antisymmetry of I.„8 in (2.14) guarantees
that for any fixed n

(Wj =(C„,B,S;,T)j,
where

(3.6)

[O', G ]=2GB, o. not summed

[O', G' ] = ~G' . (2.17) S; = W7, T) = W,O
. (3.6)

III. GENERAL ROTATIONS

We now consider general rotations under 8 and
examine the effects of the rotations on the quark
fields and on the gauge-boson fields in our stan-
dard basis.

Let a transformation under 9 be specified by two
two-dimensional matrices A. and j9, where g
&SU(2) generated by 9„and BK SU(2) generated
by 9,. For every set (A, B'Ithere corresponds a
definite transformation AK SO(4), satisfying

B v'~A. = A~gas, (3.1)

The fact that this SU(2) structure is invariant
under 9 is important for our theory in which we

exploit the freedom in identifying the eight physical
charged gauge bosons with the eight generators
O'. The Cabibbo and other mixing angles result
from this freedom. After the SU(4) xU(1) symmetry
is broken down and the heavy gauge bosons ac-
quire their masses, there remains an SU(2) xU(1}
symmetry whose generators we shall take to be

Go, G', and Eo without loss of generality.

Their relationships to the W; have already been
defined inpaper I, Eq. (2.3), and apart from nor-
malization are analogous to those given for the gen-

eratorss

in (2.6). For the quark fields it is more con-
venient to use the two-dimensional representation.

(3.7)

The currents are then

J' =q,v„q„J = (J'),
1

(tI292 AVx) (3.8)

M& =~j.o«x && =&so«2 ~

In terms of these quantities, (3.3) now has the
form

2 h, t
= C ~J' + C „J„+AK+ S(M( + T(N( . (3.9)

In the exact symmetry limit f,. , is invariant
under the transformations A(A, B) in 9. The
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charged bosons C' and currents J', being vectors
in the four-dimensional space of SO(4), transform
as follows:

v'(A)c'„v(A) = A.,c', =c'. ,

U (A)J'„U(A) =A~8JB =Z„.
(3.10)

(3.11)

R,,(M) = ,'t (M'o,-Mo, ).
In terms of these 8„.matrices we.have

U~ (A(A, B))S(U(A(A, B))= U (A)S(U(A)

(3.13)

=R (((A) S/=8'(, (3.14)

Ut(A(A, B))T(v(A(A, B)) =U (B)T(v(B)

=R„(B)T,=T,. . (3..15)

Since M, and &f transform similarly, it follows
from (3.8) and (3.12) that

The neutral bosons $,. and T, form vectors in two
separate three-dimensional spaces, the rotations
in which are generated by 9f and 9', , respectively.
Let those rotations be denoted by R(((A) and R(&(B),
respectively T.o every matrix M&SU(2) there
corresponds a unique B(M)&SO(3) given by

M o;M =R;((M)o(., (3.12)

from which follows the explicit dependence

cosmic

sin8c
II', (u c) . i +H.c. , (4.1)-sin8c cosL9&, s

where I9 c is the Cabibbo angle and the y matrices
have been suppressed. It is clear that the mixing
matrix can act on either q, on its right or q2 on its
left, reaffirming the conventional wisdom thai in
the SU(2) xU(l) gauge theory (d, s) mixing is equiva-
lent to (u, c) mixing. The matrix represents the
mismatch between the quark eigenstates of strong
interactions and the weak hadronic current that
couples to W, .

Our interest in this paper is to effect Cabibbo
mixing not by mixing the quarks in their mass
matrix but by mixing the gauge bosons. This pos-
sibility is open to us now in SU(4) x U(1) but was
not available in a theory in which the only charged
bosons are W, . To see how it works consider the
charged sector of (3.20),

(4.2)

where (3.19) has been substituted for J'„. If the
Higgs scalars are such that C' are the eigenstates
of the mass matrix of the gauge bosons, then the
usual intermediate-vector-boson W coupling,
which is now the ((. =0 term of (4.2), becomes

SI( =R„(A)M, =q,At o,Aq, ., (3.16) W, q2a'Aq„ (4.3)

N( =R(((B)N( =qmB o(Bq, . (3.17)

v'(A)q, v(A) =Aq„

v'(B)q, v(B) = Bq, .

Together with (3.8) and (3.11) they imply

(3.18)

Thus we see that the quarks transform dnder 9 as

(4.4)

where

where the notation for bosons with a tilde is the
same as (3.6). Since B~AKSU(2), Euler decom-
position implies the existence of three angles
((t(, 8, (t(') such that

B'A = Z(y') I (8)Z'(y),

J'~=q2B 7 cd (3.19)
z(y) ei ea~/2 (4.5)

which reaffirms (3.1). Indeed, the gauge bosons
and the two quark doublets q, and q, form a reali-
sation of the jA, BJ- A(A, B) homomorphism.

The invariance of g,.„, under 9 therefore implies

g. , =C+„Z+„+C j~+RK+S(M(+T(N(. (3.20)

The fact that A and K are invariant can be inferred
from (2.8).

cos8/2 sin8/2
I (8) eieog/2

-sin8/2 cos8/2~

If we define two new quark doublets

~-f @/2

qx = z (W)qx =
( y/s

I

(4.6)

(4.'?)

IV. OBSERVABLE ANGLES

We now make use of the formalism developed
above to discuss the Cabibbo angle and its genera-
lizations, and to determine the maximum number
of observable angles in the SU(4) x U(1) gauge
theory.

Let us begin by recalling the usual SU(2) x U(1)
theory in which there is only one charged current.
The Cabibbo coupling may be written in the form

q,
' =q, z(y'), i.e. ,

we can write (4.3) in

W, q, i'(8)q, .

~-f Q'/2

I
q =

the form

(4.8)

(4.9)

This ean be brought to the conventional form for
Cabibbo mixing and is equivalent to (4.1) by a
redefinition of the phases of the quark fields which
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we are free to make. This completes our proof of
the possibility of Cabibbo mixing through the mix-
ing of the gauge bosons, while establishing *

8c =8/2. (4.10)

It should now be clear than in the context of
SU(4) x U(1) symmetry the Cabibbo angle is a mea-
sure of the mismatch between the diagonal bases
of the quark and gauge-boson mass matrices.
This mismatch can be completely described by a
rotation in 9.

