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The decay form factors f+(t) for the process K +~a I+v, (i,) have been evaluated in closed form within
the framework of the rest-frame relativistic symmetry SO(4,2) SU(3) SU(3). Symmetry breaking is
introduced via Lorentz boosting. The resulting explicit expressions and conclusions are in agreement with
experiment and contain, in a unified and general manner, the successful results obtained in various other
models based on current algebra, Kemmer fields, S-matrix analysis, and algebraic methods,

I. INTRODUCTION

With recent high-statistics data' the experi-
mental investigation on the semileptonic kaon de-
cays has come to a temporary conclusion. It is
not likely that new experiments will be forthcoming
in the near future. It is appropriate therefore to
reexamine all the theoretical implications to see if
a unif ied pic ture emerges. The basic motivation
underlying these investigations is to obtain an un-
derstanding of the dynamical symmetry breaking
and information on the structure of hadrons. 3'4

For example, in the most extensively used model
based on chiral algebra [with the usual assump-
tions of conserved vector current (CVC) and par-
tially conserved axial-vector current (PCAC}1
there is a crucial uncertainty, whether the sym-
metry is broken according to SU(3)I3SU(3) —SU(2)
SSU(2) —SU(2) (strong PCAC), or according to
SU(3) SU(3) SU(3) —SU(2) (so-called "weak
PCAC" or pole dominance of the divergence of the
axial-vector current). Gaillard '5 has shown that
this uncertainty is closely related to the sign of
the invariant quantity g(t} in the K&3 decay [K'

vol'v, (v,}jdefined in Sec. II. The experiments
seem to favor a negative sign for this quantity,
which in turn implies that SU(3) is a better sym-
metry than SU(2) 13 SU(2).

Aside from the sign of g(t}, the theory has to ex-
plain the complete form factors in the Kt3 decays.
There are a number of other investigations with
some "success": The (3,. 3*)S (3*,3) model, mod-
els based on hard-meson techniques, and those
based on the Kemmer formalism. In our investi-
gation, these successful results will emerge as
part of a general picture, and we shall compare
various new and earlier results with experiment
and with each other.

The basic idea in our theory of the K~3 form fac-
tors is the use of the relahvistic "wave functions"

for the hadrons, which allows us to obtain closed
expressions for the complete functional form of
the form factors. This method has been success- '

fully applied to the prediction of the proton electro-
magnetic form factor. e In the case of the weak in™
teractions the assumptions of the theory are as
follows'0.

(I) Hadron states at rest are like the totality of
infinitely many excited states of an atom; specific-
ally, they are given by the concept of an internal
dynamical symmetry. We assign them to an ir-
reducible unitary representation of the dynamical
symmetry group SO(4, 2).

(2) For moving hadrons the states are obtained
by relativistic boost operators. This allows us to
define precisely relativistic wave functions.

(3) In the rest frame the symmetry is unbroken,
and the weak current is the direct product of a
term acting on the internal quantum numbers and
a term acting on the space-time quantum numbers.
The symmetry breaking arises from the boost of
the hadrons to their respective masses essentially,
and to a lesser degree, from the so called "tilt"
of the "physical states" relative to the "group
states".

In fact the theory is a generalization of the stan-
dard weak-interaction theory: instead of taking
the currents between the Dirac four-dimensional
SO(4, 2} spinors, we take them between the infin-
ite-dimensional SO(4, 2} spinors which more ac-
curately describe a hadron and permit automatical-
ly the calculation of form factors.

This simple framework gives a good overall
picture of all the electromagnetic properties of the
proton, and as we shall see here, a good overall
picture of the Kt3 form factors.

In Sec. II (and Appendix I) we derive exact ex-
pressions for the form factors f,(f}, hence for
$(t} and fo(t). The whole computation boils down
to calculating matrix elements of Lorentz boosts
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H. THE THEORY

A. Decay matrix elements

In the framework of the standard (V-A) theory
the transition matrix element for the decay pro-
cess K'- wol'v, (37,) is given byo

I= (wo
I
v„"'3IK')(I' IA'

I
v, (v)).

