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Construction of Green's functions from an exact S matrix
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The bootstrap program for determining Green's functions from an exact 8 matrix is carried out for the

simplest soliton field theory of a scalar field with S-matrix operator S =- (—1)"" ' ", where X is tQe total

number operator. Despite the formal simplicity of the 5 matrix, the Green s functions derived have a rich

structure. The results can be checked since this field theory is none other than that of the order variable of
the Ising model in the scaling limit above the critical temperature.

For two-dimensional field theories with soliton
behavior the dynamics is governed by an infinite
number of higher conservation laws. In particu-
lar, for scattering processes they imply absence
of particle production and fa.ctorization of the n-
particle 8 matrix. For the simplest case of a
single species of particle of given mass (=I) this
means (assuming parity conservation)

with

s(&) — Ig s(2'((i g g i)
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where 8, are the rapidities, P, =(coshg, , sinhg;),
and S"'(8}is the two-particle S-matrix element
satisfying elastic unitarity for all energies. It is
the boundary value of a real analytic function S(8).
The working hypothesis is that S(8) is meromorph-
ic in the 8 plane. The properties real analytic';ity,
crossing symmetry, and unitarity can then be writ-
ten (by analytic continuation for all 8)

S+(8)=S(-8*),

S(8}=S(fv-g),

S(8) S(-8)= l.
There always exists a minimal or a finite class

of minimal nontrivial S matrices consistent with
the above structure. Nontrivial means St 1 and by
minimal is meant that the S matrix having the
minimal number of zeros and poles in the physical
strip (0& Im 8& v) apart from the given (two-parti-
cle} bound-state poles. (In all cases considered so
far resonances have also been assumed to be
absent. ) For the case described above the mini-
mal solution of Eqs. (2) is

11
sinhg+sinhic(,
sinh8-sinhie, '

where the poles at 0=in, all represent two-particle
bound states. In more complicated cases when the
particles belong to a nontrivial representation of

an internal-symmetry group, there are in general
many invar iant amplitudes. The constraints aris-
ing from a consistent formulation of factorization
in these cases are, however, so stringent that
they interrelate the invariant amplitudes so that
the minimal 8 matrices can again be completely
determined. This has been done for a variety of '

models and the minimal S matrices have so far
stood all tests. '

It has often been postulated that such so].iton
field theories are in fact soluble. The program
that has been advocated is just the old bootstrap
program. This involves explicitly solving the
watson equations for the field matrix elements
and subsequently obtaining representations for the
Green's functions by summing over a complete set
of intermediate asymptotic states. The program
is, however, complicated and comparatively little
progress has been made for the interesting soliton
field theories. In particular, apart from the ma-
trix problems which arise in solving the Watson
equations, minimality assumptions are made, the
rationale for which is not completely understood.

It is the purpose of this paper to completely
carry out the bootstrap program for the simplest
soliton field theory. This is the Z, -invariant field
theory of a single. (self-conjugate) boson field o(x}
whose associated quanta have the minimal nontriv-
ial factorizing S matrix with no bound states. As
is seen from Eq. (3) S(8) is then simply given by

(4)

and from E q. (I) it follows that the n-particle S-
matrix element is

s(n& II ( I) ( I)n(n-1'(/2

&~i &J ~Pl

This field theory is in fact none other than that of
the order variable of the Ising model in the scal-
ing limit' above the critical temperature, as has
been established by Sato, Miwa, and Simbo. ~' It
is extremely satisfying that starting from the near-
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ly trivial on-shell data (5) the bootstrap program
directly reproduces the rich off-shell structure of
the Qreen's functions already known from previous
Ising model investigations. "'

First, analyticity and crossing state that the
mair ix elements

'"'(p, " P. l u(0) I P.„..P.)'"

for fixed n are all given as appropriate boundary
values of a single real analytic function E'"'(8;, )
(1 ~ i &j ~ n) totally symmetric in all the 8;„; we
are employing covariant state normalization

n

"&p'" p I p ~ ~ ~ P)-= g J[J[4 5(8 -8' )
permT 1= T

and field normalization (Ola(0)lP)= 1. Explicitly for
for g„tg„
"&P," P. lo(0)l p.„"P.&'"

=F'"'(Ig;-8, l; i~-lg, -g, l; fg.-g l),

where

1+i&j & z. , 1++ &m. & s &n, . and m&0& I

%'e can restrict attention to n odd since F'"'=-0
for n even due to Z, conservation. By means of
CpT inva. riance, unitarity, and the no-particle
production property, one derives the generalized
Watson equations' which, by invoking the hypothe-
sis that the F("' are meromorphic functions, can
be written as equations which are valid for all 8t, ,

F(ni(g ) It (n)(g )F(nimitl(g )

where the function E'("' is a solution of the Watson
equations with S= 1 a,nd contains the poles determin-
ed by one-particle intermediate states in subchan-
nels.

