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This is the first in a series of three papers in which we study a unified gauge theory based on the group
SU(4) )& U(1). In this paper we present the general group-theoretical structure of SU(4) )& U(1) and study in
particular the muon-number-nonconserving processes which occur in the model. In the subsequent papers we
shall study CP violation and present a new approach to understanding the Cabibbo angle. The central theme
of our work is that all of the phenomena discussed in this series can be understood through the spontaneous-
breakdown mechanism. In this paper we construct an explicit Higgs potential which breaks SU(4) )& U(1}
down to the usual SU(2) X U(1) theory of steinberg and Salam. Of particular interest in this paper are rare
muon-number-nonconserving processes, such as p, ~ey, which are forced to take place in our model once the
symmetry has been broken. Our model possesses 12 new heavy intermediate vector bosons, and the available
experimental constraints on their masses are presented.

I. INTRODUCTION

This is the first in a series of three papers' in
which we explore SU(4) x U(l) as a unified gauge
theory. The idea of building a unified theory of
weak and electromagnetic interactions baaed on
spontaneously broken gauge invariance was sug-
gested by steinberg and Salam' some ten years
ago. Since that time many of the general ideas in-
volved have been given experimental support, ' so
that there is now a fair measure of confidence in
unified theories, and in particular in their simplest
form based on the group SU(2) x U(l). Because of
the successes of the standard model, there has
been little. need to consider more complicated or
larger groups, though the idea of other gauge
groups has been entertained from time to time.
It is nonetheless useful to explore other groups
that are able to produce a cohesive picture of
weak interactions, particularly if they can provide
insight into phenomena which SU(2) x U(l) is not
too well suited to discuss.

In this series of papers we will study the group
SU(4) x U(l) as a candidate gauge theory. There
are three reasons for suggesting this group. First
there is the well-known analogy between the famil-
iar four leptons and four quarks. By using the
group SU(4) there is then an intimate connection
between the strong and weak interactions with the
flavor currents of SU(4) now playing a dual role;
they are generators of both the strong-interaction
SU(4) ~ x SU(4)z global chiral symmetry and of the
weak-interaction SU(4) ~ x U(1) local gauge sym-
metry. The second reason is that the muon and
the electron are placed together in the same multi-
plet along with their neutrinos, thus unifying the
lepton species and abandoning the artificial divi-
sion made in conventional. theories of separate
muon and'electron sectors. In our model this divi-

sion arises dynamically and hence sharpens Our
understanding of weak-interaction symmetries.
The final reason is that SU(4) xU(1) contains the
usual SU(2) x U(l) as. a subroup so that none of the
conventional phenomenol. ogy is lost, but rather is
seen to be only a first approximation to a higher
symmetry.

Since SU(4) x U(l) is not even remotely a good
symmetry for the usual weak interactions we shall
work in a spontaneously broken scheme. Vfe break
SU(4) x U(1) down to the conventional SU(2) x U(l)
picture so that the 12 new vector bosons which
accompany the familiar W„Z, and A. acquire
superheavy masses. In this respect SU(2) x U(1)
is only an approximate residual symmetry which
is then itself spontaneously broken. The actual
implementation of the complete breaking program
is highly nontrivial and constitutes the bulk of our
work. Moreover, we shall see that the pattern of
breaking which emerges is surprisingly rich and
permits discuss ion of three longstanding theoreti-
cal issues, muon-number nonconservation, CP
violation, and the origin of the Cabibbo angle.
Each one of these phenomena can arise through
the explicit effects of spontaneous breakdown
in the gauge-boson mass matrix since there are
adjoint representations of Higgs bosons in our
theory which carry off muon number, an odd unit
of CP, and strangeness into the vacuum. It is
particularly interesting t;hat it is not essential to
have any mixing in either the lepton or the quark
mass matrices in order to understand muon-num-
ber nonconservation and the Cabibbo angle, and
even more interesting that CP violation shares a
common origin with these two other phenomena.

fn order to bring out the specific physical effects
involved in as transparent a way as possible we
shall present each of the above three topics in 8,

separate paper, discussing the breaking pattern
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appropriate to each one by itself rather than dis-
cussing one overall breaking pattern. As will. be
seen, this will involve no loss of generality. In
this first paper we shall discuss muon-number
nonconservation and also analyze some general
properties of the group structure of SU(4). Some
aspects of our work on muon-number nonconser-
vation have already been presented in a Letter, '
and in this paper we give the detailed analysis.

The. present paper is organized as follows. In
Sec. D we introduce the various sectors of our
model, the gauge bosons, the Higgs bosons, the
leptons, and the quarks, and discuss their inter-
actions. In Sec. III we study the requirements on
the pattern of symmetry breaking imposed by the
group-theoretical structure of SU(4) x U(1), ex-
plaining what is needed in order to break the group
down to the usual Weinberg-Salarn theory. In Sec.
IV we then study the structure of the Higgs poten-
tial and obtain a set of dynamical conditions on the
various parameters in the potential which produce
the pattern of breaking we require; At this point
the model and the breaking pattern are completely
specified, so we can examine the phenomeno1. ogical
implications of the theory. We discuss the general
implications in Sec. V, and in Sec. VI we study

'

some very interesting processes such as p- ~
which are forced to take place in our model. . We
present our conclusions in Sec. VG.

II. STRUCTURE OF THE UNBROKEN MODEL

In SU(4) xU(1) there are 15 gauge fields W,
transforming like SU(4) generators and a singlet
gauge field Po. Left-handed leptons and quarks
are in fundamental representations of SU(4). We
denote these multiplets by generic (v„e, p, v„)~
and (u, d, s, c)~. Later on we will discuss whether
or not these states mix in their mass matr ices.
For the moment they are just labels to describe
the group theory. Right-handed quarks and right-
handed massive leptons form SU(4} singlets. The
charge operator is given in terms of the SU(4}
xU(1) generators [E„(i=1,. . . , 15),E,] by

Q= F,+ —F, -(3)'i'E„+Eo.
3

(2.1)

With F denoting the eigenvalue of F, we have for
the left-handed leptons F= —&, for the left-handed
quarks F= -', , and for aI.l right-handed fermions
I'= Q.

