
PHYSICAL RKVIE% 0 VOLUME 19, NUMBF R, 1 MAY 1979

Positive-parity excited baryons in a quark model with hyperfine interactions
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A quark model suggested by quantum chromodynamics with strong spin-dependent forces of magnetic-

dipole —magnetic-dipole character perturbing a Aavor-independent confinement potential is applied to low-

lying positive-parity excited baryons. SU{3) is broken only by quark masses, and this leads to a new choice
of basis states in the hyperon sector; couplings to KN are especially transparent in this basis. The results,

which are largely determined by previous analyses, are in good agreement with the known properties of these
states. Spin-orbit forces are once again found to be negligible.

I. INTRODUCTION

This paper is one of a series' ' on baryons in
the quark model and so it hardly needs a separate
introduction. We shall just comment briefly on
recent developments in quark models of "old"
hadrons and then turn to the subject of this paper.

Most new work on quark models has been stim-
ulated by the recognition of similarities between
quark interactions and electromagnetism. In par-
ticular this has led to applications of hyperfine
interactions to baryon' ' and meson " spectro-
scopy, and to various hadronic properties like the
charge radius of the neutron. ~ Although it is too
early to summarize it seems that hyperfine inter-
actions (including their tensor component} are
indeed helpful in understanding hadrons.

A simple example, indicative of recent insight,
is provided by Z, A splittings. In the ground-state
S-wave multiplet, A and Z differ in the spin of

the nonstrange-quark pair, and this leads to differ-
ent hyperfine interactions between quarks: The
Z2'-A&' mass difference can then be quantitatively
understood as a consequence of the smaller color
magnetic moment of the strange quark. In excited
P-wave baryons, for a given quark spin state the
Z and A will differ in the oxbita/ motion of the
quarks: The "reverse" ordering A& & Z& then
arises as a consequence of the higher mass of the
strange quark and the attendant lower frequency of
the corresponding orbital mode. 2'

We have previously analyzed the negative-parity
baryons in a very simple model' '3 which contains
only flavor-independent harmonic forces and hy-
perfine interactions between quarks. This model
works very well for masses and mixing angles;
furthermore, many features of the analysis appear
to be independent of the use of harmonic forces.
The purpose of the present investigation is to ex-
tend the quark model described previously to low-

lying positive-parity excitations of the three-quark
system.

There are many excited positive-parity orbital
modes for a three-particle system. '0 These modes
differ from each other in their orbital angular mo-
mentum L and their behavior under permutations.
As is well known, each type of permutational be-
havior corresponds to an SU(6) multiplet (56;70;20)
if forces between quarks are SU(6) invariant. Thus
for harmonic forces between quarks one would ex-
pect five degenerate SU(6} multiplets at N =2:
56 (L =0 and 2), 70 (I = 0 and 2), and 20 (L = 1).
These states are not, however, all found to be de-
generate experimentally. There are two simple
reasons for the departure from this ideal limit:
Forces between quarks are not harmonic and,
secondly, quark masses are not identical. Be-
cause forces between quarks are not harmonic
different orbital modes become separated from
each other in mass. This is discussed in the next
section and in Appendix A. In addition to this
SU(6)-invariant perturbation there is SU(6) break-
ing when we turn to hyperons. This is similar to
the SU(3) breaking found in negative-parity hyper-
ons, ' '6 and leads also in this case to a pattern of
mixings which segregates those states which couple
to the KN channel from those which do not. This
will lead to effects which extend the proposal of'
Petersen and Rosner" and of Faiman" to positive-
parity baryons. After taking into account these
orbital effects, we consider the effects of the hy-
perfine interaction in Sec. III and Appendix C. The
comparison with the experimental data is discussed
in Sec. IV. A nice feature of this comparison is
the good correlation between those states which are
well observed in KN scattering and those which we
predict to couple strongly to this channel: The
mixing angles are therefore obtained satisfactorily.
The mixings of hyperons are most transparent in
a basis, previously introduced for negative-parity
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states, '3'6 in which the generalized Pauli principle
is employed only for nonstrange quarks. On the
other hand, for the nonstrange states, and even
for many calculations involving strange states, a
symmetrized basis is more convenient. As a re-
sult we tend to shuttle back and forth between
these two bases which are defined and connected
to each other in Appendix B. Finally our conclu-
sions are discussed in Sec. V.

II. HAMILTONIAN AND ZEROTH-ORDER STATES

The states with which we are concerned here are
those which are associated with the N =2 level of
the harmonic-oscillator model, namely the states
of the five SU(6} multiplets (56', 0'), (70, 0'),
(56, 2'), (70, 2'), and (20, 1'). From the point of
view of this calculation, however, the importance
of the SU(6) symmetry is much diminished; while
SU(6) remains a useful classification scheme it
loses most of its dynamical significance. Of
course in the limit that one turns off quark mass
differences and hyperfine interactions, the states
do all collapse into their appropriate degenerate
SU(6) multiplets, and we shall find it useful to re-
fer to this limit. In the nonstrange sector of posi-
tive-parity baryons, where SU(6) is broken only
by hyperfine interactions, we have still found it
convenient, in fact, to describe the states in terms
of an essentially SU(6} basis. In the 8 = —1 sector,
however, the SU(6} basis becomes inappropriate
and we turn to a basis (which we call the uds basis)
in which the strange quark is treated as distin-
guishable from the two nonstrange quarks. That
such a basis is much more relevant for the strange
baryons has already been made clear from our
discussion of the negative-parity states. *3 We
continue to find in our discussion of the S =- 1
positive-parity states that the use of the uds basis
considerably clarifies the physics.

As in our previous study of the negative-parity
baryons 'we assume that the Hamiltonian for the
ba&yons is of the form

H = m; +Ho+Hhyy,

1,3S r&~S& r&,+ 3
I--'

2
—S;~g

(4)

The second term in (4) is called the tensor term
H&~„„, and is the interaction of one color magnet
with the external dipole field of the other. The
first term is called the contact term B~n««, it
may be visualized as arising from the interaction
of one dipole with the color magnetic field internal
to the other.

In our analysis of the negative-parity baryons
we were able to simply take V„„to be harmonic;
for the present problem this approximation is no
longer adequate. The negative-parity P-wave
baryons are all contained in a single SU(6) multi-
plet (a 70-.piet). On the other hand, the positive-
parity excited baryons are to be.found in five dis-
tinct SU(6) multiplets (as will be discussed in what
follows), and while V„„will give all the states of
a given multiplet the sam6 energy, the energies of
different multiplets will, in general, be different,
The harmonic-oscillator model, on the other hand,
would make all five multiplets degenerate with
energy 25'm above the ground state. The experi-
mental spectrum does not have this degeneracy,
indicating that the spin-independent forces are not
harmonic; as a result this useful approximation
must be abandoned. This situation should not be
surprising, especially within the context of QCD.
After all, even if the "true" confining potential
were harmonic, into what is here called V„„we
have lumped terms from the one-gluon-exchange
potential such as the Coulomb-type interaction.
There is of course no reason as well to assume
that the "true" confining potential is harmonic; a
linear potential would be a much more popular
choice (although for the relative separations rele-
vant here, a linear potential would be a choice that
is, in our opinion, no more plausible}. The har-
monic-oscillator states are nevertheless a con-
venient set of base states for our discussion, and
so we shall writ, e

Pf
Ho —Q ' + V„„,2'�] V"„=gKr, )~ + U(rg ~), (6)

where V„„,is a confining potential which is as-
sumed to be a flavor-independent function of the
relative quark separation, and gyp is the hyper-
fine interaction given by

where U(r;~) is unknown. It is of course clear that
we will no longer be able to obtain exact solutions
for the zeroth-order eigenstates of V~„, unlike
the situation in the negative-parity baryons. Nev-
ertheless, with a few plausible assumptions we
can obtain a satisfactory description of the zeroth-
order states.
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A. The S=Osector and where

We begin by discussing the solutions to the har-
xnonic-oscillator problem with

m1 m2 mS

and

(o = (3Z/m)'".