Since we have many more bosons beside the con-
ventional charged W bosons now identified as S', ,
there can be other observable angles in addition
to the Cabibbo angle 8~. By focusing on the o. =0
sector we obtained (4.10) with the phases of the
quark fieMs specified by (4.7) and (4.8). Turning
now to the o. +0 sector but adhering to the same
phases for the quark fields as in (4.7) and (4.8),
we have from (4.2)

Ci Ji Ci+q2B'' ~iAq~ = Ci q~Kiql 2 1 2' 3 (4.11)

where

K; =Z (Q )B T;AZ(p)

= Y(8)[AZ(4)]'T, [AZ(y)]. (4.12)

[Az(y)]",[Az(y)] =Q;,', , (4.13)

where Q, ~ is the R,(A) in (3.12) preceeded by a
rotation around the z axis through P. Thus (4.11)
and (4.12) can be rewritten as

C'; Z,' =C,'Q;&[q, Y.(8)r&q, ]. (4.14)

The quantity inside the square brackets is a natural
generalization of the current in (4.9). Note that be-
cause of the position of Y(8) the effective Cabibbo
mixing acts on the (u, c) quarks (again, in 2,.„, not
in the quark mass matrix). Evidently, the boson
mass eigenstates C,' couple to linear combinations
of the currents in the square brackets which do no't

involve the Cabibbo current of (4.9). Because these

Since AZ(P) is an element of SU(2), it can be a
function of at most three independent angles,
which in general are independent of 9. Hence out
of a total of six parameters specifying a general
rotation in 9, there can at most be four (in princi-
ple) observable angles in the charged sector, of
which the Cabibbo angle 8c =8/2 is one.

One way of understanding the three additional
angles besides 8c is to put (4. 11) into a more
recognizable form. In (4.11) it is assumed that
C,' are eigenvectors of the boson mass matrix,
while q', and q2 are eigenvectors of the quark mass
matrix; the deviation of K; from 7.

i represents the
mismatch. Now AZ(P) induces a rotation of w;,
i.e. ,

bosons are heavy, the three mixing angles are not
susceptible to easy detection.

For completeness we give here also the descrip-
tion in which the effective Cabibbo mixing in gt
can be rewritten to appear in the (d, s) sector. It
is straightforward to express (4.12) in the alter-
native form

K; =[BZ($ )] w, [BZ((f) )]Y(8). (4.15)

Thus proceeding as before with the recognition that

[BZ($ )]'r, [BZ(y')] =Q';p, , (4.16)

where Q'„ is the R„(B) in (3.12) preceeded by a
rotation around the z axis through p', we obtain
another expression for (4.14):

C,'J,'=C,'Q;;[q,r, Y(8)q,] . (4.17)

= S,.q', [AZ(y)]'o, [AZ(y) ]q',

= S,Q, , (q,v, q', ) .

Similarly, for N& we have

Ni =T;Nc = T,q2B ~iBq2

= T,Q, , [q2Y(8)n&Y. (-8)q,].

(4.18)

(4.19)

The above equations can be reexpressed in terms
of Q',-,. as follows:

S;M, = S;Q';,.[q', Y(-8)v, Y(8)q',],
I —I I

T;N; = T;Q;)(q2 vjq2).

(4.20)

(4.21)

Clearly, the neutral sector does not involve any
new angles that have not already been accounted
for in the charged sector. Thus the total number
of angles remains at four.

Having concluded that there are four angles that
are in principle observable, we now need to iden-
tify them from among the six angles which specify
a general four-dimensional rotation in 9. Let us
parametrize A and B by

A(n, P, y) = (Z)n(Y)P'Z)(y,

B(n, P, y ) =Z(n )Y(P )Z~(y ). (4.23)

Moreover, in terms of the three angles n —o.',
P, and P, we define three other angles n, P ',
and y" by setting

Y'(P')z(n —n') Y(P) = z(n")Y(P")z (y"), (4.24)

so that

This time the effective Cabibbo mixing is between
the (d, s) quarks, and the currents are mixed by a
different three-dimensional rotation.

In the neutral sector the situation is similar.
Consider first the interactions of the neutral cur-
rents M, :

S,.M, =S,M, =S,q,A c,Aq,
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cospcosp +sinpsinp cos(n - n ) =eosp

cos(n —n ) = cosn cosy + eos p sinn siny

cos(n —n )cospcosp +sinpsinp

=cosP" cosn" cosy" +sinn" siny" . (4.25)

In terms of these new angles B~A takes the form

II'~=~(y'+n")I (P")~'(y+y") . (4.26)

Comparison of (4.26) with (4.4) yields the relations

(4.27}

tween the rotated Higgs fields and the Cabibbo
angle.

As described in paper I the SU(4) x U(1) symmetry is
spontaneously broken down to a residual SU(2)
xU(l) symmetry by the introduction of two Higgs
multiplets, »j»» and g, , in adjoint representations.
Since they transform in the same way as do the
gauge bosons, they can be described in the stan-
dard basis analogously to (3.5),

(5.1)

(5.2)
j»=»y+y 0 =y +n

It then follows that

(4.28)
where

A2'(P) =2'(n)I'(P)2'(y"),

aZ(y') = Z(n') I'(P') Z(n"), (4.29)

Through (4.13) and (4.16) they determine Q»» and

0,». Note that because n, p, and y" only de-
pend on P, P, and n —n, the rotations Q, » and

0,» depend on n, P, n, and P and not on y or y';
the same is true for 8 on account of (4.27}. Hence,
the interactions of the charged bosons [(4.9), (4.14),
and (4.17)] and of the neutral bosons [(4.18)-(4.21)]
are completely specified by the four angles n, p,

and p . In every term y and y appear only in
the phases of q', and q,'„which are unobservable.
We leave the relationship between the three ober-
vables angles of Q,.&

and the angles e, P, n, and

P in the implicit form contained in (4.13}, (4.16},
(4.25), and (4.29), and note that the Cabibbo angle
satisfies

„4s

I
Alo

I
4v. ~ @» =

»C'»o (5.4)

All the Higgs fields above ape normalized. The
charged components cannot have nonzero vacuum
expectation values, so

(p'„& = (»C"„& = 0. (5.5}

Furthermore, because these Higgs scalars are in
the adjoint representation, the way in which they
transform can be obtained from (2.14),

cos28c = cospcosp' + sinpsinp' cos(n —n') . (4.30) [Q~~ Ps] + 5~s&2$R —zg»»s (5.6)

In summarizing this section we remark that by
a general transformation in 9 the gauge fields (Wj
are transformed into the physical boson fields (Wj.
A Cabibbo angle appears in the usual W, coupling,
(4.9), to the physical quarks. Three other angles
describe the couplings of the other bosons to the
same quark fields. Mixing of quarks in their mass.
matrix is completely circumvented. We have
identified the four rotation angles of 9, which will
be related to the Higgs fields in the next section.
Of the four associated mixing angles, one is the
Cabibbo angle 8~, while the other three will be
given phenomenological interpretation in Sec. VIII.