The most convenient basis for the generators
E, (i=1., . . . , 15) is

E;=E,+E„ai(E,-E„),
E' = E, - E„xi( E,+ E, ),
E'„=E4+ F„+i(F,—F„),
F'„= E4 —E„+a(E,+ E„), (2.2)

I;=-,'[(W, —W„)+i(W, + W„)], (2.3)

S=—(-W, + v 3W,),

T= W, +—W,-+ 2(3)'i'W„3 3
8

with 5'„8'„S;,and 8;, as before. The inter-
actions of these gauge bosons with the fermions
are given by [using g/v 2 and g' as the SU(4) and
U(1) coupling constants]

Fs= p( F,+ ~3-F,),
1

Fr=a E,+ E,+2—(3.)' 'E„
3

with F„F„F„andF» as before. It is useful to
to have the commutation relations for these gen-
erators and we have assembled them together in

Appendix A. In the same way as for the genera-
tors, we define a similar basis for normalized
gauge-boson fields:

W, =-,'[(W, + W„)+i(W, —W„)],
X„=-,'[(W, —W„)+i(W,+ W„)],
U, =-.'[(W, + W„)+i(W, —W„)],

—2„,= Q W%'X ) y „k~+W2 —Wt(4'I'y~@'~+ O'Qy„+s)

I I
= &2 —W J' +—8 ——W (v v + v v —ee —P p, + uu+ cc - dd —ss)

g 0 ~2 g 0 8 0 ll Ik

+ W,(v,e+ v„p + ud+ cs) + X (v,e —v„p, + ud —cs) + U (v, p + v„e+ us+ cd) + V( v, p —v„e+ us —cd)

+ We(ep+ pe+ ds+ sd)+ iW7(pe —ep+ sd —ds)+ W (v,v„+ v„v, +uc+ cu)+ i W„(v„v, —v,v„+ cu -uc)
+ S(ee —p, p + dd —ss)+ T(v,v, —v„v„+uu —cc)

+ H.c. of the charged sector. ('2.4)



2688 DESHPANDE, HWA, AND MAN NHEIM 19

In our notation ab denotes ay~-,'(1-y, )b in the above.
Again, the gauge-boson fields are just labels, and
their relation to the physical gauge bosons awaits
the diagonalization of the gauge-boson mass ma-
trix. The utility of the above basis, is, for in-
stance, seen from the fact that it is W, which is
coupled universally to v,e and v„'p, rather than the
separate W1+iW, and W1 ' lW1, .

As we shall see in Sec. III, our model also needs
two scalar adjoint representations of Higgs fields,
p,. and g,. (i = 1, . . ., 15), and four fundamentals,
y',. (s=a, b, c, d labeling the multiplet, and f =1, . . .,
4 the components of each multiplet). These Higgs
fields provide the spontaneous breakdown in Sec.
III, and we present here onl.y some general prop-
erties. Each Higgs adjoint possesses seven neu-
tral components. From the usual minimal coupling
of the SU(4) gauge bosons to the neutral adjoint
Higgs fields the mass term of the gauge bosons is
given by

s g' W~M~W~=s g f~„W~P~f~q W)P„. (2.5)

We have calculated the matrix M,.&
and display it in

Appendix B. We note here only that the gauge
boson A is not involved in this piece of the mass
matrix. This follows since the adjoint Higgs bo-
sons have F = 0, so that for them F~ is the charge
operator which commutes with all the neutral ad-
joint Higgs bosons. Consequently, breaking the
symmetry in the adjoint representation will always
leave 8 massless. The couplings of the gauge bo-
sons to the fundamental Higgs fields are obtained
analogously and their contribution to the gauge-
boson mass matrix is also presented in Appendix
B. The couplings of the fundamental Higgs fields
to the fermions are given in Appendix C. Because
of the left-handed nature of the fermions, the ad-
joint Higgs bosons do not contribute to the fermion
mass matrix.

conventional manner), we are able to choose linear
combinations of the four charged generators such
that the combinations also close on a'n SU(2) with
E~. There is thus a freedom in how to identify the
usual W bosons from among the charged bosons of
Eq. (2.3). In fact we shall exploit this freedom in
our other papers as this is precisely what is
needed in order to introduce CP violation and the
Cabi. bbo angle. However, in this paper we shall
only discuss the simplest case in which the SU(2)
subgroup is the usual Weinberg-Salam one gen-
erated by the set

1 2 1/2F1+ 13) 2 141 3 8 3 15v'3

(3.1)

with its associated gauge bosons W, and R, i.e. ,
we identify W, with the usual W bosons.

In trying to break the symmetry we note
first that we cannot break SU(4) down all the
way to SU(2) with one adjoint alone. ' As can
be seen from the commutators in Appendix
A, if we choose the breaking in any one of the
canonical directions p„P„p„p„p„orp»
we then break SU(4) down to SU(2) x U(1) x U(1)
with all of the charged bosons becoming massive.
For instance, choosing (P,& to be nonzero leaves
Wg W1 p T W6 and A mass less w ith the other 10
bosons becoming massive. Furthermore, if we
choose the breaking in the remaining canonical di-
rection p„, we break SU(4) down to an SU(3) x U(l)
subgroup which does riot itself contain the usual
SU(2) x U(j.) of Weinberg and Salam (nor can it be
reached by a rotation of the basis). Consequently,
we must break SU(4) down along a direction other
than a canonical one. In order to decide which di-
rection, we now note the commutators

III. THE BREAKING PATTERN

Our immediate objective is to break SU(4) x U(1)
down to SU(2) x U(1). In this section we shall dis-
cuss what w'e require from the breaking pattern
by studying the group structure of SU(4), and in

Sec. IV we will show how the Higgs potential can
produce the breaking we want. We note first that
SU(4) possesses many SU(2) subgroups, so that
picking the breaking scheme to give the SU(2)
group we want is nontrivial. More important, it
turns out that there is more than one SU(2) sub-
group we can choose which gives the usual weak-
interacti:on phenomenology, since the generator
E~ appears in more than orie SU(2). While we
shall always require F~ to be a member of the
SU(2) (so that R can ultimately mix with W, in the

(3.2)

where we use the same notation for the p fields
as given previously for the gauge bosons. Hence
for W, to stay massless we require

(3 3)

[i.e. , g,)= Q&,&
—W2 (p»&=0]. Thus the breaking
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must be along some linear combination of pr+ gz,
g, + P„and Q, + P~, . We choose the breaking so
that Qr)=(p~) [i.e. , so that (p,)=v 2(Q»)o0] with
all other members of the P multiplet having van-
ishing expectation values. With this choice we ob-
serve from the commutators that U„R'„W„V„
~7 and W„acquir e mass es w ith E~, R, Ex, E~
-E~, and E~+E~ generating a so far unbroken
SU(2) x U(2) subgroup.

In order to complete the breaking down to the
usual SU(2} the second adjoint, g, must also sat-
isfy Eq. (3.3). We choose the nontrival expecta-
tion value to be orthogonal to (gr)+ (g~) by setting
(g,)= (g,) 40 with all other ($,)=0. With this par-
ticular choice the gauge-boson mass matrix is
now diagonal in the basis of states introduced in
Eq. (2.3). In terms of the parameters Q,) and

(P,) the masses of the heavy gauge bosons are
given by the mass term

I

& ~,= —,
' g'(Q, ) (2U,U + W, '+ W, + 2V,V + W72+ W 2}
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XU(I)XU(l)
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(f)x 0 (X)» 0

FIG. 1. The mass spectrum of the 16 gauge bosons
at various stages of the breaking of SU(4) x U{1). The
actual mass values indicated are only illustrative.

+ -', g'Qr, )'(2X,X + S'+ T'+ 2V, V + W, '+ W«') .

(3.4)

The degeneracies of this pattern follow since (X„
S —T), (U„W, —W,}, and (V„W, -W»} form three
triplets under the SU(2) of Eq. (S.l). We note that
the mass pattern of Eq. (3.4) is not unique even if
W, stay massless. By breaking in different ortho-
gonal directions while maintaining Eq. (3.3), we
can change the identity and relative masses of the
heavy gauge bosons. The particular choice we
have adopted is found to be the most useful for the
phenomenological applications of this paper.