The IAYI =1 hadronic matrix element of the vec-
tor current V„itself can be factorized into an in-
ternal symmetry part and a dyna, mical part

(2. 1)

(wo
I

V4 '3 IK') = —sin8(n, op, o I V„I n«,p«, )
V2

&& (s(II Y) pl(vp-pv') Is(II,Y)~)—1

between the SO(4, 2) states which are by now ex-
actly known, ' hence the form factors can be eval-
uated in closed form.

In Sec. III we discuss various implications of the
results and compare them with other theories and
experiment.

span a unitary irreducible representation of the
dynamical group SO(4, 2). '3 In this space of states
the physical states. are given by

In&= —e"' 'lnlm&, (2. 4)

where 8 are the so-called tilt angles, T is the
dilation generator of SO(4, 2), and N are the nor-
malization factors. The 15 generators of SO(4, 2)
are the following: J =angular momentum, A =the
Lenz vector, M= the Lorentz boosts, F„=current
four-vector, T =dilation, and S =scalar.

The pion m and kaon K are assigned' to be the
ground states of two SO(4, 2) towers of states dis-
tinguished by the internal quantum numbers, i. e. ,
ln =1,l =0, m =0). Thus

Iw'&=Ii. 'e '"'I»0) IK'&=Ii 's '"'lloo&.
(2. 5}

The physical states
I
n) are solutions of a wave

equation

.G=i sin8(n—,op, o I V„I
n «+p«) (2. 2) (J„P"+PS+y) ln) =0, (2. 6)

Here G is the Fermi constant, 8 is the Cabibbo
angle, and (n, o, P,0) is the collection of internal
quantum numbers (including spin) and four-momen-
tum for wo, and (n«+, P«+) are the corresponding
quantities for K'. In the SU(3)-octet multiplet

6;(II3Y),0) = Is, loo) ~d ls, (II3Y)«.)= Is;—.', --.', I),
and the SU(3)-reduced matrix element is calcula-
ted to be i/R2 By v.irtue of the

I
M

I
= 3 property

of the conserved vector current V„,one can write

(n.op.p I v„n;p;&=(4p,',p„")-'"[P„f,(t) +q„f (t)],

(2. 3}

with P„=(p+«+,p),0q„=(p«+-p,o), t=q', (p'Ip)
=2p053(p- p'). Equation (2. 3) defines the form
factors f, (t).

B. Space-time part of the matrix elements

One starts with the set of states nlm) with quan-
tum numbers n, I, m as in the 8 atom. These states

O'„—= V„=n (I'„+(np + n 3S}P~, (2. 7)

where n„a2,n3 are constant parameters and I
„

are the vector generators of SO(4, 2). The angles
8 are related to the parameters o~, P, y by the
covariant subsidiary conditions

(n3P„P"+y) cosh8 = —n, (P~P")' I'0,

(npP„P"+ y} sinh8 = —(n 3P~P" + p}I'0,
(2. 6)

so that the theory has four parameters altogether;
but then the complete functional forms of the form
factors are determined.

With (2. 4) and (2. 6) the matrix elements become

where P and y are parameters and S is the scalar
generator of SO(4, 2). The tilt operation
exp(-i8 T) in Eq. (2. 4) is due to the term PS in
the wave equation. Here J„is a conserved vector
current which we take, as in many previous works,
as

I„=(n, op,o
I v„ln» p» &=P f (t}+q f-«)

=(4p,'op»+) ' Iir 'Iq» '(loop. ole'" (n)1'„+n3P~+npP~s)e « lloop»') (2.9)

Hence, in the rest frame of the kaon [P»+ =(m«, 0, 0, 0), P,p = (P,o, 0, 0, —Ppp)],

f-( } (qp 3,I3 0} ( 3 0 0 3) f ( }—('q3P0 qo 3) (q3P0 q(V 3) (2. 10}

Thus the invariant form factors are simply related to the matrix elements Fo and F, which have been ex-
plicitly evaluated in Appendix I. Using these we have the final most general results:



262 A. 0. SARIJr AND RAJ @II,SO~

m pm'

f, (t) =n, - je; — In, (,nn. he, +m, nn. he, ) (. .. , ))'t =
m gmy 2 cosh

(2. 11)

1 1+ 2n, m,m (—t,—,—2n, m, m (s'nhe, +6' Ile ),22 cosh —,P} L cos ~zp I'

The t dependence of the form factors is contained entirely in cosh (&P):

2 cosh (—,'tl) = (2m, m») '4(1 —b 'cosh8, cosh8»t),

where

&—= (m, +m» ) cosh&, cosh8»+2m»m, (1 —sinh8, sinh8»).

(2. 12)

(2. 12'}

(2. 12")

(2. 13)

We also give the following general expressions:

The normalization factors N„N» for the states are determined from the condition (o.
~ ja pan) =2m to be

2m,N, = Q. , cosh8, + 2@2m, —2@3m, sinh6)„

2mEN~ =a
&
cosh&~ +2a2mE, —2@Smz sinh8E.

$(t) =— = (m, cosh8» —m» cosh8, ) (m, cosh8„+m» cosh8, ) —2 —~ m, m»(sinh8, + sinh8»)
+ Q)

2Q »1

+ —~m, m»[2 cosh2(-,'-P)]
1

f (t) =f.(t) +~ ~f-(t)t

(2. 14)

t
=Nr N» o'( 1+ 2

—~ m, cosh8»+ 1 ——~—
2 m»cosh8, ,

2 h2 1
pm~m g mg ml mg [2cosh —,P j

1
+266m, m — t;—.—2ntm, m (sinhe, +sinhe ); t j t2 cosh (-;P) [2 cosh (2P) J

(2. 15)

III. CONSEQUENCES

A. Exact pole and dipole behavior of form factors

From (2. 11) and (2. 12} the form factors can be
written as

B. Expansion of the form factors

For
~

(X /2m, )t
~

« I, we can write

f (I) -f (0) g .(
-, I)"

—=f (0) (1+m, '
'-;t,

X —= 2m, 2 cosh8, cosh8»/&,

f,(t) =f.(o) I ——~t2m, (3 1)

f,(t) f(0) Pn(, t)=,
(3 2)

n, X X

N+»th' 2m, ' 2m, '

~'-=~/4m. m .

Thus f (t) is exactly a, dipole form factor, while
f,(t) has both pole and dipole terms. Recall that
similar behavior is found in the electromagnetic
form factors of the proton. ~ In certain current-
algebra models, pole and dipole forms are as-
sumed. '3

f,(0)(1+ ~t+ 't t')=,
m~ m~

X, -=X [1 —o($2N~»t tf.(O)],

X', =—4X 2[I -2ct2/3Np'»6'f, (0)].

Experimental data suggest X,4 X . In the present
theory the difference (X, —X ) is proportional to
&240 which has implications on the mass spectrum
of the meson towers (cf.Sec. III G).



f,(P)= ()+ +ssss (—'0)
)

—p,—ss.
(3. 3)

This is, of course, what one would expect as a
consequence of current conservation.

D. Glashow-Vfeinber3, limit, z meson, I'& and F,
Ademollo-Gatto theorem

At t =0, we find

f (0) =0+0(es}

=N, 'N» 'n, (m, csoh8»- m» cosb8, )4m, m»/b2,

f,(0}=1 +O(e82)