V. HIGGS FIELDS AND THE CABIBBO ANGLE

Thus far we have related a general transforma-
tion in 9 that diagonalizes the boson mass matrix
to observable angles. Since the mass matrix de-
pends entirely on the Higgs scalars, it is natural
to investigate next how the scalars transform under
9 with the aim of obtaining a direct connection be-

where»j»„s is related to C» and C', in the same way
as L, 8 is related to 9, and 9', , that is,

I
»to» =-C'»+C'»

»t»» = &;a(c'» +c-'»).
(5.7)

Equations similar to (5.6) and (5.7), of course,
also hold for the other adjoint Higgs multiplet P.
Now if »t» and P are to cause breaking down to a
residual SU(2) x U(1) symmetry which includes a
charge changing generator, then (5.6) implies

(4~& =o &4& =o (5.8)

On account of (3.14) and (3.15), they transform
under 9 as

It follows from (5.5) and (5.8} that the nonvanish-
ing elements of (»j»& and (P& span a subspaee in-
variant under 9. Accordingly, we introduce

»i»
= &c'»& n' = &c'»&

(5.9)



2714 DESHPANDE, HWA, AND MANNHEIM 19

q-R(A)q, q'-R(B)q',
C-R(A)~, ~'-R(B)~'. (5.10)

to replace (5.14). It follows from the invariance of
g. , under 9 that

Thus rl and r7 (and similarly f and f ) are three-
dimensional vectors which rotate separately under
A(A, B)&9 by the actions of R (A) and R(B), respec-
tively, specified in (3.12). It is this feature which
allows us to describe a general rotation in 9 by
specifying the rotated g, g, (, and f' relative to
some reference vectors.

In the canonical basis the mass term of the gauge
bosons hss the structure (spart from a coupling
constant}

% M P'y =(fa r& (4'r)) (frr P'g&4D)+(rtr- 0).
(5.11)

For our present purpose we restrict our attention
to the charged bosons and to the Higgs in (5.9).
Then in the standard basis the mass term is

C~ (sl,rq, f, f)Cs, a=0, . . . , 3 (5.12)

where M 8 is the mass matrix.
In paper Iwe have chosen the expectation values of rtr

and P to be

(rfr,) = v 2 (P») 0 0, all other (P,) =0,

(g,) =((9)WO, all other (Pr) =0, (5.13)

which in the standard basis corresponds to

0
where g =—qo 0

where g=—g, 0
-0

(5.14)

The notation q and P is to refer to the particular
set of expectation values indicated. With this
choice M 8 is diagonal, and 8', are the massless
charged bosons. However, we can choose the ex-
pectation values differently. Under a general SU(2)
xSU(2) rotation (5.6) transforms into

C'„~.s(q, f,j, j')C; =CPS„s(q, g)Cs, (5.18)

=O'„M„s(ri, l)Cs +C'„J'+ ~ ~ ~ . (5.19)

The mismatch mentioned earlier is now clearly
exhibited in the fact that the diagonal gauge bosons
couple to the rotated currents J' of (4.2). If we
substitute (5.17) into 'the first form of (5.19), the
Lagrangian becomes ane explicitly specified by the
angles of A and 8 instead of the Cabibbo and other
angles.

We now show how the Cabibbo angle can be extracted
directly from g and q'. To that end it is convenient
to consider a three-dimensional space in which

rl, r}',f, f are all vectors; that is, let the (6, 9),
(7, 10), and (S, T) components of the Higgs fields
be projections along the x, y, and z axes of this
space, respectively. Then from (5.17) we have

=R(B A)r7,

f =R(BtA)r„. (5.20)

We recall our conclusion at the end of the preceding
section that y and y' appear only in the unobserv-
able phases of the quark fields and do not enter
into the relationship between 8~ and the other ro-
tation angles. They are therefore freely adjust-
able. For our present purpose of finding a geo-
metrically transparent way of relating the vectors
in (5.20), it is advantageous to set

11 I fl
y =-y and y

so that one gets, according to (4.28),

(5.21)

where C' are exactly as defined in (3.10). Since
ri and fh'ave the form given in (5.14), we recognize
C'„ to be the new eigenstates of the mass matrix,
with C,' (=W, ) being massless.

The kernel of our approach in this paper is to be
seen in the mass and interaction terms of the
gauge bosons

g =C+M„s(q, ri, r, f )Cs+C'„J'+ ~ ~ ~

[Grr Ps] +5rrsW2+ —r prrs (5.15)
(5.22)

in an obvious notation. In order that Co be identi-
fied with the massless TV, of the new basis we re-
quire (rtr„.) =0, so we identify the rotated vectors
with ri and g this time, i.e. ,

together with the implication that the quark fields
no longer undergo any phase transformation in
(4.7) and (4.8), Then (4.26) attains the simple form

R(A)q =R(B)q' =q,

R(A)f =R(B)K =Z ~

(5.16)

B'A = I'(e")

Since (4.10) and (4.27) give, in general,

(5.23)

Thus we assign to q, q, f, f n'ew specific values
~f ~ ~( ~

g, g, f, g, x.e. ,

8c =P '/2,

we obtain from (5.20) the result

(5.24)

q =ri =R(A')ri,

&= j=R(A')g,

r7' =ri' =R(B')r7,

C' =i' =R(B')t (5.17)
q =R, (-2ec)q, f =R„( 2ec)l- (5.25)

with the obvious notation that 8, is the three-di-
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merisional rotation matrix around the y axis.
This result indicates that with an appropriate
choice of y and y' the vectors q, q', P, and f' can
collectively be oriented in such a way that a pure
rotation around the y axis by -20c takes g to q'

'and/ to f.
Particular simplicity occurs in the case n = o.',

for in that case (4.25) implies

28O=P" =P-P', o'" =y" =0, (5.26)

which in turn implies through (5.21) that y =y' =0.
It then follows from (5.17) that

q =q~„(P}a„q'=q~,(P')0„

i =~Z, (P)R.(~)~., 5 =~a,(P')R.(~).. (5.27)

Since q and i)' are now in the x-z plane, 28c is

therefore the angle between them. This is not
true for f and f if o. =n'o0. Their relationship
is shown in Fig. 1.

In the special case where e =o.' =0, then all
four vectors are in the x-z plane, and the angle
between g and g' is also 28c (see Fig. 2). Since
now A = Y(P) and B= Y(P ), we have II =R,(-P) and
O' =R,(-P'). With 8c =(P- P )/2, either P or P'
is the only other observable angle. In Sec. VIII we
shall examine the phenomenology of this special
case for the purpose of illustrating the physical
implications of our present approach.

Inpaper I, we parametrized the Higgs fields in a
different fashion from the one we have just used
here, and so for completeness we shall now derive
the relationship between the formalisms. Specific-
ally, in paper I we set

&e. ) =
=1

1
2 (O'R)+0o 0 0

0

0

1—
~2 &4~)+no

0
1-

~2 (AR& no-

0

0
(5.2S)

0
1

~2 &4s) no-
1 I

~2 (OR)+4 0

($ a)=U„
0

0

1
-~2 (4)-&o 0

(5.29)