The breaking of SU(2) x U(1) is then completed
using the fundamentals, X',. This leads to the con-
ventional mixing of Wo and R into new fields

Z= R cos8~ —g( sln8~, ~ (3 5)

A. = -R sin8~ —W, cos8~,

where tan8~=g'/g. The masses of W, and Z satisfy
the Weinberg relation M~= M~ cos8~, and the Fer-
mi coupling constant is given by GJ&2=g'/SM~'.
For clarity we present the complete mass pattern
for the gauge bosons in Fig. 1.

The X~& can also cause quark mixing and lepton
mixing in the mass matrix. (We will dispense with
this requirement when we discuss an alternative
mechanism for introducing the Cabibbo angle in
the third paper of this series. ) We take (u', d, s,
c')~ and (v„s', p', v,)~ as the SU(4) quartets needed
for Eq. (2.4}, where

u'=ucos8c -csin8c,

c = u sln8c+ c cos8c r

e'= e cos8~+ p. sin8L, , (3.6)

p, '= -e sin8~+ p «s8~,

pg p~ cos8++ p+ sin8~

p2 = —v~ 8ln81 + 0'~ cos 8g .

Here u, c, s, d, e, p, , v„and v„are eigenstates
of the mass matrix. The angle 8c is the Cabibbo
angle and 8~ is an analogous lepton angle. Both
neutrino and charged lepton fields are rotated
through the same angle to maintain the convention-
al definitions of v, and v„. This angle is not ob-
servable in the usual SU(2) x U(1) sector since the
neutrinos are massless, but becomes observable
in the couplings to the heavy bosons and plays an
important role in some of the muon-number-vio-
lating processes we sgall discuss in this paper.
(Although 8c and 8~ are independent when intro-
duced through fermion mass matrix mixing, they
become related once the Cabibbo angle arises
through mixing in the gauge-boson mass matrix.
This will be discussed in paper 'III.) Further de-
tai. l.s concerning the fermion mass matrix are
given in Appendix C.

In terms of the new fermion fields the interac-
tion Lagrangian of Eq. (2.4) ean be reexpressed as
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—Z„z = —v 2 sin8v(A1+ tan8, Z1)J1™v2

+(v 2 cos8v) 'Z [(v,y1v, z+ v„y1v„I —ey1ez - izy1iz~)+ (uy1u~+ cy1c~ - dy1d~ —sy, s~)]
+ W.'(v,r,e, + v„r,l1,+ u'y, d, + c'r„s,)
+ X1[cos281(v4y1e~ —v„y1iz~) + s in28~( v,y, iz~+ v„y1e~) + u'y, d~ —c'y1s~]

+ &1[cos28z(v,y1V~+ v,y1e~) —sin28~(v, y1e~ —v„y1p~)+ u'y 1s~ +c'y1d~]

+ V,"(v,r1izJ—v.r1ez, +u'r, s, c—'r„dz)

+ W, [cos28z(ey1iz~+ py„e~) —sin28~(ey1e~ —izy1 p, ~) + dy1s~+ sy1d~]

+i W, (izy1ei —ey1pz, + sy1d1 —dy1si)

+ W1[cos2 ~( v,y„v„~+ v„y„v,~) -sin28~(v, y1v, ~ -v„y1v„~)+u'y1c~+ c'y„u~]

+z Wl0(v. y1v.~-v.y1v. ~+ ~1ui -@1c.)
+ S [cos28~( ey1e~ —izy1 p, ~) + s in28~(ey1 p, ~+ )1y1e~) + dr1d~ —sy„s~]

+ T1 [cos2 8~(v,y 1v~ —v„y1v„z)+ sin28~(v, y1v„~+ v„y1v,~)+ u'y1u~i —c'y„cl~]

+ H. c. of the charged sector.

We have presented Eq. (3."l) mainly as a conven-
ience since there is a small additional. effect so far
not yet included which arises once the SU(2) x U(1)
symmetry is broken. The breaking of the SU(2)
x U(1) symmetry automatically causes W, and Z
to mix with the heavy gauge bosons. In fact, as
we shall see in Sec. VI, this mixing is responsible
for processes such as p, - ey. Rather than con-
sider all possible mixings for the purposes of this
paper, we shall only need W, X mixing and Z, S
mixing. We def ine

We shall leave $ and (' as free parameters for the
moment, noting only from Appendix 8 that the con-
tributions of the adjoints and fundamentals to $ and
(' are highly constrained, i.e. , setting Q&s)(g r)
—Q s)) nonzero'will mix Wand Xalone, while set-
ting (X32)' 43 (X3')' will simultaneously mix W with X
and Z with S.

We have now described what we want from the
breaking pattern. We discuss next how the Higgs
potential achieves it.

W, = W, cos)+X, sin),

X,= —W„sing+ X,cos g,

Z= Z cosg'+ S sin)',

8= -Zsin)'+Scosg'.

(3.8)

IV. STRUCTURE OF THE HIGGS POTENTIAL

It is convenient to use a tensor basis to describe
the adjoint representations. We set

49 z4 10

15
1

4, +z42 ——yzz+4s y0-zy7
2

411 —z$12
(4.1)

44+ 243
1

46+247 4R 4 s 413 '2414
v2

4 9+ z4 10 411+2412 413+1414
1

~24m
—4'r

Since electric charge will remain unbroken, we
shall only be interested in the electrically neutral
sector of p, 9 in the following. We parametrize
the expectation values in the neutral sector as

(p9) = z4 sinp, cosczz,

(p, ) = z)0 sinp, sinn, ,

(Q S)= 'g0 COSP1,

(g9) = z4 sinp, ' coso.,',

(p») = z4' sinp,' sinn, ',

(Q r) = z) cosp,',

(4.2)
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where

(4.3)

We introduce the Hermitian, unitary matrix U~,

cos2p~

~sin2 p,'e' I

cos-, p, sin —,p, e ' i

sin-,'p, e' i —cos-, p,

sUlg pie

1 I-cos2p~

(4.4)

which diagonalizes (~iti, ~&, so that

1
n. - (4 6)

0

Thus (g,~& has been written in a very compact
-form.

The most general renormalizable SU(4)-invari-
ant potential for a single adjoint Higgs multiplet
that is also for simplicity invariant under the re-
flection p--it is

0 0 0

0 x 0 0

0 0 ic 0-
0 0 0

(4.8}

V(y}= -p, 'Tr(y'}+ X, [Tr(y')]'+ X,Tr(y'} .