(18)

(19)

1 dp
p =~(r, —r,), p, =- m —„ (9)

1 Ch
T=— . (r4 + r2 —2r3), pg = m

v'6

and the eigenstates of the Hamiltonian which lie
2h&d above the ground state (i.e. , with N =2) can
be chosen to be

a'„,(p'+ X' —34r ') exp[--,'o. '(p'+ X')],

(12)

(13)

3q2(p, +X, ) exp[- —,'o. (p +X )],2w
(14)

+2=-—,rTp,X.exp[-o, '(p'+ X')],

3rY(p ~3 —p3X ) exp[-2cr (p + X )], (17)

where we have explicitly shown only the highest
state of an orbital angular momentum multiplet

as is appropriate to this sector. In this case IIO

becomes

p'
2m 2m

By combining these spatial wave functions with
quark spin, flavor, and color wave functions to
obtain totally antisymmetric wave functions, one
can construct the nonstrange states associated
with the five N =2 SU(6) supermultiplets of the
harmonic-oscillator model. These states are dis-
cussed and tabulated in Appendix B and Table I
where we introduce the notation ~X 'I,J ) in
which X=N or ~, S is the quark spin, I.= S,P,D, . . .
is the orbital angular momentum, w =S, M, or
A is the permutational symmetry (symmetric,
mixed, antisymmetric) of the spatial wave func-
tion, and J is the total angular momentum and
parity of the. state. The wave function (ll} is of
the type S& and leads to nonstrange states associ-
ated with the (56', 0'} SU(6) multiplet, (12) and (13)
are wave functions of mixed symmetry which lead
to states of the type S44 associated with the (70, 0'),
(14} is Dz corresponding to (56, 2'), (15) and (16)
lead to D44 associated with (70, 2'), and finally (17)
is P& and leads to states associated with the
(20, 1') SU(6) supermultiplet. The states
X2 'I.,J ) thus correspond exactly to SU(6) states
X2 '[p, , I. ]I ), where p, is the SU(6) multiplicity,

and where m=S, M and A correspond to p, =56,
70, and 20, respectively. However, this simple
correspondence will be broken when we come to
consider the S = —1 sector, and we shall find the
spectroscopic notation we have adopted more con-
venient.

In the harmonic-oscillator model (i.e. , if t'I =0)
these zeroth-order states are. , as already noted,
degenerate. If U40, these states split. apart in
mass; however, permutational symmetry ensures

TABLE I. The nonstrange e::-cited baryons of positive parity.

2] 0 4gp

gP $+

gP g+

N Sgg
N S 44/+

N2Ds $+

N2D44$+

N2D4; $+

N2D44$+

N 0S44

N4D44$+

&'S444' 6 Dgg+

b4Sg $+
a4D $+
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E(Ss) =E(56', 0') =ED- &,

E(S~) =E(70, 0'}=Eo —2&,

E(Ds) =E(56, 2') =ED —5&,

E(D~) =E(70, 2') =Eo —5 &,

E(Pg) =E(20, 1') =ED.

(20)

(21)

(22)

(2&)

(24}

This rule is proved in Appendix A, which also in-
cludes a discussion of the values for E0 and 4
appropriate to these multiplets. It is worth noting
that for an attractive potential (such as the Coul-
omb-type potential expected from @CD), this pat-
tern automatically makes the states associated
with the (56', 0') multiplet low-lying (as indicated
by the Roper resonance) and makes the unobserved

that the energy of the states $00 and $00 will re-
main the same as will the energies of the states
f22 and f22. Thus in the general case although
there are seven wave functions (11)-(17) there will
be only five energies which we may denote by
E(S ) =E(56', 0'), E(S„)=E(70, 0'}, E(D )
=E(56, 2'), E(D~) =E(70, 2'), and E(P~) =E(20, 1').
Not knowing U(r&J) it would still seem that the in-
troduction of five unknown constant~ to describe
the zeroth-order energies of these five supermul-
tiplets would be inevitable. %hile this is true in

principle, in practice these five energies are
rather tightly constrained by a simple rule: In
first-order perturbation theory any Potential
U(r, j) 2cill split the N =2 harmonic oscil-lator en

elegies into exactly the same Pattern. ' This'pat-
tern, shown in Fig. 1, has the property that the
five degenerate multiplets are always ordered as

B. TheS=-1 sector

When m& ——m2 ——m and m, =m', the harmonic-
oscillator Hamiltonian becomes

p' p'H= —'—+ ' +—K(p+X},
2m 2m), 2

(25)

where p, X, and p, are as previously defined and
where

(26)

with

(20, 1') multiplet lie very high. Since this rule is
valid only in first order, and since the perturba-
tion involved is substantial, it is not necessarily
very accurate. We have accordingly considered
allowing the zeroth-order energies of the five
supermultiplets to be independent parameters,
but find that the empirical values we determine in
this way are in excellent agreement with the spac-
ings (20)-(24). We believe this result is a strong
indication that this approach to the description of
these states is sensible.

We have so far discussed only the zeroth-order
energies of these states; we have not yet consid-
ered their zeroth-order wave functions. In view
of the success of the first-order formulas (20)-
(24), we simply assume that the harmonic-oscilla-
tor wave functions remain an adequate approxima-
tion to the true wave functions even though U is
subs tantial. This approximation certainly worked
well for the negative-parity P-wave baryons, and
the effects of U(r;&) should be quite similar there
and here.

0.26

(2o, l')
3mm

'
m }t-2m+m' ' (27}

0.26

0.16

0.56

(56,2')

(7o,o')

The eigens tates of this Hamiltonian are qui te dis-
tinct from those of the S =0 sector as the degen-
eracy between the p and X normal modes has been
broken:

(28)

where e~ «oP here since x=- mmmm, =0.6. The ei-
genfunctions are

1/2~ 3/2~ 7/2
qXX p +X (y2 S ~ -2)

00 3 ~3/2

(ss,'o')

FIG. 1. The zeroth-order pattern of N=2 super-
multipIets.

x exp(--,'o., p ——,'o.„y ),2 2 & 2 2

5/2 5/2+u +k ~ L 2 2 & 2 2
PPP — 2y2 P X exP(-2nP P —2n~ X ),

2 1r

(29)

(20}
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2 ) i/2 ~ 7/2~ 3/2

x exp(-2 n, 'p' —.'--n, 2y2), (31)

3/2 7/21 ny 2 2 j 2 2
$22 2/2 X+X~exP(-onp P —Rng X ),

(32}
5/2 5/2~n 2 2 j. 2,2

422 2/2 Pi4 exp( 2nP P, 2nx ~ } (33)r

7/2 3/2
pp ~ Qp Q}t 2 2 & 2 2

2/2 p+P+ exp( n p — nx & }
(34}

~ 5/2~ 5/2

411 2/2 (P+~2 Pp~+)

x exp(-an, p ——,n, X ),2 2 & 2 2 (35)

where once again we have explicitly shown only
the top state of an angular momentum multiplet
and where

n '= (3Am )"'—n n ' —(3Z» )'" (36)

E(S ) =E(S }=E[koo] =EPOS]=Eo —'~

I
U

I
s ~& = &/oo I

U
I too& =

E(S, ) =E[gg"g]=Ep- ~/2,

E(D») =E(D») =E[4~~]=Ep--,'o&,

E(D x) =E[/2 ]=Ep —s&

(37)

(38)

(39)

(40)

(41)

(42a}

E(~„)=E[g".]=E,. (42b)

Qn the other hand we have just seen that in the
limit U =0 the effect of m, 4 m~ is to lower the-
energy of a A. excitation relative to a p excitation
by

/
+(d =CO (43)

Thus even in the case U=0 the once degenerate
harmonic-oscillator levels are split apart with

ppp and p"„ lowest at 2(up+-'2(og, got, pg', and (2'„
at —', cu~+-', &o~, and with tg and |I/z~ the highest at

2 ~,, + 2~},. The case U& 0 is accordingly somewhat
more complica, ted here than it was in the non-
strange sector. In the SU(3) limit the effects of U

on the states (29) to (35) are obtained in terms of
the constants Ez and ~ of the nonstrange sector:

Thus if we were to treat both U4 0 and m, m„as
small perturbations, we would, after adding to all
the energies a term 580 corresponding to the dif-
ference between the zeroth-order energies of the
ground states in the S=- 1 and S =0 sectors, sim-
ply subtract 24m from the energies of the states
S» and D» and ~(o from the energies of S~~, I',~,
and D+. Since 4 is a substantial quantity, how-
ever, this approximation is probably not a very
good one as it assumes that the effect of m, 4 m&

mill be just as strong in the S states, which are
only about 500 MeV above the ground state, as in
the I'& states which lie roughly another 500 MeV
higher. The effect of m, 4 m~ corresponds to a
kinetic energy perturbation

~Z =- (1 —x)p, '/2», (44)

and would presumably be quite different in the two
cases. We have accordingly adopted an alternative
prescription to compensate for this effect: Vfe
continue to assume that the effect of m, W m„ is to
decrease the energy of a X excitation by a factor
(m/m~)', but we apply this factor to the U-per-
turbed energies of these states. Explicit calcula-
tion shows that this assumption has little effect on
our predicted spectrum; it does have a noticeable
effect however on our predictions of some mixing
angles between low-lying strange states associated
with the (56', 0') and (70, 0') SU(6) multiplets so
that one shouM view these particular predictions
mith caution.