1 I

where

1cos-, p,
0

0

cos-,'P, sin-,'p, e '"i 0

0

1.
COS2Po

sin-, p, e' I

0

1-COSpPg 0
1-COS2pl

(5.30)

cos-, P, sin-', P, e
' "o

0 sin-,'P, e' 2 -cos-, g1

0sin —,'P', e'o 0 -cos-,'P,
A

In general, the above structures for (p,o) and (g„) break SU(4) xU (1) down beyond SU(2) x U(l), and so we
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shall discuss this more general case first. We replace q and P by a nonorthogonal set of vectors of arbi-
trary lengths so that E{ls. (5.17) are replaced by

sink cos p. sink cosy (5.31)

g =g+Q~) sink sing, , r = r+(B~) sink sing

cosX

For a given A(a, p, y) we note that

~ cosa cosp cosy + sinn siny, -cosa cos p siny + sino. cosy, -cos{),sinp

fJ(A) = -sina cosp cosy +cosa siny, sinn cosp siny +cosa cosy, sinn sinp (5.32)

sin p cosy, -sinp siny, cosp

Consequently by direct comparison we find that

Pg =P &). = y-
e

cos p, cosP, + sinp, sinp, cos(n, —n, ) = cosX,

cosp, sinp cos(a, —{).,) —sinp, cosp =sinkcos(p, +{).),
sinp sin(o, —o.~) = —sinX sin(p, +n),

with analogous relations for the primed quantities.
Thus we can replace the eight degrees of freedom

I I I I. I I I
P&, p. , ~i, ~., p„pm, ~„~.by P, y ~, u+~, p, y, &,
p,
' +n'. (The parameters p, and o. , and also p,

' and
e', are not separately observable since there are
two consecutive rotations around the z axis in the
definitions of g and g'. %e shall therefore absorb
p, , p' in the definitions of n, n .) Now we have pre-

cos28c =cosp, cosp, +cosp, cosp,

+sinp, sinp, sinp2 sinp,

xsin(n, —a, )sin({).', —na)

(with the angles satisfying cost = cost' =0).

(5.34)

viously noted that the phases of the quarks are
unobservable. Thus we can eliminate o., and of',

and we are left with six degrees of freedom, P„
I I I I ~P„{)., —o„P„P„and n, - o), m general.

If we now return to the specific situation in
which the structure of the adjoint potential breaks
SU(4) xU(1) down only as far as SU(2) x U(l), we

then recover (5.17) because of the constraints
X=X' =m/2. So finally only four of the angles of

(P,,) and (g„) are observable, in agreement with

the earlier analysis of this section. Using Eqs.
(4.25), we can now extract out the physically rele-
vant angles, for instance

FIG. 1. Orientations of the vectors g, j', f, and g'

for the case e=o."&0, P &0, P'&0.

Y

FIG. 2. Orientations of the vectors q, rf, f, and &'

for the case n=o. '=0, P &0, P'&0.
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VI. CP NONINVARIANCE

In paper IIwe considered CP nonconservation as a
consequence of TV, and W, mixing and gave pheno-
menological bounds on the parameters of the
theory. It was found that there would be no CP-
violating effects if there were no Cabibbo angle.
The discussion was given in the framework where
the Cabibbo angle is introduced through mixing in
the quark mass matrix, as considered in paper I. We
now give a unified approach to Cabibbo mixing and
CP noninvariance through mixing of the gauge
bosons. As we shall presently see, the substance
of this unification has already been developed in
the preceding section. We need only identify here
the CP-nonconserving part of the transformations
in 8.

We have seen in See. III that under a general
rotation A(A, B) in 9 the interaction terms trans-
form as

Co Jo =W+q~B Aqi,

S,M, = S,q,A~o, wq, ,

7' «~ =7"~q2B ~iBq2 ~

(6.1)

(6.2)

(6 ' 3)

(6.4)

As explained in paper II, CP violation only occurs if it
is impossible to remove a complex phase from all the
terms (6.1) to (6.4) simultaneously. Thus if both
A and B are diagonal the theory is CP conserving,
as can be seen by defining

q| = Aqg = Z(Q)q|,
(6.5)

q,
' =Bq, =Z(n')q, .

It is also evident from (6.1) that in this case there
is no Cabibbo angle, either.

Consider next the case where g is not diagonal
and B still diagonal, e.g. ,

We conclude this section by remarking again that
we have presented a way to relate the observable
angles such as the Cabibbo angle to the orientations
of the Higgs multiplets. In Sec. VII we will show
how these orientations are themselves determined
by the full Higgs potential.

S,M, = S,.R.(a)„[q", Y'(P)o,Y(P)q,"),
T,X, = T,R,(a),,(qa'o, qm') .

Clearly, (6.8) involves the Cabibbo current with

8o = P/2. Defining the phases of q,
' and q,

" to be
such that W, do not lead to CP-nonconserving
transitions, our theory will only possess CP vio-
lation if there is a rotation around the z axis in
the eouplings to the other bosons, since this rota-
tion leads to transitions between currents of op-
posite CP properties. Thus the interaction in
(6.10) leads, for o. o0, to CP nonconservation in
the &-meson system, while (6.11) leads to CP
nonconservation in the D-meson system.

In the general case

(6.10)

(6.11)

A = Z(a) Y(P)Z(y"),

B= Z(~') Y(e')Z(~"), (6.12)

where (5.21) has been used, there is no redefini-
tion of the quark phases. It follows from (4.9),
(4.14), (4.18), and (4.19) that the interactions are

Co Jo =W, q, Y(28o)q, ,

C( Z('=C,'R;)(A)[q, Y(28o)7'~q, ],
S)Mg = S,R )(A)(qioqq, ),
T,V, = T,R„(A)[q,Y(28o).o~Y(-28o)q, ].

(6.13)

(6.14)

(6.15)

(6.16)

If e = a =0, 4 would become a pure rotation around
the y axis, and there would be no CP violation. Hence,
we conclude that though the nonvanishing of n or cv

does not in itself guarantee CP violation, their
vanishing guarantees CP invarianee.

One final case to note is that if A=B=Z(n)Y'(P)
so that P" =28o =0, there are still nontrivial ro-
tations on the currents which couple to S, and T„
causing CP violation. Thus a necessary condition
for CP nonconservation is not 8~ 0 but rather the
nonvanishing of either P or P .

From the above discussion it is clear that the
sufficient condition for CP noninvariance is the
simultaneous nonvanishing of both n and P or al-
ternatively of both n' and P'.

A=Z(n) Y(P), B=Z(n'). (6.6)
VII. HIGGS POTENTIAL AND MIXING ANGLES

II

q,
" =Z(o.' —n)q, .

We then obtain

C,'Z,' =W, [q,
"

(YP) q],

«'~t =CtR.(&)~glqa7'~Y(P)q'x)

(6.7)

(6.8)

(6.9)

Let us now redefine the phases of the quark fields
as

In the preceding sections we have described how
the nonconservation of the strangeness and of CP
can be obtained in weak interactions by mixing the
gauge bosons and can be specified by the orienta-
tions of the adjoint Higgs bosons. We explain in
this section how the orientations of the Higgs
bosons are determined by the potential.