1 (F»') E,

1')
F,=N. , E-» =N», F„-'=2p- 6'j

C. Exact-SU(3) limit

In the limit of an exact SU(3) symmetry, m»
=m, =m and 8z —8, =8; hence, N~ =N, =N. Con-
sequently,

where e8, as in Ref. 4, is a parameter used to de-
fine the strength of symmetry breaking. Here we
have identified N, and N&, by virtue of the defini-
tion of charge (2. 13}, with the pion and kaon decay
constants E, and E~, although we have not estab-
lished here a formal connection between current-
algebra formalism and ours. (For such a connec-
tion see, however, Ref. 14). By comparing f,(0)
with the Glashow-Weinberg relation6 we have also
factorized the expression for the decay constant
E„ofthe so-called Goldstone x meson. In the ex-
act SU(3) limit f (0) =0, E,=E„,6 =4m2, 6'=1,
E„=O,f,(0) =1, as it should be A.lso O(es } is
indeed of "second order" in SU(3)-symmetry-
breaking parameters E„and (E„—E,), in agree-
ment with the Ademollo-Gatto theorem. '5 Our ex-
pression for f,(0) is in a sense a generalized ver-
sion of the Glashow-Weinberg relation. Note also
that the term E„is again proportional to a2. Since
+240, our model naturally admits a contribution
which may be identified with a term due to a Gold-
stone tc meson, which in the exact-symmetry limit
automatically vanishes.

We also find the ratio

E»2/E, 2=1+0(es) =1 +[m»(n, cosh8, +2o2m, —2nsm, sinh8, )].'[o. ,(m, cosb8»- m»cosh8, )

—2nsm, m»(sinh8»- sinh8, }j,
i. e. , first order in the symmetry-breaking parameter, in agreement withpCabibbo theory. ' (3. 5)

E. The $ parameter

From {2.14) we obtain explicitly

$(t) =(m, cosh8» m»cosh—8,)[(m, cosh8»+m»cosh8, ) —(2o.3/n&)m, m»(sinh8»+sinh8, )

+ (n2/n, ){b.—cosh8» cosh8, t)] '

1 1 1 t f {0)
${t) . ((0) 5(0) ' ,' ' .(o)' .(3.6)

Thus I/f(t) is exactly linear in t. However, the
commonly assumed linear relationship g(t} =—$(0)
+ $(0)(X —X,}t/m, 2 holds approximately, using the
expansions (3.2}.

In the limit 6), = 8~ = 8 =0, we get

${(m»+m, ) )=-—(m» —m, )
(m»+m, )

' (3. 'I)

$(m»2) =- 1+0(m,2). (3 8)

It has been shown that'~ this relation is also a con-
sequence of the pion-gauge condition, i. e. ,

This is precisely the result obtained by Fishbach
et a/. in Kemmer formalism, and Bohm and
Werle'6 in an algebraic framework.

Furthermore, in the soft-pion limit, m, 2=0,
we obtain from (3.6).

limM = 0, as P„'-0 [see (2.1)j.
Tbe general expression for $(t) is of the form

a/(b —t) and shows only a weak t dependence, in
agreement with experiment2 (Fig. 2).

Note that, instead of the Call. an- Treiman rela-
tion, f,(m» ) +f (m» ) =E»/E„we find

f,(m» ) +f (m» ) =0+0(m, ).

We discuss this relation further in the Sec. III F.

F. Zeros of fo (/) and the relation to S-matrix analysis

The scalar form factor fo(t),

fP(P) =fP(0)() —
0 P +PP(0) s,s ) —0, P
+'t 7Rg fÃg

where



264 A. 0. BA.R U T A N 0 RA J % I L S 0 N

f, (0) =f,(0), g(0) -=f (0) '-(m„'—m, ')-' —n,yX~„~',

can be expanded as
dQ ap y 5

f, (t)=f, (0) g n
2 ~t +g(0}pn, t, -, t «I,

with

=f~(0)(1+ y~l+- ~t }mg ml

m2
Xo= X+ -—-2 -g 0,

mg mfI

m2
Xo ——X'+X —~ ~ 0 .

m g —m~.
(3. 10)

We see that fo(t) has a zero at

t =(ot, (m, cosh8» + m» cosh8, ) —2n 3m, m»(m» —m, )(sinh8„+sinh8, )