We now minimize the neutral sector

(4.6}

(4.7}

where the parameter x is the solution to a cubic
equation. This choice breaks SU(4) down to SU(2)
x U(2) (Ref. 6), and is the one we want. Different
assignments of relative signs among the eigenval-
ues in Eq. (4.8) then lead to different specific SU(2)
x U(2) subgroups within the SU(4). Without loss of
generality we shall choose the solution actually
given in Eq. (4.8), where explicitly

(4.9)

as a function of its three independent variables
q„q„and Q&s). After minimizing we find that
the location of the minimum of the potential de-
pends on the sign of X,. (We take p,,' and A,, to be
positive. } For X,&0, the minimum surface is
given by solutions in which the eigenvalues have
a typical form -(1,1,1, -3). This breaks SU(4)
down to SU(3}x U(l), a result previously noted by
Li.' On the other hand, the choice X,&0 leads to
a minimum surface in which the eigenvalues are
all equal to each other up to overall signs. An ex-
ample is

As noted in Sec. III, we obtain the SU(2) x U(2)
subgroup that we are specifically interested in if
we set

(4.10)

This choice is then a particular solution to Eq.
(4.9); it is, moreover, the simplest one since in it
Q&,~& is already diagonal. This assignment of ex-
pectation values is not unique since it is possible,
for instance, to have (@e), (stir&, (P,&, and Q&,)
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all nonzero in the same multiplet. As we will
show in paper IH, this latter assignment leads to
a nonzero Cabibbo angle through gauge-boson mix-
ing. It is further possible to satisfy Eq. (4.9) by
allowing the fields with opposite CP properties,
i.e. , p, and P, (and also P, and P») to simultan-
eously have nonvanishing expectation values. This

I

leads to a theory of CP violation which will be fully
discussed in paper II. However, for the purposes
of this paper we shall only consider the simplest
solution given above in Eq. (4.10).

In order to complete the breaking down to SU(2)
we introduce the second adjoint, g. We parame-
trize its neutral sector as

0

(4.11)

—
&(~& -4

where

t.'= &4.&'+ &0,&'+ &0&&',

&,"=
&4.&'+ &0»&'+ &0r&'

(4.12)

cos-,p,'

sin~p,'e' 2

0

cos—,'p, sin~p. e ' 2

~ 1 1
sin~p, e' 2 —cos—,p,

0

sin-,'p,'e ' 2

—cos2 p,'

(4.13)

y, (y, y}= p, 'Tr(y')+ A,, [Tr(y')]'+ ,ArT(y')

—p, 'Tr(g')+ A, [Tr(y')]'+ A, Tr(y')

+g, Tr(y'y'}+g, Tr(y') Tr(g')

+g [Tr(ee)]'+g»(444K (4.14)

The most general renormalizable SU(4)-invari-
ant, reflection-invariant potential for the two ad-
joints is

which we must now minimize afresh. Since V,(P, P)
breaks SU(4) down beyond SU(2) x U(2) for arbi-
trary values of its parameters, in general we can-
not maintain Egs. (4.10). Thus we shall seek a
specific range of values of the parameters for
which (g& retains its previous structure while (g&
completes the breaking of SU(4) down to SU(2),
and no further. In our parametrization we find

V,(Q)), Qi&) = 2p, '(q, '+ q,"+-g ,~&')+ 4A, (q, '+ q,"+g ~&')'+ A,(2q, '+ 2g,"+Q „)'+6q, 'Q „&'+6q,"Q „)')
—2p, (f,'+ f,",+ (g )')+ 4A,(f,'+ f,"+(tP„&')'+ A,(2$,'+ 2f,"+(g„&'+ 6g '(g„&'+ 6 f,"(g )')

+g, [(ps&'(gs&'+ Q s&'(g, '+ g,")+ (g~&'(q, '+ q,")+ 2q, 'go+ 2qo2g,"+4Q) s&Q s&(g,g, cosA+ go&0 cosA') ]

+ 4gp(no'+ no'+ Q „)'')(&0'+ 0,"+Q s&') + 4g (Q s&(g„)+qg, cosA+ q,'g,' cosA' )'

+g, [(A.&'&4.&'+ &e.&'(4'+ ~.")+&t.&'(n. '+ n."} 2n. '~.' 2n—."~,"-
+ 47/0 fo COS A+ 47/0 fo COS A + 4Q&S)/is&(YJOCO COSA+ 7jofo COSA )] ~ (4.15)

where

cosA = cosP, cosP, + sinP, sinP, cos(n, —o,,},
COSA'= cosP,' cosP,'+ sinP,' sinP,' cos(o,,' —o.,') .

(4.16}
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Here X and X' are the "angles" between the two ad-
joints. The full potential V,(Q ), Qr&) is thus a func-
tion of eight variables. We find that the solution

no= no &0= &o

Q.&= &(.)= o,
cosh= cosh'= 0

(4.17)

satisf ies the stationarity conditions. Moreover,
by evaluating the eigenvalues of the eight-dimen-
sional matrix V,", it can be established that the
above solution is a local minimum of V, if

all g,.&0,

all A, » all g,
(4.18)

The set of conditions of Eqs. (4.17) is found to
break SU(4) down to SU(2). In particular, we can
satisfy Eqs. (4.17) by Eqs. (4.10) and by

&y,&= &y, & ~O,

8,&= 8,.&= &0&&= (0r&= 0.
(4.19)

As noted in Sec. III, this then yields as unbroken
the usual SU(2) that we want. The set of conditions
of Eqs. (4.18) thus constitute the key dynamical
assumptions of our work since they break SU(4)
x U(1) down to the Weinberg-Salam theory.

It will be noted that not all of the parameters of
Q&,~& and g, ~& have been specified by Eqs. (4.17).
The potential V,(P, g) fixes the relative orienta-
tions of the two adjoints, but does not fix their
overa, ll orientation with respect to the quark basis.
In our theory the quarks get their masses through
the fundamentals X', Consequently, the remaining
parameters of (g,„& and (g, „& and also the orienta-
tions of the gauge-boson mass eigenstates relative
to the quark mass eigenstates can only be deter-
mined by introducing P, g, y, cross terms into the
Higgs potential. Since these terms lead to a theory
of the Cabibbo angle and of CP violation through
gauge-boson mixing, we shall defer discussion of
this point until paper III, and shall study fir'st the
phenomenology which ensues when we make very
simple choices for the so far undetermined angles
and parameters.

V. PROPERTIES OF THE SPONTANEOUSLY BROKEN
THEORY

After having constructed the breaking pattern
given above, we turn now to discuss its implica-
tions. The initial unbroken SU(4) x U(1) theory
possesses the exact global symmetries of isospin,
strangeness and charm, and their leptonic analogs.
In the symmetry limit the only allowed processes
are those which do not involve any quantum-num-

ber exchange. Thus processes such as u+ d- c+ s,
u+ d-v„+ p. , and v„+ p. -v, +e are forbiddeninthe
symmetry limit. [Since the quarks and leptons share
SU(4) flavors, processes suchasu+d-v, + e areal-
lowed. ] In order for processes such as the usual
muon P decay to take place, it is therefore nec-
essary to break the SU(4) global symmetries spon-
taneously, and indeed it is the choice of nonvanish-
ing (g,& and (g,& which takes the necessary quan-
tum numbers into the vacuum. Thus the theory
has to generate Goldstone bosons which are sub-
sequently absorbed by the gauge bosons after the
extension to a local gauge. This is to be contrasted
with the situation in the Weinberg-Salam model.
There muon P decay is allowed in the symmetry
limit and is a long-ranged process, with the Higgs
bosons' main role being to make the process
short-ranged. In conventional theories the Gold-
stone bosons are needed to give masses to gauge
bosons, whereas in our theory the gauge bosons
are needed to remove the Goldstone bosons, with-
out which there would be no muon-P-decay matrix
element in the first place.