In paper Iwe introduced the potential V,(p, g) of the
adjoints P and P that breaks SU(4) x U(1) down to
SU(2) x U(1), viz. (in the tensor notation p = p, X,),
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V,(y, y) =-p,'Tr(y') +X,[Tr(y')]'+X, Tr(y')
—p,'Tr(g) +X,[Tr (P)]' +X,Tr(g~)

+g,Tr(y'P) +g,Tr(y')Tr(y')

+g,[Tr(yy)]'+g, Tr(pygmy), (7 1)

and noted that the parameters in V, can be chosen
so that it is minimized by q /=0 and j ~ p =O.
The Cabibbo and other angles, being related to the
relative orientations of q and j (and g and g ),
are allowed but not specified by V,. In particular,
if rI, etc. are given as in (5.14), i.e. ,

(7 2)

then there is no Cabibbo angle and no CP violation.
In paper Iwe also introduced the potential V,(X) of

the four fundamentals X' (s = a, h, c,d) which breaks

SU(2) xU(1), viz. ,

v. (x) = g[-u.'x"x'+x.".(x"x')']

+Q [xll(x"x')(x"x') +xl!(x"x')(x"x')]
s, t

+ ~ Re[de t(g X'X'X')], (7 2)

+&xi&'&xf ) =6..x. . (7.4)

Here Xo is the normalization of the expectation
value of each X'. To limit the couplings of the
Higgs fields to the fermions, we introduce two
separate sets of discrete symmetries, viz. ,

and noted that the parameters in V, can be chosen
so that it is minimized by

and

b ei(x/4) b c e i ~/4) c g e-'"4g S -ei" S e -e ' "4 e -e'

a ei 7i /4. , a d e-i m/4 d e-i 7I/4 ei r/4

(7.5)

(7.6)

where

+~s c~RX &L Nc, d&RX

+g beRX lJ +gp JLLRX lL +H, C (7 7).
Va

qL=, l, =
S

(7 6)

These symmetries have in fact already been im-
posed on V, (X) to give (7.3~). In the presence of
these symmetries the interaction of the fundament-
als with the fermions is given by

ag bf~f y Cu, aNRX ~L +Cd, b~RX ~L

in this paper, namely mixing of the gauge bosons.
It can be shown that in the presence of (7.4) the

interaction g~~ does not lead to any flavor chang-
ing processes mediated by the Higgs scalars, i.e. ,
processes in which a Higgs scalar is emitted and
readsorbed. (The discussion of Appendix C in paper I
explains as an example why the Higgs scalars do
not contribute to the Jf'z-If's mass difference. ) The
Higgs scalars are flavor-conserving because no
matter what basis we use to satisfy (7.4), we have
to diagonalize the mass eigenstates of V, (X) ac-
cordingly, a diagonalization which is exactly du-
plicated in gz~. The most convenient basis to use
for (7.4) is

C V

Our motivation for introducing the discrete sym-
metries is to produce a completely flavor-con-
serving theory. While we have built our weak-
interaction theory by expressly identifying the
weak- and strong-interaction flavor groups, we
have only made the identification for the left-handed
fermions. Our discrete symmetries prevent SU(4)
xU(1)-conserving terms such as s~x'~@~ to appear
in g«while allowing terms such as VRX qL. Thus
we can now distinguish between different right-
handed quarks just as we could between the left-
handed ones, and the Lagrangian is completely
flavor-conserving. Since the elimination of these
terms also eliminates the conventional method for
introducing the Cabibbo angle, we are now in a
position to take advantage of the approach developed

&x'&=xo o &x ) =xo

of of

(7.9)

In this basis the quark and lepton mass matrices
are now diagonal in the (u, d, s, c) and (v„e, p, , v&)

bases, respectively. (In other orthogonal bases
there would be fermion mass mixing though no
flavor-changing processes, a point we will discuss
further below. )

In order to give a meaning to the relative orien-
tations of the adjoint and fundamental Higgs multi-
plets (so that the orientations of the gauge-boson
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eigenstates relative to the fermion eigenstates are determined), we introduce extra p, |ll, X cross
terms into the potential. The most general renormalizable SU(4) x U(1)-invariant term which
possesses the discrete symmetries introduced above is

I'b(4, t, x) = 9~"0'x'+q.x"Px'+~.x"x'»(0'}+fa'x'»(0')+f x"Ax'+a.x"6'
S —0, bCbd

+I.x" 'b[-4-, 4]x'+ I.x'M4, O'IX'+~.x'x'»(446, (7, 10)

so that the full potential is

I'. =I'(4 0)+I'.(x}+I'(4 0 x). (7.11)

Note that V~ is not reflection invariant. under
separate P- -P, g- -P. While U, is the most
general potential that we could write, it is not
yet CP conserving. Under CP

introduce a basis which is not a minimum of V, +V2.
For y' we, set

P
1 0

&X')=Xo 0 (X'&=Xt

~0-- 0

n(e-)e.*, &. -n(C}C.*, (7.12) sine, e'&

We choose the CP phases of p„nad/„so that

l7(p} =-q(p) = 1. With this choice we set g, = I,
=m, =0, so that the resulting V, is CP conserving.
Consequently at this stage the complete theory '

(i.e. , gauge-boson, fermion, and Higgs-boson
sectors) is both flavor-conserving and CP con-
serving. Thus all violations of these symmetries
can only be introduced through spontaneous break-
down of the potential V~, . We shall show below
the in the presence of the V, term it is impossible
to maintain both Eqs. (7.2) and (7.9) and that there
is both Cabibbo mixing and CP violation in the S
matrix.

In order to proceed and minimize V„, we must

&x'& =x'&"
sin8, e'~&

cos |9g

0

&x'& =xo e'"

cos8,

(7.13)

while for g and P we use the bases given in (5.28}
and (5.29), respectively. Any other basis can be
reached by applying the rotations A(o. , P, y} and

B(a, P', y ) to P, P, and X. In this basis V, is a
function of ll„ lip, (fR&, cosx, go, f„(pz ,&and
cos~', while V, is a function of X0 X0 g0 g0 8y,
8„and P, +P,. Both of these functions were given
explicitly in paper I. For V, we find

I'.(&e&, (0&, (X)}=f.X.
' (-'&V.&"n'."~&&e.&n'. -sf'', } ~,X."He.&"n.' ~&(e,& n. -sII,}

+P,xp [p(Ps) +l}o +v 2 (Ps&lip cosPlcos28, —v 2(gz&lip sinP, sin28, cos(o., +P,)]
+p,xp [-,'(p~&'+ }'*l-p&2(p„&qp cos p', cos28, +&2(p„&l}psin p', sin26, eos(n', + g,}]
+q,Xp (pg'll& +gp +~2&(lb&gpcospb}+qbxt (b()R& +rp -&2((R&gocosp, }

+q xp [2(pb& +ro +v 2((R&roeospb cos28, —W2(p„&&osinp, sin28, cos(n, +p,}]
+ qox~o [—,'(gz&'+ gpb —v 2 (gz&gp eos p'b eos28, + &2(ps&gp sin g sin263 cos(o.', + pp}]

+2(lip +'9p +(%lb) }(b'exp +b'bxp~ +b' Xp~ +box@ ) +2(gp +gp +(4& )(foxpro + Ibxo +t Xp +tax@ )

+fbxo ~2 ('4&+'qpcosPl ( +fbxp ~2 (4's&+lip cosP j ~) 2
~+'