+ o, ( m»2—m, ~) [(m»'+ m, 2) cosh8» cosh8, + 2m, m»(1 —sinh8, sinh8»)))

&& [o.'&(m»cosh8, —m, cosh8») + o2(m»2 —m, 2) cosh8, cosh8») '. (3. 11)

According to an S matrix analysis due to Kang, '

the zero of fo(t) must lie between t = (m„—m, )'
and t, = (m»+m, )2 in order to satisfy the result
$(m»2) = —1. In our case, indeed these two limit-
ing values are obtained by the limiting values of
the tilt angles: (8„8»)=0 gives from (3.11)
t —= t„and (8„8»)=~ gives t =t . Further, the
zero point of fo(t) between t and t, implies'8 that
the Callan- Treiman relation which holds only for
the soft-pion limit would not extrapolate smoothly
to the physical points. However, the relation (3. 9)
does smoothly extrapolate to the physical points.

G. The roles of the n2 and n3 terms in the current

Turning to the basic form of the current V„,Eq.
(2. 7), we know from previous studies of hadron
structure that the a2 and n, terms express the
composite structure of hadrons or atoms, besides
the algebraic term o.', I'~ (which is analogous to the
Dirac current y, ). The terms o. ,l'~ and o.2P„give
rise to a linear mass spectrum, whereas the n3
term implies a saturation of the mass spectrum
(m- m«„asn —~) as in the H atom. The larger
the factor n3/a2, the earlier sets the saturation. '2

The effect of a nonzero n2 term can be seen from
the conclusions:

(i) ](t) g $ (0) = constant; i.e., the t dependence
is due to the n2 term.

(ii) X, —X 40; i. e. , (X,—X ) is proportional to
the n2 term.

(iii) The decay constant of the «meson F„is pro-
portional to the a2 term.

The mass spectra of the excited states of the
meson and kaon towers, as well as the electromag-
netic properties of m and K', could determine the pa-
rameters a» a» a, as well as 6), and 0~. But this

information is so far lacking. However, at low
masses, a linear mass spectrum is a good approx-
imation; hence, e3 —0 is an adequate simplifying
as sumption.

8, Comparison with experiment

The experimental conclusions on the decay form
factors are unfortunately not quite conclusive, and
in many respects, somewhat controversial. While
the data'2 for f,(t'), t'=- t/m, 2, appear to be free
from any typical t-dependent input, the data for
$(t') and fo(t') are generally obtained by using lin-
ear fits for f,(t') =f,(0)(1+X,t') as input, and the
extracted data for $(t') and fo(t') are fitted gener-
ally to linear expressions. In our theory such
linear relations will be satisfied only for small
values of t, and hence the constant parameters
(8„8»,n &, o2} in our model may not be exactly de-
termined with the help of the existing experiment-
al data. However, we find that, even by approxi-
mate values of these parameters, our final con-
clusions are in good agreement with the experi-
mental analysis.

For convenience we write our final results (with
the simplifying assumption o,'~=0) in terms of t'
= —t/m, as follows:

f,(t') 1+«2X t'
« = o 2/[R+»4'f, (0)),

1 1
&(t') &(0)[

f.(O) +g(0)-,'~ t'
(1+-,'X t~)

In order to obtain some idea about the parameter
X, we first assume 8, = 8~= 0, which gives X
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FIG. 1. The normalized form factor f+ (t') against
t'=-t/M~, Eq. (3.12). The dotted lines are for K
=3.5 (upper curve), %=3.4, and X =0.095. The curves
I and II are, respectively, for %=4.1, X =0.04 and
E=4.9, A, =0.03. The dashed line is the UCLA-SLAC-
JH fit: f, (t ')=1+0.044t'; f, (0)=1. Result: A. ,
=0.045 (I) and X, .=0.043 (II).