I et us first consider the case m=3. Since there
are no bound states there is only the one-particle
pole te. g. for m= 1 in E q. (6)] at (P, —P,—P,)'=1.
Hence we obtain. for the three-particle form factor

4Z(3)F(3) (g )- F(s)min(g )cosh 8»+ cosh8»+ cosh 8»+ 1

(10)

The constant Z"' is determined to be Z'"=2 by
the requirement that using the expression (10) re-
produces the correct T-matrix element.

For arbitrary (odd) n ~5 the arguments are just
slightly more involved. Again the functions A'"'
must have poles at cosh8;, +cosh8;„+cosh8, &+1=0
where any sets of pa, rticles i, j, k are combined to
give a one-particle intermediate state. However,
the residues of "higher poles" where more than
three particles build up a one-particle state must
vanish, since the presence of such poles would be
in contradiction to the absence of particle produc-
tion. Hence the minimality hypothesis implies that
E'"' has in this case the form

If(n) (8 }
fl (gi j)

, (coshg;, +co—shg;,+ coshg, „+1)

= S'"'(8„)F'"'( 8,, ; iv+-e„„8»)S'" -'(e„) (7).
The solution F'"' '" of Eq. (7) with S'"' given by
Eq. (5) having no poles and no zeros in the physi-
cal strips 0& Im8;, &m and only a simple zero at 8;,
=0 is'

where A'"'(8;, ) has no poles. The function R'"'
must, however, possess sufficient zeros to mod-
ify the severe singularities of the denominator at
points 8„=8, in the matrix elements (6) to simple
poles. The minimal solution is manifestly

F '"'-(8,, )=
]~)&) (n 2

The desired matrix elements are then given by

it'"'(8 )=&'"' II Il(1 o he„)]'""'"
y&ig& n

Thus we obtain for the matrix elements

'"
(P ' P I (0)ol p „-P„)"=Z'"'i'""' II tanh ' ' g Pcoth " ' II tanhn. n- / le, e,l- 8„-8,

y~i &j ~nt y+r~m n &~&l~n
rn&s~ n

(13)

Note the principal part for the singularity at 8„=8,.
For the S matrix 8= -1 this is the only distribution-
al character consistent with the Watson equations
and general principles, e.g, parity invariance.
Finally the constants Z'"' are determined by the
conditions that the matrix elements reproduce the

correct S-matrix elements (5). Employing the
Lehmann-Symanzik-Zimmermann (LSZ) formal-
ism and repeated use of the formula

lim e "' —=~inc(a)5(x)
t~a x
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and the Riemann-Lebesgue lemma yields (with the
above state normalization)

Z'"'= 2'"

Having deduced all matrix elements of the 0

field, we can immediately write down expressions
for the Qreen's functions. For example, the two-

point function is

7 (P)= „' d'x e'~"(Tv(x)v{0))

P -I(.' +if

with spectral function p given by

e(t')p(o )= P — j"' a s"' P-gP, 2" ' g tanh* —".
n odd ~' =} y&i& j~ n 2

There are similar formulas for the n-point Qreen's
functions which are all in agreement with those de-
rived in beefs. 3, 4 and 6. This agreement gives
us some confidence in the feasibility of the boot-
strap program and also supports the validity of the
minimality hypotheses.

The method has indeed been previously applied'
to matrix elements of the source of the sine-Qor-
don field between three first breather states and
the postulated result was found in agreement in
the first orders of perturbation theory. The gen-
eralization to the form factors n&3 breather states
is more complicated than the model considered
here. Moreover, to obtain the full Green's func-
tions in this case requires matrix elements of the
fieM for states including an arbitrary number of
solitons, in fact, only these matrix elements for
regimes of the coupling constant where the breath-

er h, is no longer in the physical spectrum. This
involves the solution of Watson equations involving
matrices which have not yet been achieved.

Finally we remark that the two-particle S-ma-
trix element (4) is also the result of the analytic
continuation of the Zamolodchikov O(N) nonlinear
a-model isoscalar amplitude So—XV' j+Gg+ ~3 to A 1
(Refs. 9, 10), Using this terminology, it should
prove an instructive exercise to carry out the boot-
strap program for the supersymmetric Q(1) non-
linear 0' model. ' The determination of the corre-
lation functiogs for one of the more involved soli-'
ton field theories remains, however, a challenging
open problem.
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