+f,Xp
——(pR& —l7p cosp, eos28, +lip sin p, sin26, cos(o., + p,}c 0 q2 R

I

+ fop —(QR& —lip cosP', cos28, +lip sinP', sin28, eos(o', + P,}0

+koxp 'gp Lp slnP l sinP', sin(n', —ap} + Qbxp llano sin&l sin&b sin(&l aa}

—k,xo qgo[sinP, sinP, sin(o. , —o.,}cos28, +sinP, cosp, sin(o, , + P,}sin28,

—sinp, eosP, sin(o. , + p, ) sin28, ]
—k ~xo q, Po[sinP', sinP p sin(n', —e,) cos28, + sinP', cosP, sin(o. ', + p, }sin28,

—sinp p eosP', sin(o, ', + p, ) sin28p] . (7.14)
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Before minimizing V„, we recall that our whole program is that SU(2}xU(1) should be a much better
symmetry than SU(4) xU (1). Consequently we have chosen the mass scales of V, to be much greater than
those of V, so that

(7.15)

In order that V, will not spoil this mass pattern, we must choose its parameters so that

,x. &
all P„q„r„t, - 0 — '--

~
s~ s~ s~ s (7.16)

and
6

all k„f,/ro ~O
no'&0'

(7.17)

with the stronger condition of (7.17) being chosen in order to ultimately produce observable angles of O(1).
Thus'„g'„f„g'„X0, y0', y, and y0" retain their previous values to this level of approximation. If we now

vary V„, we find a stationary point in which

8 = 8 = 0, p +
t'ai

=0,

cosX, cosX -0 4' 4
00 0

(4,) - o(",), g,,) - o(- ":,', ) (7.18)

(thus making p, and p2 unobservable) while the remaining angles are O(1}. The relationships for them are
somewhat. untractable, but can be solved in the simplifying case where f, =0 (a case which corresponds to
imposing invariance under the joint reflection Q- &f&, P---tjp). Then we obtain

(Pl Q2 —Ql P2 )Cos pl/Pl Q2 Ql x 2 x P 2 2 2P 2 2P 2 2( 10~0} (Ql K2 Q2 Kl2 2 2 2 2 2 ' 2 2 (X2Q2 X4P2 ) + (X2Q2 4P2 ) 4 2 2 2 2 2

2 1 4 1 1 2 2 1

Pl(X4P2 -XOQ2 ) cospl-P2(XOQ1 -X4P1 ) cos pl,

2p, „2 4x 1104K1Cos pl
Pl(co s P 1P1 + co s P 1P2) (7.19)

cosp, =
POQlcospl

cos(o., —O.2) ='- cotp, cotp2 1

cos(o.,—a2'} = —cotp', cotp, ,

where

b 2 2
Pl ~Vbxo PX0)

d2 2
P2 = V 2(Puxo POX0 ) ~

2 2
Q1=~2(lbxo Qoxo ) ~

Q. =~2(~.xl —e.x }
2

&Z =
&bXO —&cXO

g
&2 =&.XO

—&~X0-

(7.20)

Because of the complexity of these relations, we
have not investigated the stability conditions on

P„q„and k, which would ensure that the station-
ary point is a minimum. Nonetheless our calcula-
tion does illustrate how an angle such as the Cab-
ibbo angle could emerge as a stability condition on

a potential.
Equations (7.19) constitute the result that we

have sought, relating the angles to the parameters
of the potential. The Cabibbo and other observable
angles are thereby also determined in turn, as dis-
cussed already in previous sections. We do not
exhibit the relations here specifically, leaving
them in an implicit form for the reader.

Of particular interest is the relation 0, =02 =0
given in (7.18). This condition restores the ortho-
gonality of (X') and recovers (7.9). It is of interest,
now that we have the solution, to make what is
now an unobservable rotation of our basis of fun-
damentals and adjoints through arbitrary P and B.
Since we never referred the (X') to any particular
quark basis, we shall not rotate the quarks. In
terms of a fixed set of quark states we will find
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that there is now Cabibbo mixing in the quark
mass matrix, though, as we have already noted,
no flavor-changing processes mediated by the
Higgs scalars. ' However, there will now be an
attendant change in the amount of gauge-boson
mixing to the same set of quark states so that the
S matrix is left invariant. Thus there is no phy-
sical effect which is not already contained in the
relations of (7.9) and a completely diagonal quark
mass matrix.

We note that (7.19) fixes all of. the angles of ((I(&

and (P& that we have shown in Sec. V to be inde-
pendently observable. Had we chosen the CP
phases of p and g to be equal (so that a CP con-
serving theory would have f„g„l„m, WO, I(, =0
in V,), we would not have been able to obtain non-
trivial values for e, -n, and cv', —a,'. Thus the
structure of the potential is such that our theory
only possesses an observable CP violation if the
intrinsic CP phases of the two adjoints are op-
posite. With'(t( and g having opposite CP phases,
we should replace (5.14) by

1 0 0 0
0 1 0 0

(~&="0 o o -1 o000-1
(7.21}

0 0 0 -i
0 0 -i 0

(4& =&(( 0
. 0 0

i 0 0 0

This new basis leaves the vacuum CP invariant.
If me now couple the adjoints to the fundamentals,
both (((((& and (g& have to rotate. Thus (g& has to
rotate into a configuration where CP is violated
in the vacuum, while (((((& has to rotate into a con-
figuration where there is a Cabibbo angle. Thus
once the parameters P„q„and k, are nonzero
(which must be the case since in a renormalizable
theory any term which is not forbidden by the
symmetry eventually appears as a counterterm),
the presence of V, (Q, P, y) in the Higgs potential
requires the existence of a Cabibbo angle and of
CP nonconservation if the SU(4) XU(1) symmetry
is to be completely broken down to only a residual
U(1) symmetry associated with the photon. Hence,
in our theory the nonconservations of strangeness,
CP, and muon number are inevitable.

which we will take to be 8c. The Higgs adjoints
that minimize the potential are chosen to be

I =R(A )(I (I =R(Bt)q

~=R(A' )t, f =R(B'K,

where

(8.1)

cos8c 0 sin8c '

R(At) =R(B) = 0 1 0 (8 2)

-sin8c. 0 cos8c

From the definition of R(( in (3.13}we find that

cos8c/2 -sin8c/2-
A =g=e 'ec~a~2=

tsin8c/2 cos8c/2

In terms of the tensor notation (8.1) gives

cos8c 0 0 -sin8c

(8.3)

(0& =no

(0& =4

cos8 sin8

sin8c -cos8c

-sinO 0

;sj.n8 0

sul8c cos8c

cos8 sin8

—cos8c

cos8c

0

(8.4)

(8 5)

C„=A„(((A, B)C((,

S; =R;((A)S(,

T( =R;((B)T(.