=0.095. For this value, the effective (or leading}
pole of f, (t} occurs at m»=—(2 jX )'~2m, —= 4. 59m~
=633 MeV, which is remarkably close to the Kw

threshold, 630 MeV, and, if m, is identified with
the Goldstone x meson, then this value is consist-
ent with the inequality m„&6'l0 MeV. This shows
that any pole dominance much above the threshold
can be obtained only by taking 8, & 8» or (8„8»)
4 0—purely as a consequence of this dynamical
theory.

Next, with the value of X =0.095, we fix the
parameter K in (3.12) using a point (preferably the
point through which the experimental fit, passes)
from the UCLA-SLAC- JH data as input. In Fig.
1 we show two such fits (dotted lines} for K=3. 5

(upper curve) and K=3.4. The fitted curves, as
we expect, are not linear, and the function f,(t')j
f, (0) reaches its maximum value approximately at
t'=9 and then decreases asymptotically to zero as
t' ~. From these two fits w'e come to know that,
although the curves accommodate the data points
reasonably well, the value X =0.095 is too large
to bring the curves much closer to the straight
line (experimental fit2} for reasonably small val-
ues of t'. This indicates that X may be much
smaller than 0.095, and, consequently, we should
get away from the crude assumption 8, —=8„—=0.
Or, in other words, the (leading) pole dominance
should occur much higher than the Kw threshold.
This conclusion is consistent with certain chiral
algebraic models in which, for example, the K*
pole (M»* =—891 MeV, hence &»q —=0.048) and the
K pole (M„=1200MeV, hence X» -—0. 026) domin-
ances are assumed. Furthermore, smaller val-
ues of A. in our case make the higher-order (in
t') terms relatively negligible so that the compari-
son with the experimental analysis could be much
more justified.

In view of the above observations, we choose the

FIG. 2. The form-factor ratio $ (t ') against t ' Eq.
(3.12). 0 are UCLA-SLAC-JH data points, 4 are SLAC-
UCSC data points (approximately). Both are taken in the
range -0.45 & $(t') &+ 0.45. The curves I and II are,
respectively, for $(0)=-0.018 and $(0)=-0.14. The dot-
ted line is drawn using SLAG-UCSC values: Z, = 0.03,
X p=0, 019,and their Eq. (10). The broken line is the con-
stant fit of UCLA-SLAG-JH. Result: Xp=0.043 (I) and
A, p

= 0.031 (II),

following two sets of values:

I: X„=O.04, x =4.1,

f.(0}= 0. 95, $(0}=—0. 018,

1.35—

1,3—

1.2—
ro

o
I.I—

5
I
——

I
,
6 7, ,

II
I

,12,13
I I

t

FIG. 3. The scalar form factor fp(t') against t' Eq.
(3.12). The curves I and II are, respectively, for Xp
= 0.043 and X p-—0.031. The broken line is the linear fit
of UCLA-SLAG-JH. Cl denotes Callan-Treiman point.

II: X =0.03, v=4. 9,

f,(0}=0. 90, $(0}=—0. 14.

These four parameters, in principle, replace the
four parameters 8„8~,&&, and n2, that we have
in this theory. The choice of the two different
values of $(0) is motivated by the unparametrized
and two-parameter fits of the SLAC-UCSC data. "
The predicted curves are shown in Figs. (1—3),
and they show reasonably good agreement with the
data.

The curves for f,(t')jf,(0) are very close to the
linear fit of UCLA-SLAC- JH for small values of
t', and then they deviate from the straight line as
t' increases. The function f,(t')jf,(0) increases to
its maximum value at t' =25. 6 (I) and 39. 5 (II) and
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then decreases asymptotically to zero as t'- .
Tbe predicted curves for g(t'} show that this ratio
is almost a constant, which is compatible with
different experimental fits. The scalar form fac-
tor fp(t') peaks at t' =27. 2 (I) and 43. 3 (II) and de-
creases to zero as t'- ~. At t' =M»2/M, 2 =12.9,
fp(t') =1.25 (I) and 1.33 (II}, which is very close to
the Callan- Treiman prediction that fp(M» /M& )
=1.27 and the experimental value 1.38. Also,
at t'=(M»P —M,2)/M, 2 =11.9 we get fp(t') —= 1.24 (I)
and l. 3 (II), which is in good agreement with the
SLAC-UCSC value 1.22. '