We turn nom to the construction of the S =- 1
states associated with the five N = 2 SU(6) super-
multiplets of the harmonic-oscillator model. With
the strange quark singled out as quark 3, it is
only the 1- = 2 symmetry of the states which re-
mains relevant; we have accordingly introduced in
Appendix 8 the isospin wave functions Qc = (1/
&2)(ud+du)s and P„—= (1/v2)(ud-du)s appropriate
to the description of the A and Zo states in this
framework. Since the states of the types pp, pX,
and XX are symmetric, antisymmetri. c, and sym-
metric respectively under the interchange 1 = -='2,

one can with the aid of the usual spin wave func-
tions construct states that are flavor, space, and

spin symmetric under interchange of the two non-
strange quarks. These uds basis states are dis-
cussed and tabulated in Appendix B and Table II
where they are labelled by ll'. 'Lg ), where
F =A or Z; S, I, and J are as in the nonstrange
sector; and o'=pp, pX, XX. One can of course also
discuss these states in terms of the SU(6) basis
lY 'L,J ), and we have accordingly also dis-
cussed these states in Appendix B along with the
relation between the two descriptions. These
states may be found listed in Table III. While we
continue to favor the wads basis for the light it sheds
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TABLE II. The strangeness —3. excited baryons of positive parity in the uds basis.

gp g+

gp $+

gp $+

gp g+

A'S „$+
A S~~Q+

AsS
p~ $

AsPp~g+

AsD
pp

$+

AsD
p~ $+

AsP pgg+

A'D $+
PP

AsD p~$+

A'D „$+

A4S pgg+

A4Dpgf+

A4Pp) $+

A4D &+
PX 2

A4Ppg $+

A4D

ping+

ZsS pp$+

Z Sp~g+

Z Ppgg+

Z'D ppg+

Z'D p~9'
Z2S &+

PX 2

ZsD
pp

$+,

Z2D
kX. 2

Z'D p~k'

Z4D „g'

Z4S
PP 2

Z4D $+

Z4D
PP 2

Z4D
PP 2

on the physics (see Sec. IV), we shall also 4luote

our results in the SU(6) basis for ease of compari-
son with other work and with the nonstrange sector.

III. TURNING ON THE HYPERFINE INTERACT/ON

With the zeroth-order energies and wave func-
tions established, according to the methods out-

lined in the previous section and explicitly dis-
played in Appendices A and B, we are in a posi-
tion to calculate matrix elements of the hyperfine
interaction. In the nonstrange sector the proced-
ure is completely straightforward although there
is certainly a new element appearing: The hyper-
fine interactions will not only lead to mixing with-

TABLE III. The strangeness -1 excited baryons of positive parity in the SU(6) basis.

gP $+

gp $+

gp gt

Ag Sup+

A, 'Dug '

A, 'Dug+

A(4P ~$

A, P„$'

AssSs $+

As Sup

As P~$+

~8 ~S2

~8 ~u2'

Zs P„$'
AssDs $+

As'Du%�

'
AssP ~Q

+

ZssDs $+

Z8Duk

Zs P~$+
A sDsg+

AssD uk

Z8'Ds 2'

Z

s'Du%�'

As'Duk+

Zs'Duk'

As'S u4
'

As Dug+

Zs'Su%'

Zs Dug'

As Dug+

Zs'Duk'

As'Du%�

'
Zs Du%

Z(P Sg 2
2 Q+

Z&0 Dug'

~spDw 2
2 Q+

Z40 Ds.k+

Zw'Ss 0'
Z40'DS 9'

Z10 Ds 0

Z Ss'Dsk'
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in a given SU(6) multiplet, as in the (70, 1 ) bary-
ons, but also in general to mixing of states belong-
ing to different SU(6) multiplets. Thus, for ex-
ample, since the states N D&-,", N D&—,", and
N D&~+ all have the same isospin and J, they can
in general mix with each other. (In this particu-
lar case, in fact, we shall find that the first two
of these tend to be strongly mixed. ) The S =- 1
sector, while still straightforward, has the addi-
tional complication of the U-induced mixings be-
tween p - and X -type states. The nature of these
effects is easy to understand: For a harmonic
oscillator p and X are decoupled eigenmodes, but
U couples them. In the limit where the mixing by
U is very strong the eigenstates of the Hamiltonian
would become

Ao = V-(&oo+ &oo)
V2

(45)

6'o = q-«i)o- ~eo»
V2

(46)

(too + too),
v'2

~ 22 (~22 42) &

and the SU(6} limit would be recovered in the ab-
sence of hyperfine interactions. Of course the
p&-type states are unmixed by U and so the simple
uds interpretation of these states remains un-
spoiled. In fact we shall see that while S» and S»
are quite strongly mixed by U, the D» and D»
states remain relatively pure. Thus although the
situation is not as clean bere as in the negative-
parity baryons where g' and g necessarily re-
mained pure, the ups basis remains not only sim-
pler, but also more useful. In particular, as we
shall discuss at greater length in Sec. IV, just as
the (' states of the negative-parity baryons de-
couple from KN, so here all of the states S», S»,
I'», D„, and D» decouple from this channel: A

one-quark operator cannot emit the s quark (into
the Z) and at the same time deexcite the Md pair
in the p oscillator into its ground state as would be
required for a transition into a ground-state nu-
cleon. This decoupling plays an extremely import-
ant role in the interpretation of our results in
Sec. IV since most of the data in the S =- 1 sector
comes from KN scattering. In summary, in the
8 =- 1 sector the states are4hifted and rpixed not
only by Hh» but also by U, and in a given isospin
and J sector one must simultaneously diagonalize
all of these effects.

%ith this overview of the calculations completed,
we turn to details. In the nonstrange sector the
states are completely symmetric in flavor, spin,

H'„, on the other hand, is an operator with spin
2 and orbital angular momentum 2. It cannot
therefore connect two S = & states, nor can it take
L =0- -= L =0 or L =0 = = I =1.

The S =- 1 states are somewhat more compli-
cated, as usual. In the (70, 1 ) states where we
could find the exact eigenfunctions for rn), & m~, we
simply proceeded. by brute force, the calculations
being considerably lengthier since (4S) could no

. longer be used and since individual matrix ele-
ments were more complicated. Here, in view of
the approximations we have been forced to use as
a result of the inadequacy of the harmonic poten-
tial, we forego the calculation of the effects of
wave-function distortion on byperfine matrix ele-
ments (which were small anyway} and make our
calculations in the limit n, =a)„. Of course we con-
tinue to take into account the I/m&mj dependence
of the hyperfine interaction:

12 13 23
&hm =Hh~o + &+ovo + +om) (50)

where H'„» is (4) with m~ —m& —m, and x=mo/m, .
The main difficulty in the calculations is simply

their length as a glance at the relevant states in

Appendix B will make evident; in an attempt to
minimize errors each of us has calculated all ma-
trix elements independently. The results are dis-
played in Appendix C in the SU(6) basis; the matrix
elements in the uds basis may be obtained using the
results of Appendix B. Given-these matrix ele-
ments and the zeroth-order matrix elements of the
Hamiltonian discussed in Appendix A, the calcula-
tion becomes a problem in matrix diagonalization
once one knows the numerical values of the para-
meters appearing in the matrices. Almost all of
these parameters have been previously deter-
mined; for example, all hyperfine matrix elements
are expressed in terms of

and space under interchange of any two quarks, so
it follows that

&a la„~ lx) = 3&a la~o, lw), (49)

where lA. ) and lB) are any two states. This trick
considerably simplifies the calculations. There
are some other general points worth noting. Since
H'2„ t is an operator with spin zero and orbital
angular momentum zero, its matrix elements van-
ish between states of different quark spin or differ-
ent total orbital angula. r momenta. It is, more-
over, clear that the matrix elements of H' „, t are
independent of the coupling of the quark spin and
the orbital angular momentum to form a total an-
gular momentum J. Thus, for example,

D8~2 l&~nt~t lN'Dso & = @'+so l&c~t~t I+'Dso'&
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FIG. 2. Comparison of the predicted and observed spectrum of low-lying ~= 0 positive-parity excited baryons (mass
in MeV). The sol. id bars are the predictions of the text. 'The shaded regions give the likely mass range for those res-
onances l. isted by the Particle Data Group (Ref. 16) as having been reported in at least two partial-wave analyses.

x —— =0.61 a 0.05.3pa
Pp

(62)

The only new parameters which we must introduce
are therefore the masses Ez and & of Eqs. (20)-
(24) which are given and discussed in Appendix A.

The spectrum which follows from the diagonali-
zation of the resulting matrices is displayed in
Figs. 2 and 3, and both the spectrum and the com-
position of the eigenstates in terms of the uds and

SU(6) bases are tabulated in Tables IV, V, and VI.