It is of interest to discuss which processes are
allowed and which are forbidden at each stage of
the breaking. After the breaking down to SU(2)
x U(1) but before SU(2) x U(1) itself is broken we
note that our theory already permits certain mu-
on-number-violating processes to occur. As can
be seen from Eq. (3.7) the "wrong" P decay, p,- e + v, + v„, is allowed (even with e~= 0) through
the exchange of the new heavy gauge bosons be-
cause of the lack of degeneracy of U and V exhibited
in Eq. (3.4). Moreover, the usual P decay, p, - e
+ v, + v, is also a fermion number-violating pro-
cess in the sense that in our theory the muon and
its neutrino initially have separate quantum num-
bers. However, because of the degeneracy of the
massless neutrinos, we were able to redefine new
neutrino states in Eq. (3.6) so that within the sub-
sector of the theory which only involves the W, and
R bosons the muon would always appear in combi-
nation with its neutrino, and likewise for the elec-
tron. It is this latter property which is conven-
tionally referred to as muon or electron number.
Thus the usual p decay violates the SU(4) x U(1)
quantum number associated with the muon itself,
but not that associated with the muon and muon-neu-
trino combination. Further, if the neutrinos were
to possess masses in our theory and mix through
an angle different from that through which the elec-
tron and muon mix, then the couplings of W, would
not even exhibit conservation of the quantum num-
ber associated with the combined muon and muon-
neutrino system. In this respect the fact that P de-
cay does exhibit this feature is thus a dynamical
consequence of the masslessness of the two neu-
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MA(E~- p, 'e ) = G„&2F~k"l„,
7

(5.1)

where Fr is the kaon decay constant(Fr =1.28 F,
=120 MeV), l, =u,y, (1 —y, )v„, and normaliza-
tion factors are suppressed. The amplitude for
the usual K'- p'v„decay is given by

A(K '- p, 'v„) = G~ sin 8cFrk" I„. (5 2)

Neglecting the mass of the electron, we find for
the ratio of the widths

trinos.
It is important to note that while the theory also

permits processes such as p, -3e and the p, -cap-
ture process p, + N- e+ N to take place, it is not
until the SU(2) x U(l) symmetry is broken that the
most interesting process, namely p, - ey, can take
place. ' We will discuss the phenomenology of all
these processes together in Sec. VI, but make the
remark now to indicate that there are different as-
pects to muon-number nonconservation depending
on how much the SU(4) x U(l) symmetry is broken.

It is possible to get some information on the
masses of the new bosons from limits on rare de-
cay processes. The most sensitive information
comes from strangeness-changing processes in-
volving the neutral kaons. The S; boson mediates
the direct transition K~- p, e. (In fact, this pro-
cess is not forbidden in the unbroken theory since
the p, , e system is equivalent to the s, d system. )
The amplitude A for the process is given in a
straightforward manner by allowing E~ to couple
to the seventh axial-vector current, i.e. ,

= M7 & 450M~ or that both M, and M, are greater
than 104M~. From the mass term of Eq. (3.4) we
obtain the mass sum rule

(5.V)

Consequently for M, and M, close enough the value
for M8 could be substantially lower than 450 M~.

An important feature of the particular formula-
tion of our model given in Eq. (3.'l) is that there is
no d —s mixing but rather the Cabibbo angle has
been introduced in the u —c sector of the mass ma-
trix. While immaterial for the SU(2) x U(1) sector
of the theory, we note that this choice leads to ob-
servable differences for the other interactions.
Strictly speaking, the Cabibbo angle as measured
in conventional weak interactions is only the dif-
ference between the amount of mixing in the d —s
sector and that in the u —c sector. In the presence
of the gauge bosons in our theory, each mixing
angle becomes observable itself and not merely the
difference. Thus we see that there are now two
directions in which there is a mismatch between
the strong and weak interactions, and not just one
as in conventional theories. (In fact there are two
further observable angles in general and their
properties will be analyzed in paper III). With our
choice of Cabibbo mixing in the u —c sector the
gauge boson S does not participate in the strange-
ness-changing processes, and is therefore free
to be much lighter than the minimum 450M~ al-
ready found in Eq. (5.4). Further information on

the mass of S will be provided below when we
study the p, - ey decay and related processes.

I'(Eg- p'e ) 2 Mg
I'(X' p, 'v„) sin'8 M,

(5.3)
VI. LM~ey AND RELATED DECAYS

From the experimental upper limit I'(X~- p,'e )/
I (K~-all)& 6 x 10 ' we conclude that

M, &450M . (5.4)

Another tight constraint can be derived from the
magnitude of the K~ -E~ mass difference. From
our Lagrangian it can be seen that W, and 8"7 re-
spectively contribute to the self-energies of E~
and E~. The contributions are easily calculated
to be

M, -'~ &3 x10-'M -'. (5.6)

We have also considered other decay processes
such as K~- p. 'p, " and K'- m'p, 'e";.however, they
do not give any constaints stronger than Eqs. (5.4)
and (5.6). These equations imply either that M,

M MmJ ms ~ 2 Mgr Mgl

1n K 6 7

From the experimental value of (m~ —ms)/m„- I
0&10 ", we conclude that

We turn our attention now to the p- ey decay,
a process which has generated a lot of current in-
ter&st. ' Since the discovery of the muon some 30
years ago and the gradual realization that it was
decoupled from the electron sector by possessing
its own quantum number, the whole question of the
significance of the muon has been a mystery.
Searches for nonconservation of muon number have
repeatedly produced negative results. At the pres-
ent time of writing there is no definitive evidence
of any violation. Nonetheless, the subject of muon
number, is of deep theoretical interest since it
concerns the nature and origin of symmetries in

particle physics. In fact one of the more interest-
ing aspects of the theory described in this series
of papers, SU(4) x U(l), is that an understanding
of muon number provides simultaneously some
understanding of strangeness. Moreover, we have
already indicated in Sec. V some of the conse-
quences that follow once muon-number conserva-
tion is spontaneously broken in the effective inter-
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action of the leptons with the gauge bosons. In this
section we study the muon-number-violating pro-
cesses that arise after the residual SU(2) x U(l}
symmetry is broken. As we shall see, the p, - ey
decay occurs, while the p, - Be decay and the p. —

capture process receive significant new contribu-
tions. We thus discuss all three processes to-
gether.