Finally, using the values of X, K, f,(0), and

$(0}, we determine the remaining parameters
(Note that, according to our definition of the X par-
ameters [(3.1}, (3.2), (3. 10)), they differ from
the experimental slope parameters by a negative
sign. We have included this sign below):

I: X,=D. 045, A. p
——0. 043, f (0) = —D. 0166,

II: X, =0.043, Xp ——0.031, f (0}=- 0. 129.

The values of X, and Xo are in good agreement with
the UCLA-SLAC- JH data2: X =0 044 Xo =0 032,
and they are slightly higher with respect to the
SLAC-UCSC data': X,=0.03 and X0=0.019.

In conclusion, we have given a complete descrip-
tion of the functional forms of the K» decay form
factors with a relativistic wave-function formalism
which further relates these decay parameters to
the mass spectrum and electromagnetic form fac-
tors of the mesons and their excited states.

APPENDIX I. EVALUATION OF THE MATRIX ELEMENTS

From the rest-frame states in), (2. 4}, the boost-
ed states in, P), as defined by tbe wave equation,
are given by

in„P)=exp(-ig, M, ) in), ~ (Al)

where g, is the boost angle such thatPP=m, cosh(„
PP =m, sinh)„and M, is the Lorentz generator in
SO(4, 2).

Thus the matrix element Fp in (2. 9) is given by

Fp=N 'N„'(100ie'+ e'p'"p(n, I'p+n2Pp+npPpS)e ' »ri100)

=N, 'N» 'Qn, cosh8» —np(m»+m, cosh), }sinh8»+n2(m»+m, cosh(, }](100iG F100)

—(1/&2)[n, sinh8„—np(m» +m, cosh(, ) cosh8»](100 i
G

i 200)),

g = &$ el T&s 4&N3e-f 8KT (A2)

Here we used various Lie-algebra relations such as exp(i&T) I'p (exp( i8T}=I'p eosh8 —S sinh8, and I'pi100)
= i100), S

i
100)= (1/&2)

i
200), I",KIDD) = (i/&2)

i
210), fully described elsewhere. The matrix elements of

|"between the group sty, tes is now known generally":

Q'I'm' iG inlm) = g 5 ~'""'~ "(n)V'h'(p)nt"-"~(y)
L=o

where

2 cosh (p P) =cosh8» cosh8, cosh), —sinb8» sinh8, + 1,

2 sinh2(p P}= cosh8» cosh8, cosh), —sinh8» sinh8, —1,

sinn sinhP ~osh8» sinhf„siny sinhP = —cos8, sinb$„
cosn sinhP = sinh8» cosh8, —cosh8» sinh8, cosh)„cosysinhP = sinh8» eosh8, cosh), —cosh8» sinh8, .

Here, 1)'s are the Dolginov-Biedenharn functions for SO(4) rotations and the V's are the Bargmann func-
tions for SO(2, 1) rotations. We need only the following special cases:

&pp~p (n}= 1 Bppp (y) =cosy &ppg (y) =i siny, V', , (P)=cosh (pP), VI (P) cosh'( —,'p) ' (A4)

Therefore, (A2) becomes after substitutions

Eo =N Nz Q
&
cosh8~ —n 3 m~ +m, cosh, sinh8~ + a2 mz +m, cosh cosh' p

——,'[n, sinh8» —n, (m»+m, cosh), ) cosh8»]

1
x „,,

~
(siohc„coshc,cosh(, —coshc siohc, )I.cosh'(p (A5)
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Similar ly,

F3 N, Nz —4, coshe, sinhg, + (n2 n3 sinh&z)m, sinh$,
1

2 cosh —, ' cosh —,P

+ —,osss, sich(, coshs —„s-i—(sinhs coshs, cosh), —coshii sinhs, )I.~ cosh —,P
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