IV. COMPARISON TO EXPERIMENT AND DISCUSSION

Before making a comparison to experiment it is
useful to first discuss some selection rules rele-

4o,',n3
2

=300 MeV,
342m m„'

from the known &-N mass difference in theground
states. Similarly, x = mmmm~ and 4m -=m, —m„are
also known from our previous work'2 3(see'Ap-
pendix A). Of course the value x =0.6 which we
use may also be obtained from the measured rabo
of the magnetic moments of the proton and A:

vant to the interpretation of our results in the
S =- 1 states. The description of hyperons in the
"uds" basis is, as mentioned previously, very in-
formative with respect to their decay couplings.
This is due to selection rules which were already
noted for negative P-wave hyperons. The p-ex-
cited hyperons (in which the orbital excitation is
in the ud pair) are not allowed to decay into the

EN, K4, K*N, or Z"4 channels via a single-quark
transition operator. This rule holds because a
single-quark operator cannot at the same time
emit the strange quark (into E or Z") and also de-
excite the ud pair to the ground state. The same
rule holds also for the positive-parity hyperons
considered here. Of the three types of excitation
which can occur: M. , Ap, and pp only the M. type
couples to these four channels. While this selec-
tion rule is exact for harmonic-oscillator sys-
tems, it will remain valid as long as the orbital
wave functions of the initial and final state are
each well approximated by single wave functions
of a harmonic oscillator or, more generally, as
long as the orbital angular momentum of the ud
pair is different in the initial and final states. For
example, configuration mixing in the nucleon leads
to violations of this selection rule.
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FIG. 3. Comparison of the predicted and observed spectrum of low-lying S= -1 positive-parity excited baryons (mass
in MeV). The solid (dotted) bars are those resonances predicted by the model to be strongly (weakly) coupled to R&.
The shaded regions give the likely mass range for those resonances listed by the Particle Data Group (Ref. 16) as hav-
ing been reported in at least two partial-wave analyses.

All these states can decay by pion emission. '

The states XX, Xp, and pp, are all equally allowed
to decay to ground-state hyperons. One could,
however, distinguish two kinds of pion decay to
P-wave baryons: (pp- p, pX- p or X, and A.X- X)
and (pp X, XX p); in a harmonic-oscillator mod-
el the amplitudes for the second kind of coupling,
like pp- X are suppressed by two factors of ka
(where a is the size of tbe system) relative to
couplings like pp- p. In the bag model, where the

p excitations correspond to excitations of non-
strange quarks and the X excitations correspond to .

excitation of strange quarks these suppressed
transitions are in fact forbidden as single-quark
transitions as is the transition pX- ground state.
It would be interesting to know whether experimen-
tally the "suppressed" amplitudes are in fact
smaller than the "allowed" ones.

There is an extension of these selection rules to
the "*sector which we do not discuss explicitly in
this paper. In this channel only XX excitations (or
the X excitations for negative-parity "*'s) are
allowed to couple to the m or=p channels, where
:- is a ground state .(1317) or =(1530) baryon.

These selection rules are relevant to the posi-

tive-parity hyperons considered bere since (as
for negative-parity hyperons ) many of the states
are almost pure in the uds basis, and one can
then see at a glance whether they are allowed to
couple to the KV channel. This is the generaliza-
tion of "ideal mixing" for baryons from the P-
wave hyperons to this case. In practice this pur-
ity is more nearly realized for D states than for
S states. This is due to the relative importance of
the SU(6) breaking by masses which is larger than
the SU(6)-conserving "& splittings" in the D states
but not in the S states. The borderline case is, in
the Z—,

"sector where the D states are pure in the
uds basis, while the D states are pure in the
SU(6) basis. This is due to a delicate interference
between hyperfine interactions and the 4 splitting.

With this background, we now turn to a detailed
sector-by-sector analysis of the results:

N 2'. Two recent analyses' have reported seeing
the N(1990)-,","and this resonance should prob-
ably now be considered as firmly established;
thereby, the existence of the whole (VO, 2') multi-
plet which we expect in this region is also es-
tablished. The reported mass values for N(1990)-,"
are in good agreement with its predicted posi-
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TABLE IV. The calculated spectrum and composition in the ~ =0 sector.

State

N$+

6$+
N$+

2

N$
Q$+

N$+

N$+

2

N++
2

+

+

N$+

N$+

N$+

QQ +
2

b, $

Mass
(MeV)

1955

1915

1715

1955

2025

1940

1975

1710

1870

1955

1980

2060

1975

1405

1705

1890

1875

1925

1.00

1.00

0.88 -0.48 0.01

0.48 0.84 0.27

Composition

-0.13 —0.23 0.96 ~
0.94 0.38"

-0.38 0.94

-0.17 0.84 —0.52 0.03 0.00

0.75 0.34 0.28 -0.46 0.16

0.59 -0.05 -0.23 0.61 -0.48

-0.23 0.41 0.77 0.28 -0.34

0.11 0.08 0.12 0.58 0.79~

0.98 0.18 -0.10

—0.18 0.92 -0.36

„O.OS O.M O.S4 J
099 017 001 000

-0.15 0.94 -0.31 -0.07

-0.06 0.30 0.83 0.46

0.02 -0.08 -0.45 0.89

"0;64 0.77

0.77 -0.64

N4D &'
M 2

64D~ $+

N2De $+
N2D $+
N4D

a4D~ $'
42D 44/+

N D~f+
ND N 2

N'D „$'

64S~ $+

&'Ds 0'
~2D $+

N Sgg+
N2S 44$

+

N2Pgg+

62S44$+

64Dg $+

tion, and it is the only state seen in this mass
range in the F17 partial wave, as expected.

The well-established 6(1950)-'" reso-
2 2.

nance lies very near its expected position and is,
as required, the only state seen in this mass range
for the F37 partial wave.

A2' There have been recent reports" of the
A(2020) 2"6 which, when combined with the evi-
dence for N(1990)~~', makes the existence of this
resonance seem likely. The range of masses
quoted for this resonance is consistent with our
prediction. We also predict this resonance to de-
couple from the KV channel; the experimental
branching ratio is in fact only 0.05 +0.02.

Z7'.. We predict the existence of two Z 2' states,
one at -2015 MeV and one at -2105 MeV. The
lower-mass resonance can clearly be identified
with the well-established Z(2030)-'. '6 The absence
of the higher-mass resonance might be thought a
problem, but in fact constitutes a success of the
calculation. As is clear from Table V, which
gives the composition of these two states in the
uds basis, the upper state is pure D» and so as
discussed in Sec. III it soil/ be strongly deeoNPled

from the KV channel The m. odel therefore cor-
rectly predicts that- only one resonance should be
readily observed in this channel. Note that this
conclusion is not obvious in the SU(6) basis of
Table VI. The partial width of the observed
Z(2030) into the KN channel is about 40 MeV which
is quite corisistent with our expectation of strong
coupling.

N&'. The position of the well-established
N(1688)—,'" is rather well reproduced by the mod-
el. It is worth noting that the substantial depar-
ture of this statefrom its zeroth-order position
arises both from diagonal contact terms and very,
strong mixing via the contact forces between
N Dz2' and N'D„2'. The N(1688) —,"is therefore
predicted to be a rather complete mixture of these
two substates, as suggested by some recent anal-
yses. " We also predict two higher states at
-1955 MeV and -2025 MeV which correspond
rather well. to the N(2000) ,""This eff—ec.t in the
F15 partial wave has recently been seen in two
new partial-wave analyses" and so the evidence
for these states is now moderately strong.

There is a long-standing suggestion'~ that
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TABLE V. Calculated spectrum and composition in the S =-1 sector in the uds basis.

State

A$"
+

z $+
A$+

A++
2

+

A$+

A$+
+

z $+

z $+

z $+

z$+
A$+

A$+

A$+

A++
2

A$+

A++ '
2

A$+

z $+

$ +

y Q+
2

+

z $+

zg+
zg+

+

A$+

A$+

A$+

A$+

z $+
z$+
z $+
zp+

$ +

+

Mass
(MeV)

$070

2015

2115 .