For the applications of this section only the bo-

sons of the SU(2} x U(2) x U(1) subgroup generated
by Fw, FR Ex Es —Er, Es+E~, and E, play any
significant role as long as they are substantially
lighter than U„W„W„V„S'„andS']0 Follow-
ing the mixings given in Eq. (3.8} which occur after
the SU(2) x U(1) symmetry is broken, the interac-
tions of the gauge bosons of the above subgroup
with the mixed fermions are given from Eq. (3.'I)
by

—2„,= -V 2 sin8v[A+ tan8gcosg'Z —sing'8)] J™v2

+ 2 {cosg'(v 2 cos8~) (v,v, + v„v —ee —p, p, + uu+ cc —dd —ss)

+ sin) [cos28~(ee —p p)+ sin28~(ep+ pe)+ dd —ss]j
+ S{cos) [cos28~(ee —pp)+ sin28~(ep+ p, e)+ dd -ss]

—sin]'(v 2 cos8~) '(v, v, + v„v„—ee p, )J,—+ uu+ cc —dd —ss))

+ W, {co s)(v,e+ v„p+ u'd+ c's)

+ sing[cos28~(v, e —v„p)+ sin28~(v, p+ v„e)+u'd —c's]j
+ X,{cos)[cos28~( v,e —v~ p)+ sin28~(v, p, + v„e)+u'd —c's]

—sin&( v,e+ v~ p. + u'd+ c's))
+ T[cos28~(v, v, —v„v )+ sin28~(v, v„+ v„v,)+u'u' —c'c']

+ ' ' ' + H. c. of the charged sector . (6 1)

u, (p)o, ~q (F»+ E„y,}u„(p q)+e (q),m
(6.2}

The gauge bosons of Eg. (6.1) are the exact eigen-
states of the mass matrix, so we can analyze the
implications of Eq. (6.1) directly.

For p, -ey the effective interaction of the pro-
cess is

metry is broken, there are many noncanceling
contributions, with 5' exchange and Z exchange
being the dominant ones since they are the lowest
mass states. We have cal.cul.ated their contribu-
tions in the 't Hooft-Feynman gauge using the
Feynman rules given in Hef. 9. We give here only
the results of the calculation. For S' exchange
Fig. 2 yields the values

its decay rate is given by

I ( p - e'Y) = so'(E» + E~ )~„,
and the branching ratio is given by

v2 48m'

while for Z exchange Fig. B yields the values

(6.5)

I'(p - e)')
I'( p, -all)

24m'n(E»'+ F~')
Gp m„

(6.4)

E»= E„=G»cos8v 48, " sin28~ sin2$',(5C» —l)»n, „'
48m

(6.6)

where C~= 1 —4sin'8~= -0.2. %e then have to add

The form factors E~ and E~ receive contributions
F» „from the exchange of charged bosons, and

E„„from the exchange of neutral bosons. We
show typical lowest-order contributions to E~ „
and E~~ „in Figs. 2 and B, respectively. Note that
each of the graphs contains two separate contribu-
tions coming from each of two leptons. . Further,
no matter what the exchange, as long as the SU(2)
x U(l) symmetry remains unbroken, the leptons
always mutually cancel each other in both E~ „
and E» „. However, once the SU(2} x U(1) sym-

PIG. 2. Contribution to the p ey decay due to the
exchange of a charged vector boson T. Each of v~ and

v& appears separately as an intermediate lepton.
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FIG. 3. Contribution to the p ey decay due to the ex-
change of a neutral vector boson Z. Each of e and p
appears separately as an intermediate lepton.

these contributions to get the final values for I'~
and E~.

For p, - 3e there are also two main contributions,
namely direct Z and S exchange tree graphs, yield-
1ng

(6 't)

where

2M~6,M~sin
X

(6.12)

Since $'= 0 there is no corresponding shift in the
Z mass, thus effectively decreasing the strength
of neutral currents. The exper imental uncertainty
in Ms/M~ requires the shift in M~ not to differ by
more than 5% from the Weinberg-Salam theory. "
This one piece of information constrains the mix-
ing angle and leads to the inequalities

will have to make further theoretical assumptions
in order to extract out any useful information.

The simplest assumption is to keep $'=0. We
will explain below how this is achieved, but dis-
cuss first its implications. Though we now have
three equations for three unknowns, we note that
the system is in fact constrained. While we antici-
pate that the mixing of W and X is small, we note
that the existence of such a mixing causes a shift
in the mass of tQe lV in the W-X mass matrix
given by

sin4e
p& 2.2 x 10' sin'(& 10"A, ,

p i &1500M~/Ms, (6.13)

and

cos8~(1 —2 sin'8~) sin28~ sin2$'
2 2

(6.8)

B=~ cos8~sin'8~sin28~ sin2$'.O' W
I

(6.9)

For the p, -capture process again direct Z and
S exchange tree graphs dominate yielding

o(p, + N- e+ N)
o'(p, +N v+N')

where

= C sin'26I 1+D ',
S

(6.10)

D= —
— cos8~ sin2$'.(CvZ N) Ms—

2 2(Z+2N) MI
(6.11)

Here C is an enhancement factor which consists
of a coherence factor s(2N+ Z)'/(2Z+N) to be
divided by a Pauli suppression factor -0.25(SZ
-A)/A. " For copper, for which there is current-
ly some experimental information on R,~, C-500.
(C also includes other effects such as form fac-
tors which we have not included. )

It is not possible to fix the values of Ms (= Mx),
$, g', and 8~ from measurements of RB„,,and

R,~ alone. The extra constraint would come from
processes such as v„+N- v, +N and Dp v, v„
which are mediated by the T boson (also degen-

rate with S and 2C). However, these processes
are too impractical to be useful, so instead we

where p=It, „/B~ and N= copper. From the cur-
rent upper bound" on R,„of 1.6 x 10 ' we find that
our model requires R to be &10 '. While the pre-
ceding analysis is general in that it has not speci-
fied the actual mixing mechanism, a tighter con-
straint is obtained if we achieve the 8'-X mixing
through the adjoint representation as was explained
in Sec. III. From the structure of Table I we find
that with such a mixing mechanism sing &(M~/
Mx)'. This condition then leads to a very strong
constraint, namely p&10', so that R &10", a
miserably small number.

Having discussed one simplifying assumption we
now examine an alternative possibil. ity. This time
we allow both $ and $' to be nonzero with the mix-
ings being given entirely through the fundamentals.
This is in fact the most natural situation since the
fundamentals are responsible for SU(2) x U(1)
breaking. We introduce

(6 '-4)

and set (X,')'= (X',)' so as to ensure no Z, T mixing.
In terms of p and q we obtain the following mass
matrices from Appendix B which determine $ and
g' respectively:

(6.15)

and
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f p sec'8» -v 2q sec8»)
Mzs= '(-&2q sec8w Ms

(6.16)

We can also extract out some theoretical in-
equalities relating R, R,~, and R„. Since R„
&-,' I 8

~

' we obtain the inequality

The only difference between Eqs. (6.15) and (6.16)
is through the appearance of the Weinberg angle,
which leads to the relation

R„48m sin~8~
R n(V —10C„)'

and since ~x
~

&1 we obtain

(6.26)

sing' = — sing .
cos8~

(6.1V) 24gC
R o.(V —10Cv}' (6.2V)

We also note that

(Mp)' (M ) (6.18)

where x= q/p. From these relations we obtain

4

R~= 24 (V 10C„}'x'sin'28~ (6.19)

228 lv

s

x [2cos'28~+ 2cos28~(l+ C„)x+(1+C„')x'],
(6.20)

R,N= Csin'28~ 1+yr C,Z)x ' M
2N+ Z (6.21)

which are three equations for the unknowns 8~,
Ms, and g.