From (8.3) we find that

A 8
=

pTr (B v „Av (()

' cos8 0 sin8 0

0 1 0 0

-sin8c 0 cos8c 0

(8.6)

(8.7)

(8.8)

(8 9)

0 0 0 1

Thus the eigenstates of the gauge-boson mass
matrix are

cos8c 0 -sin8c

To discover which gauge bosons diagonalize the
mass matrix we recall (3.10), (3.14), and (3.15),

VIII. PHENOMENOLOGICAL APPLICATIONS

In this section we present a few simple examples
of the general theory that we have developed to
illustrate our approach, and to study some phe-
nomenological implications. Though we have the
freedom to choose four independent mixing angles,
we restrict ourselves at first to one mixing angle, '

8', =W, cos8c+ V, sin8c,

V, =-%', sin8c + V, cos8c,

W, =W, cos8c —Ssin8c,

S =8', sin8c +S cps 8c

8" =W, cos8 +gsin8

T = —8', sin8c +T cos8c,

(8.10}
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g;„t ~ C~A~g J 8 +C ~A~8 J g +RK

+S,R„(A)M) +. T,R„(B)NJ . (8.12)

together with X, , U, , W„ W„, R, and W,. In
particular, W, , R, and W, are the massless gauge
bosons of the so far unbroken SU(2) xU(1) sub-
group, so W, are to be identified with the usual in-
termediate vector bosons. Using the relations
given in Appendix 8 of paper I we find from (8.4}and

(8.5) that the gauge-boson mass term is given as

g „,= —',g go~(2U, U +W,~+W~~+2V, V +W, '+W»')

+2g $02(2X,X +9+T +2V V +W7 +Wio ),
(8.11)

which reconfirms that the fields of (8.10) are the
eigens tates.

Having found the gauge-boson eigenstates we can
readily write the interaction I.agrangian in terms
of these sta.tes using (3.20)

Here the currents are the ones previously given
and are expressed in terms of the quartet (u, d, s, c)~
of fields that are eigenstates of the quark mass
matrix. The couplings of the gauge bosons to the
leptons are given analogously. We take as the
fundamental lepton quartet

(cos8cv, +sin8cv„, e, g, -sin8cv, +cos8cv„)~

(8.13)

and have introduced the Cabibbo angle in the neu-
trino sector (which we are free to do since the
neutrinos are massless) only to maintain the con-
ventional definitions of v, and v„ in the couplings
to W, . /here is no mixing of e and p. in the lepton
mass matrix. After the Weinberg mixing of R and

W, into Z and A which occurs once the SU(2) xU(1)
symmetry is broken, we obtain for the interaction
I agrangian

2 g, =- v 2 sin8~(A+tan8~Z) J™+(v2 cos8~) 'Z(v, v, +v„v„-ee —pp+uu+cc -dd —ss)

+ W, [v,e + v„p. +u(d cos8c + s sin8c) + c(-d sin8c + s cos8c)]

+ V, [v,p, —v„e +u(-d sin8c + s cos8c) —c(d cos8c + s sin8c)]

+X,[cos8c(v,e —v„p) +sin8c(v„e+v, g) +ud —cs]
+ U, [cos8c(v,p + v„e) —sin8c(v. e —v„g) +us + cd]

+ W, [cos8c(ep, + pe +ds + sd) —sin8c(ee —gp, +dd —ss)]

+ S[cos8c(ee —PV +dd —ss) +sin8c(ep +Pe +ds + sd)] +iW, (ye —ep+ sd —ds)

+W~(cos8c[cos28c(v, v„+v„v,) +sin28c(v„v& —v, v, ) +uc+cu]

+ sin8c[cos28c(P, v, —v„v„) +sin28c(v, v„+v„v,) +uu —cc]}
+ Tlcos8c[cos28c(v, v, —v„v„) + sin28c(P, v„+v„v,) +uu —cc]

-sin8c[cos28c(v, v„+v„v,) +sin28c(v„v„- v, v, ) +uc + cu] )
+iW»(P„v, —v, v„+cu-uc) +H.c. of the charged sector. (8.14)

In our notation ab denotes aye —,'(I -y, )b in the
above.

In (8.14}we have yet to include the small mix-
ings between the light and heavy gauge bosons
which ensue once the SU(2) xU(1) symmetry is
broken. However, before doing this we discuss
the phenomenology which follows from (8.14}.
First of all, of course, it contains Cabibbo mixing
in the couplings to W', . Second, it is similar in
structure to the interaction Lagrangian given in paper
I, Eq. (3.7), except that now there is one common
mixing angle in both the lepton and quark sectors.
Thus we have related 0~ to the lepton angle 8~ in-
troduced in paper land hence reduced the number of
free parameters compared to paper I. The couplings

M7) 450M~. (8.15)

The analysis of the K~ —K~ mass difference in-
volves more bosons than inpaper I but is otherwise
analogous and leads to

cos ~c sl,n 'gc 1 3 x10-8
M (W8) M (S) M~ M~

(8.16)

of 8"„Z,A, W„and Wyp in Z„,have a formequiva-
lent to that inpaper I, Eq. (3.7), whereas there are
modifications in the couplings of the remaining
gauge bosons.

Since W, alone is responsible for the g~- pe
decay in lowest order we obtain the same con-
straint previously found in paper I:
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2 2 2
228 Mw Mw' M'(8) M'(W, )

(8.17)

The bosons W, and 8 mediate p, —3e and p. +N-e+N
in the tree approximation and give

I'(y, - 3e)
I'(j,- all)

M(S) & 225M~. (8.20)

so that p" =10' for N =copper. The current ex-
perimental upper limit on g,„is 1.6 x10 in cop-
per. ' From this limit, from the bounds of (8.15)
and (8.16), and from the theoretical relation M,'
=M'(W, ) +M'(8) which follows from (8.11) we find
that

and

o(g+N - e +N)
v(p, +N-]j+N )

Though it is not forced, the structure of (8.16)
permits M(R) to be somewhat less than M(W, ).
For convenience in the following we shall make
the very mild assumption that

' M(S) M'{W,)
(8.18) M*(S)

M'(W, )
(8.21)

e~ 2C
~3e

(8.19)

where C is the enhancement factor introduced in

paper I. From these two relations we obtain the com-
pletely par ameter -independent ratio

All the above discussed processes are permitted
before the SU(2) x U(1) symmetry is broken. In
order to break SU(2) &&U(1) we introduce the four
fundamentals of Higgs bosons, y'. Following
Appendix B of paper I we find the ma, ss term

p ~.... = 2t &X',&'+&X'&'+ &X3&'+ &X'&'1 (2W, W-+21', I"-+»,&-+2U, U-+»ec'8~)

+((x])*+(xl)'—(x )' —(x') )I(cone, )i' —sine, z,).x +ee c.

+ zssce [(x- Z)noses+(ic, s ie, ) sine, ]I

+((x,') —(x') +(X,') —(x')')I(sine )X, +cosecV, )z +H.c.