1815

2010

2095

2130

2160

1940

2035

2060

2105

2160

1810

1960

2005

2080

2110

2175

1865

2005

2080

2100

2120

2165

1555

1740

1860

2020

2175

2205

1640

1910

1995

2025

2080

2165

1.00

0.96

-0.27

0.27

0.96 „

Composition

~ 0,98 -0.10 0.16 0.00 -0.01 ~

0.14

-0.11

0.93

0.29

—0,32 0.07 -0.12

0.86 0.39 0.11

0.05 -0.17 -0.36 0.87 0.28

~ 0.03 0.13 -0.03 -0.29 0.95 ~
0.63 0.70 -0.33,0.01 -0.02

-0.16 0.13 -0.06 0.31 0.93

0.68 -0.31 0.63 0.13 0.16

0.35 -0.63 -0.68 -0.09 0.13

0.02 0.07

-0.97 -0.14

0.13 -0.94 0.32

0.10 -0.02 0.10 -0.11 0.00

-0.13

0.01

-0.05

0.27

0.47

0.20

-0.69 0.27 -0.49 -0.33 -0.06

-0.30 -0.28 0.72 -0.30 0.10

0.09 -0.73 -0.45 -0.01 0.47

-0.03 -0.50

0.17 - —0.58

-0.63 -0.20 0.16 0.50 0.19

0.02 0.06 0.07 -0.69 0.39

-0.05

0.47

-0.15

-0.37

-0.54

0.26

0.8 7

0.03

0.25

0.22

0.08 0.53 0.08 0.26 0.76

0.07 0.05 0.03 0.01 -0.07 0.00

-0.03 0.01 0.60 0.71 -0.33 0.00

-0.13 -0.79 -0.38 O.14 -0.12 -0.j,o
0.30 0,51 -0.42 0.08 -0.35 0.04

-0.11 -0.01

-0.09 0.06

0.48 -0.20

-0.58 0.04

0.42 -0.54 -0.40 -0.31

0.38 -0.13 -0.45 0.53

-0.04

0.75

-0.56

-0.34

0.05

0.66

0.69

0.28

-0.-56 0.24 -0.03 -0.07 -0.11 -0.78

0.09 0.01 0.00 0.00

-0.46 0.00 0.00 0.00

0.85 -0.29 -0.01 -0.06

0.12 -0.08 -0.25 —0.85 -0.10 —0.44

-0.03 0.02 0.06 0.45 -0.23 -0.86

0.00

0.84

0.00

0.53

0.00 -0.02 -0.97

0.11 0.01 0.00

0.25

0.00

-0.23

-0.19

-0.41

0.51

0.31

-0.76 0.14 -0.29 0.05

-0.02 0.28 0.88 -0.12

0.63 0.24 -0.31 0.14

0.1S -0.31

0.04 -0.08

-0.06 0.83 -0.05 0.42

0.03 0.40 -0.21 -0.89

0.55 -0.34 0.08 -0.09 -0.40 0.18 -0.61 -0.05

A4D p~$+

Z'D „$+

a2a pk 2

A~D pp$+

AD ping

A4Ppgg+

Z~D
p

Z'D p~4'
z 4/I) $ +

PP

A~Dppg+

A'D p~$'
A4S p~$+

A4Pp~f+

AP ~$+

x~~'
C

Z'Dpp~'
Z2D $+

;PL

z pppg+

A'S„$'

A4Dp~g+

A P ping+
A~P

~ $+

z'spp $'

z'P p~k'
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TABLE VI. The calculated spectrum and composition in the S = -1 sector in the SU(6) basis.

State
Mass
(MeV) Composition

A$"
+

2

Zg
A++

2

A$+

A$+

A$+

A$+

z $+

g Q+
2

zg'
Z$+

z $+

A$+

A$+

A$+

A~
2

A$+

A++
2

A$+

z $+
+

2

+
2

+
2

+
2

+

z $+
+

A$+

A$+

A+
2

A+
2

A$+

z$+
+

z $+
z$+
z $+

z$+

2070

2015

2115

1815

2010

2095

2130

2160

1940

2035

2060

2105

2160

1810

1960

2005

2080

2110

2 145

2175

1865

1935

2005

2045

2080

2100

2120

1555

1740

1860

2020

2175

2205

1640

1910

1995

2025

2080

2165

1.00

0.87 -0.49"

0.49 0.87

0.81 —0.48

0.12 —0.43

-0.53 -0.69

-0.22 -0.32

0.34 0.00 -0.01

—0.88 —0.07 0.12

0.28 -0.39 -0.11

0.0 9 0.87 0.28

0.00

0.94

-0.02

0.26

0.06

0.00

0.87

0.21

0.12 -0.29 0.95

-0.27 0.02 -0.20

-0.19 -0.44 0.10

0.94 -0.02 -0,05

0.20 -0.02

0.06 -0.44

0.].0 -0.79

0.01 0,16 0.97

0.06 -0.89 0.12

-0.35 0.49 -0.01 -0.11 0.00

-0.49

0.72

-0.45

0.10

0.34

0.11

-0,69 -0.29 0.27 -0.33 -0.05

-0.44 0.01 -0.28 -0.30 0.10

-0.06 0.19 -0.73 -0.01 0.47

0.16 -0.37

0.06 -049
-0.21 -0..68 —0.20. 0.50 0.19

0.39 -0.36 0.05 -0.69 0.39

0.07 0.14

0.95 -0.29

-0.10 0.21 0.53

0.02 0.09 -0.04

0.26 0.76

0.02 -0.06 0.00

-0.08 -0.13

-0.08 -0.44

-0.22 -0.54

0.93 -0.02 -0.29 -0.03 -0.18 0.00

—0.14 -0.66 -0.32 0.47 0.15 -0.10

-0.24 0.56 —0.50 -0.15 0.0 1 0.04

0,00

0.98

-0.07 0.07 -0.22 -0.06 -0.57 -0.10 -0.78

0.02 0.10 0.02 0.00 0.00

0.09

-0.04

0.30

0.91

-0.95 -0.01 0.00 0.00

0.2 9 -0.29 -0.01 -0.06

0.03 -0.28 -0.08 -0.85 -0.09 -0.44

-0.01 0.07 0.02 0.45 -0.23 -0.86

0.00

0.97

0,00

0.23

0.00 -0.01 -0.97

-0.08 0.00 0.01

0.25

0.00 ~

0.20 —0.91

0.08 -0.27

0.07 —0.01

-0.17 —0.10 0.30 0.05

0.23 0.82 -0.42 —0.12

0.91 -0.04 0.39 0.14

-0.08

-0.02

0.21

0.08

-0.29 0.54 0.63 0.42

-0.04 0.13 0.43 —0.89

0.15 0.63 -0.15 0,00 -0,72 0.12 -0.14 -0.05

-008 -006 -008 020 019 048 -076 -031
-0.02 -0.11 -0.17 -0.38 -0.06 -0.44 -0.57 0.53

As Dgg+

Z4D &'
ip S

A 2D ++
8

A 'D &+
i N 2

A 2D &+
N 2

A 4D
8 N 2

Ai4P~ j +

2D $+

Zip4Ds 4
Zs Du $+

Zs'Du 0'
Zgp Dpi $+
As'S„q.
AssDq $+

A)sD~ $+

A 2D
kf 2

AsD~$
A4Pi X 2

AssP„g+

Zgp Sg $+

Z4S
8 N

Z D8 S 2

Z 4D S 2

ZsD~$
Zs'Dz $'
Z1p DM

Zs Px$
A2S

8 S 2

A 2S ++
8

a 2S &+
I N 2

As4Du 4+

1 A 2

AssP~ $+

Zsssg $+

Zs'S„$'
ZiP S~ 2

2 X+

Z~p'Ds 4'
Zs D~k
Zs'Pg $
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the b, (1890}2,' is a mixture of A4De-,"an. d A2D„

in order to account for its strong I -wave decay to
~w. We indeed find a state at 1940 MeV which,
while still dominantly 4 Dz &', has undergone sub-
stantial mixing via the tensor force with 62D~-, '
corresponding to a mixing angle of -+25', in good
agreement with the phenomenologieal analysis.
While we predict that the orthogonal partner to
A(1890)2' should be nearby, there is no problem
associated with its not having been seen since, as
pointed out in Ref. 19, for a mixing angle of -+25
it will practically decouple from the mX channel.
We consider the resolution of this problem to be
further strong evidence in favor of the interaction (4).

A&'. There are five resonances expected in this
channel. The lowest one is clearly identified with
the A(1815)-,",'6 which we predict to be a state that
is quite pure D» and so strongly coupled to IQV;

the observed partial width of this resonance into
KV is about 50 MeV. The remaining states in this
partial wave are allpredicted to lie in the range from
2000—2160 MeV corresponding to the A(2110)-,"."
Note from Table IV that all these states are dom-
inated by configurations in which there is p ex-
citation so that they are predicted to be weakly
coupled to KV as observed: the KN partial width
of the A(2110)~" is measured to be -15 MeV. 2' For
comparison recall that the partial width of the pure
p excitation A(1830) 2 is 4 MeV. ' Once again we
note that while this observation is trivially made
in the uds basis, it is completely obscured in the
SU(6) basis (see Table VI).

Z&'. There are once again five resonances ex-
pected, and the lowest one may be rather clearly
identified with the Z(1915)-2'.' Once again we
expect the remaining states in this partial wave
to cluster together around 2100 MeV, possibly
corresponding to the state Z(2070}—,".' Since,
however, these states have correlations between
their spin and spatial wave functions opposite to
the A' s, they are mixed very differently and there
is no reason why they should not couple to KN.
Note that while the D states are relatively pure
in the uds basis the D states are pure in the SU(6)
basis; this is a result of interference between hy-
perfine and "4"interactions of opposite sign in the
two different spin states.