Since the above three equations are all dependent
on sin'28~ we are unable to obtain any limits on
the masses of the S and X, bosons fromthem.
Further information can be obtained from the
charged sector of Eq. (6.1}. The X, boson contri-
butes to the ratio of E - p v„ to E - t. p„a ratio
which is explained completely by 8', exchange up
to radiative corrections of O(o.) in the amplitudes.
In order that the X, exchange will itself not be
larger than the usual radiative corrections we re-
quire

& 0(10-'), (6.22)

i.e. ,

M '&200M 'cos28 (6.23)

Noting that ~x ~

&1 we can use the upper bound on

R,» to obtain the following relation from Eq. (6.21):

Mx'& 2 x 10'M~' sin28~. (6.24)

Hence

M &14M„ (6.25)

which confirms that the mixing angle g is small.
[The bound of Ecl. (6.25) also ensures that pro-
cesses such as m- p+ v, are kept within experi-
mental limits. ]

Hence p&V x104 for copper, so again R &10'~,
making its experimental observation rather re-
mote. The relation in Eg. (6.26) is interesting in

that p' is not of order ~ which mould be expected
if p. —Se proceeds through photon conversion. Be-
cause our model possesses bosons which mediate
.p, -Se directly, p' is three orders of magnitude
larger than naively expected. This unexpectedly
large value for p' is therefore one of the charac-
teristic signals of our model.

Of the above quantities it is clear that R,„is the
most worthwhile to investigate experimentally.
The large value obtained for p in Eq. (6.2V) arises
through two effects. First, in our model p cap-
ture on a quark is larger than p, - ey, and second,
there is a large enhancement factor in going from
a quark to a heavy nucleus. Thus it appears thai
p, capture on a nucleus should provide the best
chance of seeing a muon-number-nonconserving
process in the near future.

VII. CONCLUSIONS

It is useful to compare our work on muon-num-
ber nonconservation with other recent studies.
Suggestions made thus far fall predominantly into

two categories which involve either new leptons"
or Higgs bosons. " In our approach we have en-
larged the gauge group, a proposal also made in
Ref. 15 where a gauge group other than SU(4}
x U(1) was considered. What distinguishes our
work from the other proposals in the main is that
there is an explicit spontaneous breakdown of mu-
on-number conservation in the couplings of the
leptons to the gauge bosons. In the absence of any
experimental information, it is not possible to
distinguish between the various models, though
some of the signatures of our model such as the
large values for the ratios R,»/R and R,„/R„
given in Sec. VI are not to be typically expected
in the other models considered in the literature.
Indeed, because of the large value obtained for
R,„/R we recommend that the p, -capture process
be experimentally explored in the near future; it
(and also possibly K~- pe) appears to be the most
promising way of detecting any muon-number non-
conservation. Though one of the main points of
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our study is that (unlike the proposals in Ref. 13)
it is not necessary to require the existence of new

leptons in order to understand processes such as
p. - ey, it will be very interesting in the future to
see whether new leptons can be experimentally in-
corporated into a symmetry scheme which is far
more restrictive than the steinberg-Salam model.

When a quantum number (such as muon number)
is found to exist experimentally, it is not sufficient
merely to inquire how well the quantum number is
conserved, or whether it is possible to construct
theories in which it is weakly violated. A physical
theory should also examine how the existence of the
quantum number relates to other phenomena and
what its violation can teach us about the structure
of the theory. This is the viewpoint we have
adopted here and in this series of papers, and it is
our belief that rather than something to be avoided,
muon-number nonconservation is a highly desir-
able feature for possible theories of the weak inter-
action.
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[E",F ] = 2F„, [Fw Ex] =2(Er F-)

[F, F F+]-F+

[E„E']—F'

[E,+ F„E»]= -E»,

[E„F;]= F'„
[Fp —Fp F'v]=Fw

[E F+ ] —E'

[E,+ E, F"„]= -F',

lp 79 FW] ~F» 1

f r -Fs Ex] = Fw

[F~p+ F„E»]=i FU.

[E ~F E+] —E+

[Fip+E. Fv]

fF +F,F']
[E —F E']

= -iE'XP

—p+

=&&w

[Er —F~, F, —E,] = i(F„+E,),

[Er —E~, E,+ E,] = i(F„—E,),
[E —F,E„—E,] = i(E,+ E,)—,

[E —E,E„+E,] = —i(F, —E,)

[Er+ E~, E, —F,] =i(F„—F,),

[F,+F„F,+E,] =i(E,.+E,),
[F,+ F„F„-F,] = -i(F.-F.),
[E + E,F„+F ] = -i(E,+ E,),

(A2)

[F', F,] = 2(F.-E.), [E;,E,] =-2i(F„-F,),
[E',E ] =2E„, [F', E ] = 2i(E, + E,),
[E», E„]= -2(E,+ E,), [FU, FU] = 2E„,
[E',E„]= 2(F + E ), [E'„,E„]= 2E

[E„E;]=F;, [F,-F„F;]=F',

APPENDIX A

In the canonical basis the algebra of SU(4) is
given as

[E,, E,]=if, F, i,j., 0 = 1., . . . , 15 (A1)

where the structure constants are given, for ex-
ample, in Ref. 16. A four-dimensional represen-
tation of Kq. (A1) is the A, matrices which are
given in Ref. 17. From Eq. (A1) we derive the
following commutation relations among the gen-
erators introduced in Eq. (2.2):

[Ep —E„E„—E,] =i(Fr+ E~),

[F,-F„F„+E,] =i(F,-F,),
[Ep+ Epy Eyp E7] K(Fz Eg) 1

[F,+ E„E„+E7] =i(Fr+ E~) .
Apart from the relations which follow from Her-
mitian conjugation all other commutators vanish.

APPENDIX 8

Using the structure constants of Appendix A we
can calculate the couplings of the gauge bosons to
an adjoint representation of Higgs fields, P,. say.

TABLE I. Mass matrix of charged gauge bosons.