+ zssce [( + )recess(eee -is, ) sine ]I.2
(8.22)

&xx&' —&x2&'+ &xa&' —&x4&' = o (8.23)

In order to extract some information from (8.22)
we make a simplifying but inessential assumption,

I

where ~=q/p. The mixing in the neutral sector is
rather complicated, but because of (8.21}we find
that Z mixes predominantly with the field B
=(T- S)l 2xto give a, mass matrix

which will enable us to study the g- ey phenomenon
directly. %e define

(8.24)

P sec28~

2q cos8c sec8~

2q cos8c sec8~
(8.27)

(8.26)

sin) =, cos8c =2xcos8c (8.26}

As inpaper Iwe then find that 8",and X, mix through
an angle ( determined by the mass matrix

P 2q cos 8&n-

M-wx -aq cos8c Mx'

The mixing angle is given by

using the degeneracy of X, and R given in (8.11).
The Z, B mixing angle $ satisfies

sin
sin) =

cos8Nc
(8.28)

In terms of the new eigenstates W, and Z the piece
of the interaction Lagrangian which interests us
here is given by
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W2 g. , =- &2 sin8~(A +tan 8~ cosE Z)Z'
g

+ Z(cost'(&2cos8~) '(v, v, +v„v„-ee —p,p, +uu+cc-dd —ss)

- sin) (v 2) [cos8c(ee —pp+dd - ss) +sin8c(ep+ pe +de +sd)])

+ W, (cos)[v,e + v„p+u(d cos8c +s sin8c) + c(- d sin8c + s cos8c)]

+ sin)'[cos8c(v, e —v„p) + sin8c(v„e + v, p) +ud —cs]] + ~ ~ ~, (8.29)

where

W, = W, cos& +X,sin&,

Z=Zcost' + (7' —S) sin)'.
2

(8.30)

The phenomenology that follows from (8.29) is
similar to the analysis of paper I, so we only give the
results here. For the JU. —ey decay one-loop 8",
exchange and Z exchange give

8H) 105R
R,y

(8.36)

might yield interesting r esults. Should R,~ actual-
ly be seen in the near future we would then also
anticipate the possible observation of K~ —pe.

Making futher use of the condition ~x~& —,
' and of

the approximate (8.21) we obtain the following in-
teresting relations (N =copper):

I'(~- er)
I (p,- all)

p = ~)102R
R~y

(8.37)

sin'8c[5 sin2$ —cos8~(5Cv —1) sin2(']'
96~

4
sin'28cx' ~ (6 —5Cv)',24' X

(8.31)

and

+ —,'(1 —2 sin'8~) cos8~ sin2$' sin8c,

B=-—,
' sin8c sin2$' sin~8~cos8~,

(8.33)

(8.34)

where C~ = 1 —4 sin20~. The tree approximation
exchange of Z gives additional contributions to
(8.17) and (8.18) so that finally we obtain

(8.32)

where

2 2' M2(S) M'(W, )

These relations make observation of g- ey impos-
sible at present though ultimately these relations
would be very strong signatures of our model.

While it is characteristic of the approach both
here and inpaper I thatR, „&10-",making the process
somewhat academic, the relation in (8.31) is
particularly interesting since it provides an in-
timate connection between muon-number noncon-
servation in the lepton sector and strangeness
nonconservstion in the quark sector [as do (8.17)
and (8.18) of course]. It is of interest to impose
sQme extra constraints on the couplings of the
quarks and leptons to the fundamentals y' which
give them their masses. If we require all the
four quarks to couple with a universal strength
to the fundamentals and all leptons to couple with
a universal strength to the same fundamentals,
we obtain the following mass formula for the con-
tribution of the weak interaction to the fermion
masses

M'(S) (C„Z-X) M'(S) cos8,
M'(W6) 4(Z+2N) MN,

' cos8c

flan g

m m

Also from (8.31) we obtain

(8.38)

(8.35)

Since ~g& —,
' we find that the Z contributions to

(8.32) and (8.35) are not as large as those due to
S and W, so that we recover (8.17) and (8.18) with
the constraints on p" and M(S) thus being un-
changed. Consequently, we conclude that even
though R,~ is constrained in our model by the
strangeness-changing processes, it could still
be close to its current upper limit. Thus some
improvement in the experimental limit on R,~

'y 96m c v M g (I +m„'/m, ')'

(8.39)

In (8.39) the parameter M„ is essentially the only
unknown quantity. Moreover, we see that in our
approach the p, —ey decay amplitude is related to
the p.-e mass difference and the Cabibbo angle, an
intr iguing situation.

%e turn our attention now to illustrate very
briefly the phenomenological significance of the
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other three observable angles that we introduced
in previous sections. In the absence of CP vio-
lation it is possible to introduce one further mixing
angle. This would mix X„S,T with U„W„W, so
that

X, = cos8~X, + sinOxU, ,

U, = -sin8~X, + cosH~U,
(8.40)

with analogous relations for the neutrals. These
mixings are achieved if we replace (8.2) by

cos(8c —8X) 0 sin(8c —8X)

R(Bi) =

-sin(8c —8X) 0 cos(8c —8„)

(8.41)
cos(8c+8x) 0 -sin(8c+8„)

0 1 0

sin(8c +8r) 0 cos(8c +8X)

Further, (8.41) leaves untouched the fields W, ,
V„W„W,O, R, and Wo of (8.10). In terms of the
angles P and P' introduced previously we have

P P= 28c-

P P=-28-. (8.42)

(8.44)

we see that

A(x, -us)
x(x, -ud)

= tan8 (8.45)

Thus 0~ is an effective Cabibbo angle for the
heavy-boson sector. In the presence of this new

From (3.14) we find that couplings of X, and U, to
the quarks are given by the term

g -X,[cos8X(ud —cs) + s in8„(us + cd)] .

+ Ugcos8x(us+ cd) —sin8x(ud —cs)]+H.c.

(8.43)

Thus in the same way as

mixing we can recalculate R,z. The result of the
calculation, is analogous to (8.31) except that the
factor sin'28c is replaced by sin'2(8o-8„), so
that the p.- ey decay is sensitive to the new orien-
tation of the vacuum.

Finally, introducing CP violation leads to yet
further mixings among the bosons (such as the
mixings of U„W„and W, with V„W„and WM

which were already described in paper II), toget-
her with a reidentification of the generators of the
steinberg-Salam theory. The two additional angles
which are responsible for CP violation can be
given a phenomenological interpretation similar
to (8.45).

IX. CONCLUSIONS

By mixing the gauge bosons in their mass ma-
trix, we have developed a theory in which the non-
conservations of strangeness, CP, and muon num-
ber are unified; in fact, they are inevitable. Their
origins are all rooted in the spontaneous break-
down of the SU(4) x U(1) gauge symmetry. The
phenomenological parameters describing the non-
conservation processes can all be related to the
parameters of the Higgs potential. All of the mix-
ing angles are natural in the sense that they need
not be miniscule. In our theory the parameters of
smallness are determined by the mass scales of
the superheavy bosons, and are characteristic of
the low rates associated with such processes as
CP violation and muon-number nonconservation.

Because the theory is a badly broken higher
symmetry, its experimentally testable predictions
all pertain to rare processes that are difficult to
observe. The capture of muons on heavy nuclei
should be most susceptible for detection. Obser-
vation of the p.-3e decay before p.—ey would be a
highly favorable signal for the physical relevance
of our theory.
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