N2'.. We predict that the lowest-mass state in
this channel will once again be a (56, 2') with a
substantial (70, 2') component, and this state may
be identified with the N(1810}—,"6which is now re-
ported to lie in the range from 1650 to 1750 MeV.

There is now a well-established resonance'
in the region from 1650 to 1900 MeV which is con-
sistent with the predicted resonance at 1780 MeV;
the large spread of the limits on the mass of this
resonance has been attributed' to the possible

presence of additional resonances in this region in
accord with our expectations.

A&'. This sector is quite similar to the A2'
sector, with a well established low-lying reso-
nance, the A(1860}2',' which we identify as being
a state that is almost pure D» and therefore
strongly coupled to KV; the observed partial width
to the KV channel for this resonance is about 40
MeV, ' While six othex states are expected in this
partial wave, including some at relatively low
masses, we consider it to be a substantial success
of the model that it Predicts all of them to decouPle
from the KN channel. We stress once again that
this conclusion, while obvious in the uCs basis of
Table V, would be very difficult to see in the SU(6)
basis of Table VI.

Z&+'. Once again this sector is predicted to be
very different from the corresponding A—,

"sector.
There are a plethora of states predicted in this
channel of which two should be low-lying at around
1900 MeV, while the rest cluster at around 2100
MeV. This corresponds roughly to the observed
situation in that two structures are seen, one in
the region ground 1850 MeV' and the other, more
well-established, around 2100 MeV. '6 Unlike the
A2' sector, most of these states do couple to KV.
Note that the bvo lowest states are predicted to be
fairly pure in the SU(6) basis.

N&". The model successfully accounts for both
the N(1470}—,

"'~ and N(1780)—,
' '6 which are predict-

ed to be dominantly S~&' and 8»', respectively,
in accord with experiment. Caution should be
exercised in reading the purity of N(1780)—,

"from
Table IV, however, as in the case of this reso-
nance there is an important effect which we have
neglected: This state mixes quite strongly with
the N(940)&'. (It is in fact this mixing that is re-
sponsible for the charge radius of the neutron. ~}

In general, we have found that such interband mix-
ings are not very important, but in this case there
is an especially large mixing matrix element which
induces an admixture into N(1780)-, ' of the ground-
state S~&' configuration with an amplitude of
-& which is even larger than the mixing to the
Roper resonance. It has in fact recently been
suggested that N(1780)~", has substantial configura-
tion mixing. '8

We find that both of the states we expect
in this partial wave lie within the region quoted
for the well-established A(1910}2'.'6 We predict
that these two states have been almost completely
mixed by the tensor force; the rather broad range
of quoted values for this resonance may be a re-
flection of the presence of these two states which
should have quite distinct properties. This mixing
could help in resolving well known difficulties in
the photoproduction of these states. ' Recently
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there has been a report'6 of a one-star resonance
at 1550 MeV in this channel which cannot be ac-
commodated in the model discussed here.

A&'. Here we expect six states distributed in
mass all the way from 1565 to 2210 MeV. The
lowest state, which turns out to be an almost pure
A8 S~—,

"state (the octet partner to the Roper reso-
nance), may readily be associated with the A(1600)-,' '.
Since this state has been seen in two recent
partial-wave analyses, it is now reasonably well
established. The calculation further predicts that
of the states we expect in this channel, only the
low-lying ones are coupled to KN (see Table V once
again); this corresponds very well with the experi-
mental situation. Thus besides the A(1600)~" we
expect only two other resonances to be observed
in this channel, one at 1725 and the other at 1870
MeV. These two states lie within the region quoted
for A(1800)~';" we anticipate that this effect will
eventually be resolved into two states. As expect-
ed the observed resonances in this channel have
fairly large partial widths to KV.

Z&'. We expect a low-lying state at 1640 MeV
which may rather clearly be associated with the
Z(1660)&'.' While dominantly a Zs S+2' state, this
state like the Roper resonance but unlike the
A(1600)—,'", has a significant admixture of ZB S„-,".
Aside from the state at 2165 MeV which we pre-
dict to decouple from KN, all the remaining states
in, this sector are expected to lie rather close to-
gether from 1905 to 2045 MeV, and we may asso-
ciate these states with the Z(1880)—,

""which is
seen as an effect in this channel from 1780 to
1980 MeV. We have no place for the one-star
resonance Z(1770)~",'8 on the other hand, and as-
sume that this effect will prove to be spurious.

This completes the detailed comparison of our
predictions with experiment. . It is clear that the
model successfully predicts with. reasonable ac-
curacy the position of the lowest one or two reso-
nances in every partial wave. Moreover, in many
eases, especially in the A sector, the model also
explains plausibly why missing states are not seen
in partial-wave analyses of KN scattering.

In view of the detailed agreement of these cal-
culations with experiment, and the previously
demonstrated relevance of these ideas to the
ground-state baryons and the excited baryons of
negative parity, it seems reasonable to us to con-
clude that the simple model of nonrelativistic
quarks moving in a flavor-independent confining
potential perturbed by the hyperfine interaction
leads to an understanding of the properties of all
the low- lying baryon states.

This is not to say, of course, that there are no
other effects that play some role in determining
the character of these states. For example, there

will certainly be mass shifts and mizings due to
interactions of these resonances with their decay
channels, '~ and there may well be residual spin-
orbit effects (see below). We would claim only
that the effects discussed here are responsible for
determining the principal features of these states.

The interpretation of these results at a funda-
mental level, however, remains open. While our
initial assumptions have not been rigorously de-
rived from QCD, the existence of strong interac-
tions analogous in form to electromagnetic forces
is certainly suggestive of @CD. The major stumb-
ling block to the association of these forces with
QCD is the apparent absence of the spin-orbit
forces that would also be expected from one gluon'
exchange. In the negative-parity baryons we con-
cluded that spin-orbit forces, if present at all,
were reduced to a level of less than about 10%%uo of
naive expectations from one gluon exchange. 3 The
situation here is- very similar and once again a
full-strength spin-orbit coupling is out of the ques-
ti,on, although in this ease the relative imprecision
of the data and the complexity of possible mixings
only allow the conclusion that any residual spin-
orbit coupling is at a level of less than about 20%%uo

of the one-gluon-exchange contribution. Qf the
two mechanisms we have previously discussed
as being possible causes of the relative suppres-
sion of spin-orbit forces, the idea of a large ano-

j

malous color magnetic moment ean most easily
accommodate this new piece of evidence. On the
other hand we believe the notion that the one-gluon
exchange contribution to the spin-orbit force is
being nearly cancelled by a spin-orbit interaction
due to Thomas precession in the confinement po-
tential is a more attractive one, and it would
clearly be interesting to know if it is also compat-
ible with the data. Unfortunately, the considera-
tions presIE. nted here have confirmed the warnings
issued in Ref. 3 concerning the model dependence
of such a cancellation by making it clear that the
confining force is not harmonic, so that the cal-
culation of the spin-orbit effects due to Thomas
precession in the confinement potential becomes
doubly uncertain: Not only can we not calculate
the three-body contributions, but even the two-
body contributions are largely uncertain. Without
further understanding of the confinement forces,
it is therefore very difficult to know whether this
mechanism is still viable„although it is at least
surprising that the cancellation should remain so
effective in passing from I =1 to L =2'.

These last considerations underscore the im-
portance of trying to deduce the form of V~„. The
rough success of simple harmonic forces when
perturbed by an attractive potential, discussed in
Sec. II, mage the prospects for such a study rea-
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sonably bright. Once in possession of a potential
that reproduced the now known zeroth-order posi-
tions of the six lowest-lying SU(6} supermultiplets,
(56, 0'), (70, 1 ), (56', 0'), (70, 0'), (56, 2'), and

(70, 2'), it will not only be possible to test the just-
mentioned mechanism for spin-orbit suppression,
but also to test the accuracy of the approximations
we have been forced to use for the zeroth-order
wave functions, and for the zeroth-order energies
in the S=- 1 sector. We hope to report on these
issues shortly.

V. CONCLUSIONS

We have extended our previous study of quark
hyperfine interactions in baryons, which was fair-
ly successful in describing the properties of the
negative-parity P-wave states, to low-lying posi-
tive-parity excitations. The conclusions we reach
concerning these multiplets are determined by
previous work apart from uncertainties concerning
zero-order energies and wave functions which are
taken to be approximately those of the harmonic-
oscillator model.