W

~+ ~(&z + &A + &c +&a ) &a&A+»«c&H-&D&c)

X+ 2($~2 + QA2 + @D2 + y~2)

Hermitian conjugate

4'pic+ g&«BAg —4'AAP)
1
~«A&C —&B&D)- ~@I &~

2 (y~2 + @B2 + ft) C2 + fIt)82 )

»«B&c- &A&I ) + ~&~&a

-'4~D + ~ «'4@a —'4 ~e)

4&eB+ 2~«ce& —ID'&)
2«~2+ QB + QD2+ Q| )
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1 14~=~(4r 4s—) As= ~(&r+ 4's)

0 =—(4, -A.),1
9 6 ~

with

=1
4D ~(49 46)

2

1
4 s==(4x 9+4 )7

V2

1 14'Z== 43+= 43-''(3—)' '436V2- 3

'( ~.+-~&e.»
1 2 y/2Ar=2 43+ =43+ (3-) 4'i3 ~

V3

The mass matrix for the neutral gauge bosons is
given in Table II which uses the convenient nota-
tion

The Hermitian mass matrix M,J(p) of Eg. (2.5)
contains bvo pieces which involve the neutral Higgs
fields, one for the charged gauge bosons and the
other for the neutral bosons. The mass matrix
for the charged gauge bosons is given in Table I
in terms of the convenient notation

W~ =—( T —S), Ws =—( T+ S),
1 1

w, =—(w, —w.), w, =—(w, + w, ),1 1

w, =—(w„- w, ), w„= — (w„+ w, ).1 1

The couplings of the fundamental Higgs fields to
the gauge bosons contribute the following term to
the Lagrangian:

—x', w(gf+g F,jgg* —1~ wax „+g *Y„,jgg~),

where i,j are. summed. from 1, , 15; 0, 1,m from
1, . . ., 4; s from g, . . ., d. Here Y, are eigenvalues
of I', for the fundamentals X', and are given by-Y, = Yb= Y,= —Y„=—,'. As explained in Appendix
C we can choose the potential such that the non-
vanishing expectation values in the fundamentals
are

&Xf&, &X,'&, &X;&, h4& .
With this choice the mass term is

—,& ~, = [&X3&'+ &X32&'+ &X3&'+ &X44&')(2W, W + 2X+ + 2U,U + 2V,V + Z'sec28~)

+ [h'&'+ &x."&'](w '+ w .'+ T')+ [ht&'+ &x,')']( w. '+ w, '+ s')

+ [&X,'&'+ &X,'&'- &X;&'- &X,'&'] W.X + W X,+ (T S)Z s—ec8-

+ [h;&' —h,)'+ &X;&' —&X,)'] V,U + V U, + (T+S)Zs—ec8

APPENDIX C

The most general SU(4) x U(1)-invariant coupling of the fermions to the fundamental Higgs fields is

(gg 4+Q+gg gcjj')(X3 0 X2 ~ X3 t X4 )QD+ (gs 3d|9+gg 3ss)(XJ 1 X2 y X3 y X4 )'gJ,

(g 6 s g46 s)(X3 yX2 PX3 yX4 )jIJ, (gg 4 s g9 4 s)(X3 IX2 pX3 yX4 )AD

+ (gg 3es+ g„,p s)(X,', X', '
X', , X4' ) ID+ (g„,ps+ g e„)g(X', , X2, X', X' )ID+ H.c

where

(c1)

"e

(c2)

C

There are eight neutral Higgs fields which can in principle acquire vacuum expectation values:
X2„X3„X'„X3',X„X44. The most general SU(4) x U(1)-invariant potential for the Higgs fields is

Sy ty Qy 0'8 OtbtCe4

V.(X) = p (-V.'X"X') —I4.,'X"X'- V„,'X"X'+ p X'„'„(X' X')(X"'X")+««(X'X'X'X")+ H. c.
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+ +
Q

V V

micg mt(g
I I

+
V

+
CV

+ +

&
m) cg

Here the coefficients X„"„are summed over all (a,
$, c, d) and possess some obvious restrictions
coming from conservation of the U(l) quantum
number I". (The p,,4' and p4,

' terms will play no
role in the following since they only lead to a
mixing of the Higgs fields which we will assume
has already been made. )

In order to simplify the Higgs potential we shall
impose two separate additional discrete symme-
tries on it, viz. ,

4

0

Cd

0

M/cq

I

Q

+

M [cq

I

+
V

Mlcq

I

+
Q

Q

+

+ +
Q 4 +
Q Q

~icq ~iraq ~icy
I I

and

h'- e"'"x' x'- e "'"x')

Q'- e""'x',x'- "'"x')

(c4)

(C5)

4) xa0

0

0

0
(C8)

')= x'0 0

0

In that basis the 'most general structures for (X')
and (X") are

%e can ahvays choose the basis for the X',. so that

+
Q

Wicq

I

Q

+

Mi Al

I

+
Q

+

+
Q

Q
Cd

F0
Q

8
Q
g

h') = x'e'"

0

.sin8, e'~~

cos 8~

0

SlI18 e

(x') = x.'e'"2
0

cos8,

where X', (s =a, 5, c, d) is the normalization of
each expectation value. In the above basis we
find that

&((x)) = g (-~.'x", )

(C'I)

+ Z C Xo + Q ~et X4 X4

Sln82

+ KXtX4 X(&X4 cos8i cos 82 cos((i + $2),

(C8)
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A minimum of V, (()()) is found in which

8, =8, =0, g, +$, =0 (C9)

tending the discrete symmetry of Eq. (C4) to the
x'ight-handed d and s quarks, viz. ,

X e X X X

a]]. g~ && a]l other g ~ -g& 0. (C10) & ( rl4.) d s g~(arly)sR Rp B BJ ~ (C12)

Esp =gg, c =Op (C11)

which we shall impose phenomenologically by ex-

With this choice the minimization of V, ()() pro-
vides the orthogonal set of vacuum values used in
Appendix B. (The phases g, and g, are not ob-
servable in the couplings of the Higgs fields to the
gauge bosons. ) Moreover, explicit counting
shows that V,(x) now generates the 15 Goldstone
bosons which are gauged in Eq. (B5).

In passing we also remark that without the
additional discrete symmetries, the parameters
in Eq. (C3) can be chosen to give the same break-
ing pattern as given in Eq. (CQ). Further, the
potential generates the same set of Goldstone
bosons as before but causes a rediagonalization
of 'the ma. ssive Higgs fields that remain following
the gauging of the massless fields. It is this re-
diagonalization which can lead to flavor-changing
processes mediated by the massive Higgs fields,
and the discrete symmetries of Eqs. (C4) and
(C5) have been introduced specifically to prevent
this.

With the above choice of (),'), Eq. (Cl) leads to
quark mixing in the conventional manner, while
also allowing for p,-e mixing through the lepton
angle OI. However, we would like to have mixing
in the u-e sector but not in the d-s sector. This
requires

This leads to Eq. (C11) and there is thus no d-s
mixing in the mass matrix. It should be noted
that though X, does not acquire an expectation
value in our basis, it still couples to ~ss ~, so
there are strangeness-changing vertices. How-

ever, X, has to be contracted back with an ap-
propriate Higgs scalar in order to give a strange-
ness-changing process, and our discrete symme-
tries have been chosen specifically to prevent
this. For instance, the Ks-KL, mass difference is
propagated by a, term X. X2~ while our ma, ss matrix
only contains terms such as X,X,'. Thus there
are no strangeness-changing processes mediated
by Higgs scalars in our theory, though there are
of course charm-changing ones through the pre-
sence of the g„and g„„terms. " The rates of
such processes when available will constrain the
mgsses of the Higgs bosons.

The meaning of the. basis of Eqs. (C6) and (CV)
relative to the basis of the gauge-boson eigen-
states will be discussed in more detail in paper
III, where the discrete symmetries will be ex-
tended to all the quarks (g„=g„~=0 also) and
thus become exact properties of the theory to
all orders. In such a. situation the theory is com-
pletely flavor conserving and the Cabibbo angle
will be introduced by a totally different procedure
from the conventional one employed in this
paper.
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