The positive-parity baryons have been considered
in the quark model by Dalitz, Hor. gan, and their
collaborators. ' The present work is a natural
continuation of these analyses which incorporates
recent prejudices about quark interactions. The
model discussed here differs from earlier models
in several respects. Firstly, the SU(3) breaking
occurs only via quark masses. Secondly, the hy-
perfine interaction (contact+ tensor forces) is the
only spin-dependent force: Spin- orbit forces are
neglected. Aside from these there are only cen-
tral "nonexchange" forces between quarks; it is
because of this feature that we can use nonsym-
metrized uds wave functions. In practical terms
these restrictions imply. that we have a much
smaller number of free parameters at our dispo-
sal as compared to earlier quark models.

The results of our calculation are very encour-
aging: The simple picture of flavor-independent
confinement forces in which mass splittings and
mixings of baryons are dominated by strong forces
of magnetic-dipole- magnetic- dipole charac ter
continues to work well. While the members of
these multiplets are not as well known experimen-
tally as those of the ground state and the "70 piet, "
the lowest one or two resonances in almost, every
lJ channel in the S =0 and -1 sectors are known

and are seen at the masses we expect. In addi-
tion, there is good evidence, especially from the
coupling of the A states to KlV, tha, t the mixing of
these states is correctly given by the model.

It therefore seems entirely possible that the
model discussed here is capable of explaining the
masses and mixing properties of all low-lying

baryons. While the implications of this conclusion
are not completely clear at the moment, it is diffi-
cult not to associate the success of these calcula-
tions with @CD, which inspired them. In any event,
if our conclusions are correct, they certainly
should provide clues in the search for an under-
standing of the strong interactions.

Note added in proof. The effect of configuration
mixing in the nucleon on some selection rules,
mentioned at the beginning of Sec. IV, has now
been discussed in more detail by N. Isgur, G. Karl,
and R. Koniuk, Phys. Rev. Lett. 41, 1269 (1978).
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APPENDIX A: THE ZEROTHDRDER ENERGIES OF THE
POSITIVE-PARITY EXCITED BARYON

SUPERMULTIPLFTS

We begin this Appendix by proving that any po-
tential

U =Q U(r(q)

~E(56', 0') =~E(S,}=-', a - 5+-'c,

AE(70, 0') = n.E(S~}=-a — 5+
8 c, —

4E(56, 2') =nE(Dz) =-'a+,2,c,

bg(70, 2') =DE(D„)=-'a+ i 5+-,'c,
. 3

AE(20, 1') =n.E(P~) = ~5,

where

(A 1)
(A2)

(A3)

(A4)

(A5)

3Qa—= &~ d pU(v2p)e (A6)

b=--'„, d'pU 2p p' -."', (A7)

c dpU 2p pe
If we now define

(A8)

splits the N =2 harmonic-oscillator levels into the
same pattern. We know by symmetry, first of all,
that U will leave the pairs of wave functions of
mixed symmetry ((op and happ l)2 and P2„) degen-
erate. Using (11) to (17) and (49) it then follows that
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F., =- 5a~+-'S, (A9)

4= —5a+ 5b —~c (A 10)

then the results (20)—(24) follow immediately.
It. remains to find the best values for these two

parameters empirically. A rough qualitative
judgement indicates that Eo =2020 MeV and 4 —420
MeV; these values give for the zeroth-order ener-
gies of the five supermultiplets which are immed-
iately relevant to the S = 0 sector:

E(56', 0') = E(Ss) =1600 MeV,

E(70, 0') =E(S„)=1810 MeV,

E(56, 2') =E(D,) =1850 MeV,

E(70, 2') =E(Ds) =1935 MeV,

E(20, 1') =E(P&) =2020 MeV.

(All)

(Ai2)

(A13)

(A14)

(A15)

Next, using the procedure outlined in Sec. IIB
we can calculate the zeroth-order matrix elements
of the Hamiltonian in the S =- I sector. One ob-.

tains in terms of the uds states

Although they are not really essential for the
purposes of these calculations, there are some
noteworthy aspects to these deviations from the
harmonic- oscillator picture. For a short-range
attractive potential the energy of (56, 0') will be
decreased more or less in parallel to (56', 0'),
while (70, 1 ) will move down more slowly. This
allows (56', 0') to meet (70, 1 ) as required. This
also means that the (70, 1 )-(56,0') split:ting of
-500 MeV is anomalously large, and that a more
typical spacing is (56, 2'}-(70,1 ) which is only
half as large. In terms of the present framework,
we may say that the unperturbed harmonic oscil-
lator would have had a spacing of the order of
250 MeV. This idea is then consistent with two
important facts. First, the (56, 4')-(56, 2') split-
ting, as presumably measured by the 6(2420)-"-
&(1950)p' mass difference, corresponds to an
oscillator spacing of -250 MeV. Second, the value
e-250 MeV corresponds (with mp =350 MeV) to a
more realistic value of the proton charge radius
((r2)p' ~2 =0.7 fm) than does u&- 500 MeV and is
therefore much more amenable to treatment as a
nonrelativistic system.

E(S„)= iSO5 MeV,

E(S,g = 1945 MeV,

E(Spy) =1895 MeV,

(S„~V
~
S„)=—105 MeV,

E(Du}=1975 MeV,

E(Dp„) =2065 MeV,

E(Dpp) =2085 MeV,

(D„ i
V iD„&=- 4O MeV,

E(P,),) =2145 MeV,

(A16)

(Ai7)

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)

APPENDIX B' THE APPROXIMATE ZEROTHARDER
STATES OF THE POSITIVE-PARITY EXCITED BARYONS

In this appendix we shqw the SU(6) and uds wave
functions of the positive-parity baryons construct-
ed out of the harmonic spatial functions (11) to
(17}and (29) to (35), the flavor wa.ve functions

(octet (p type)):

py' =—(udu —duu)
v2 )

(udd —dud},'n (B2)

E(Ss)s, ——1745 MeV,

E(Ss)s ) ——1955 MeV,

(Ssx~H ~Ss)s (
——+45 MeV,

E(Ds)s, =1990 MeV,

E(D„}s,—2070 MeV,

&Du& I
H I+ s&s=-1 = + 55 MeV,

E(Pg) s (
—2145 MeV.

(A25)

(A26)

(A27)

(A28)

(A29)

(Aso)

(A31}

where, based on our previous analyses, we have
taken the zeroth-order energy difference between
the S =- 1 and S =0 ground states to be 190 MeV.
Equivalently, we have in terms of the wave func-
tions appropriate to the SU(6) basis that in the
S =- 1 sector

p 1.
(2uds —2dus +usd —dsu —sud ~ sdu)12 )

(B3)

Qcp
——p (usd —sud +dsu —sdu);

(octet (X type)):

(udu +duu —2uud),

(B4)

(B5)

(udd +dud —2ddu),
v'6

p (usd —dsu +sud —sdu),

(86)

(B7}

I]I p
=— (usd +sud +dsu +sdu —2uds. —2dus);

i2
(as)
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(d couplet):

Q4,"=uuu, etc. (B9}

I'8(70, 2')-' ) = I82Dsl'&

=k(x'4 %~2+ X'.4 '422

1
(uds +dus +usd + dsu + sud +sdu), etc. ;

p p )t X )t
+X+0 A2 —X+4' 422)r (a22)

(singlet}:

(uds —dus —us d + dsu +sud —sdu);
1

6

(B10)

(B11)

I'8(7o, 2')-,"&=
I
8'Du-2'&

X3/2 (e 422 + 0 42)
2

I'8(2o, i')-,') = I82s „-,")

(B22)

(uds type):

(ud —du)s,
1

2 (B12}
2

(X',P" —X,rt»') P&&, (B24)

1
»t» c =—(ud +du)s;

and the spin wave functions

(4 44 —044),
2

(444 —444)r
2

(4 44 + 04k —24 0 0),
6

(404 + 040 —2404),
6

X3]2 = 40k, etc.

(Bis}

(B14)

(Bie)

(Bie)

(Bl7)

the decuplet states of the SU(6) type

. I'io(ee', o')-,")=
I
i o's;.")
S S S&—X3/24 400»

I
'io(vo, o )-,")=

I
»'s„-,")

(x:&op + x'+Woo)
2

I410(66, 2 )-,'&= Iio D,—, &

S S=X3/24 A2,

(B26)

(B26)

(B27)

We explicitly display here only the top state of a
given J multiplet, and we also display only the
state of maximum J formed from coupling a given
L and 8; the states of smaller J were constructed
using standard tables in the LS order. We have
the octet states of the SU(6) type

I
28(ee', o')-,"&=

I
8's;."&

I'10(70, 2')-", ) =y' —Q', q22+ X',q22);
W2

the singlet states of the SU(6} type

I'1(vo, o')-,")=
I
i's -")

A ~ p )t p
r (X+Pop X+ Poo)»

V2

(B28)

(B29)

(x'0' +x'4' )400
2

I'8(70 o'}-"&= Ie's.-"&

=k(x'4Ãoo+ x'»O'Pop

I 8(vo, o }-, &=le's„-."&

X3/2 (0' 400+ 0 400)r
2

I'8(ee, 2') l'& =
I
8'D, —,"&

(x'.e'+x'.e')Cl, .
2

(Bl8)

(B19)

(B2o)

(B21)

1(70, 2'}2'& =
I
12D.03'&

=4"~(XA2-x'822},

14i(2o 1)-', )=I141 -"&

=X3/2~ 0'nr

the uds-type A states

I~'Simp &=&/X+400 r

I/t'supp & =A~xÃ00

I
~ S»»3, 0' ) —4XA00 r

I
/1 Du, p & = 4'~X+|)'22 r

I
&'Dppp'& = 4 ~x+422»

(B30)

(Bsi)

(B82)

(B88)

(B84)

(B86}

(B86)
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I
A'D» "&-= 4 ~x'Ass,

!
4 3+ s p)tAS»z &=AzXsiskoo

A Dzz -'& =P~xsgsgss,

!
4 5+ sA P» , &

= Q~-xs&, g«,.

and the Mds-type Z states

I~ s~z &=0'ex+As»
2 &+ )i, pp

zzz &
—4'cXA00&

l~ S.) z'& = AcX'A'ss ~

!
5+ g )t)t,~ Du, z & = 4'cX.ass

l~ Dza'&=AcX+4ss ~

I
~'D»z'& = 0'cX+Vss,

I
~ Pza'&=Acx+&ii ~

l»v. z & Acxs/2@00&

I
~ S.zz'& = AcXSSS/SO

!
4 7+ S V.~ D~z-, &

= 4 cXsys4'ss~

I
~'D w-,'& = 0'cxs ~2C .

(Bs7)

(Bs6)

(Bs9)

(840)

(841)

(842)

(84s)

(844)

(845)

(846)

(847)

(849)

(850)

(851)

(852)

for L =8 or D and

IA P„&— —IAs P„&,

I AP»& —= —
I A, P~&,

(857)

(858)

while

2
l~s Lz&+z l~s L~&

(859)

l&s L&&+
2 2

(860)

I~s'Ls& —z l~s'Lu&+ z I~ts'L &,

(861)

I
&4L-& = = —

I
&s'L.&+ I&«'Ls&,

2 2
(862)

I
&s'L„&+

I
~„'Ls&,

for L =S or D and

Iz'P„&= =!z'P„&,

where these correspondences are to be interpreted
to mean that matrix elements between two states
on the left will be equal to matrix elements be-
tween the two corresponding states on the right.

~2 IAs Ls& z: IAs Le&+z IA, L
(85s)

1 1
IA Lzz& ~ IAs I g&+ IAi Lg&, (854)

Finally, the relation between the SU(6) and uds
bases is that

APPENDIX C: THE HYPERFINE MATRIX ELEMENTS

Some general features of the calculation of the
hyperfine matrix elements having been described
in Sec. III, we confine ourselves here to some de-
tails and to the tabulation of the results.

The matrix elements in the nonstrange sector
are really quite straightforward, especially the
contact terms:

I
As'Ls&+-z

I
As'L~& ——,

I A, 'L,&,

(855)
4v~27l&z ~Ii .t-~ --9— s'Si'Ss5 (p} (cl)

I
A'L»& = IAs'L~-& (856) but also the tensor terms:

H«„~, ——'
[4S& Ss p+ + z (Sq Ss + S& Ss }p+p, + &'& (Sq+Ss +S& Ss+ —4S& Ss )(p —3p, } (C2)

+z(S(,Ss +S1 Ss,)p pz+, S)g„p ],

h~u = & - & - &~~+ &gs cay
e&g

(C3)

although the tensor terms may be computed much
more simply by the use of Racah coefficients. In
any event one obtains the matrices given in Table
VII.

The matrix elements in the 9=-1 sector may
most easily be evaluated using a trick. If we
write &e: I (5i. + 5s.) I e'& =1.

&~".
I 5~.+ 5s.) I

~".& =-',

(c5)

(c6)

where 6&, equals one or zero depending on whether
quark i is strange or nonstrange, then in the SU(6)
basis one can apply formula (49). Since

&e:I (5,.+ 5,.) I e:&=-', (C4)
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TABLE VII. Hyperfine matrix elements in the S = 0 sector (in units of 6 ).

Hcontact Htensor

'N(vo, 2') $'

46(56, 2")$+

'N(5e, 2+) $+

~N(70, 2+) $+

M2
4

1
8

0
140

'N (vo, 2') $+ 4 14 MV 9
140 56 56

46(58, 2+) $+

~h(70, 2+) $+

1+
4

1+
8

1
14 70

4N(70, 0+) $+

~N(56, 2+) $+

5+— 0
16

1
4

v2
4-

0 0

v' 10
80

O10 V 5 3&' 10
80 16 80

~N(70, 2 )+~
v'2 1

4 8
0 0

16
. 0

M2

16

4N(70, 2+) $+

2N(20, 1+)$+

1+— 0
8

0 0~

%10
80 20

0

v2
16

40

'a(56, o') $ '

4b (56, 2+) $+

'~(70, 2+) $+ 0
1+ 8~

4 10
40

W5
40 20

0

4 10 v'5
4p. 4p

'N(5e', O+) $+

~N(70, 0+)$+

4N(70, 2+) $+

'N(20, i+) $+

5
8

v2
8-

0

V 2
8

5
16

1+
8

01

0

0

~5 ~10
40 16

v5
40

„~io
16

9 Bq10
40 40

34' 10
40

'a(vo, o+) $+

4K(58, 2+) $+

0
16

1+—
4

410
4p

~10 1
40 10
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TABLE VIII. Matrix elements of the contact term in the 8= -1 sector in the SU{6) basis {in units of &).

A8 DMY

'10 DSg
y+

~8 DMT
4 7 1——{1-x)12

1 2+x

1 1+ 2x 1
+

4 3 12
——(1-x)

As Ds
2

A2D 5
2

As'DMy

4 5+
8 DMT

1

(1 -x)v2

&2(l+ x
4( 2

p)&2(1+x
3 1+2x 1
8 3 8

+ -(1-x)
1

+ -(1-x)
8

0 0

0 0

1+-x 0
8

0 0

Zs Dg~

4 S+
~io Dsy

8 DM
2 5+

8 DMT
s+

2 5+

1 4x-1

Ha (6m+1&,
4 ( 6 j

24 (1 )

1 1+2x

——(1 -x)1
12

5x+1

1 4x-1

1——(1-x)
24

0.

1——(1-x)12

1 2+x

v2 (1-x)
24

1——(1-x)24

, »+2&'I
8 3

8 ~M+

As D~~2 3+

+

As DM
+

2

As DMT
4 3+

Ag P„-4 3+
2

8 PAP

5+ —x16

1 v2
4, 8

(1 —x)

21 3 1+2x

W2 (Z+ x'I'4&

W2/1+ x'4y 2

1
+ -(1-x)

8

1
8

0 0 0

0 0 0

0 o o

1+-x 0 0
8

0 0 0

0 0 O
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TABLE VIII. {Continued)

4 3 +
Zfp Ss'f

Z8'SM Y

3 +
Z8 DsT

+
Zfo DsT

2 3'
Z8 DMT

Zs DM-4 3
2

+—5 1+2x
24

+ —(1-x)

1 5 2+x+ —{1-x) +—
24 16 3

0

1 (4x —li)
4i 3

&2,I'5x+ 1
6

+-(
i

1—(1 -x)12

5&+1

0

1(8+x
8 3

{1-x) 0
W2

——(1-x) 0
1
24

2 3
Zfo DV-2

Z8 PA

(1-x)W2 Z (1+2*)
8 3

0

A8 Ss-2 1'

2 f'
8 SNY

Af SM2
+

AS DMy
4 f +

f PA2
4 f +

PA2 f+

5
8

v 3 '1+xii
2 )I

+ (1-x)v2

v 2,(1+xii W2
(8i 2 i 16

IE

5
16

0 0

0 0

0 03

1+-x 08

0 0

0 0

2Z8 Ss-
2

2Z8 SMy

2 1'
Zfo SMT

4Zfo &s2

4 f +

+
. 8PA 2

5 4x-1

8~+ 1'I
8 6

+ — (1-x)v2

0

W2 v~+1

4x- 1)

x)
5
48

+ (1-x)
v2

5——(1-x)
48

8 1+ 3x&
16 3

1——(1 -x)12
1(3+x'I

1 1+3m)+
4 3 J 12

——(1-x) 0
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(C7) (C11)

(C8)

(C10)

these calculations then become straightforward.
The resulting contact and tensor matrix elements
in the SU(6) basis are given in Tables VIII and IX,
respectively; the matrix elements in the Mds basis
may easily be obtained by using the formulas of
Appendix B.
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