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Cancellation of infrared divergences in massive-quark potential scattering
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We present a proof of the cancellation of infrared divergences in the potential scattering of a massive quark
when a sum is performed over soft-gluon emission. The proof applies to quantum chromodynamics and works -

to all orders in perturbation theory.

Several authors have verified the cancellation
of infrared (IR) divergences coming from real
and virtual soft gluons in quantum chromodynamics
(QCD) to low orders.! Here we present a simple
proof that IR divergences cancel to all orders in
perturbation theory for the scattering of a massive
quark by a singlet potential when a sum is per-
formed over soft-gluon emission,

The process we consider is illustrated in the
diagram of Fig. 1. We average over the initial
spin and color f; of the single fermion, and sum
over all gluon emissions which take away less
than some resolution energy € < (p;),. This is
equivalent to summing over a range in the space-
like momentum transfer q.

Since we only sum over final-state gluons we
cannot immediately apply the Lee-Nauenberg-
Kinoshita theorems? to prove finiteness, as these
theorems require a sum over both initial and final
degenerate states.

Our argument can be carried out in any standard
gauge: The result is gauge invariant. It proceeds
in three steps: (a) First, we identify regions in
momentum space which can give rise to mass
divergence. Such divergences can roughly be char-
acterized as either truly IR, involving the vanishing
of gluon momenta, or collinear, involving the
coupling of parallel moving, on-shell, finite-en-
ergy gluons. (b) Next, we sum over the cuts of
individual Feynman graphs such as Fig. 1. This
sum is seen to eliminate all collinear divergence.
Divergences left after the sum over cuts of a given
graph are truly IR. (c) Finally, we sum over sets
of graphs whose gluon sectors are topologically
the same, but differ in their attachment to the
fermion lines.

As in Refs. 3 and 4, we identify possible diver-
gences by looking for “pinch singular points”
(PSP’s) of the Feynman integrals, that is, points
where momentum-space contour integrals are
trapped. To each such point corresponds a re-

duced diagram where all off-shell lines have

been contracted. As discussed by Coleman and
Norton,® the resulting graphs represent physically
realizable processes with vertices reinterpreted
as space-time points. Power counting®* then
determines which pinch singular points actually
give rise to logarithmic divergences.

In our case, the physical processes associated
with mass divergences must be of the type il-
lustrated in Fig. 2, where we have indicated the
possibility of a single jet J being produced in
addition to the final quark line p,. In general,
soft gluons attach to all quark and gluon jet lines
at the pinch singular point.

We choose to sum over all final states with the
restriction that the final-state gluons have en-
ergies E;, where Z‘/iEi <E,,. Then we sum over
all such cuts of our reduced diagrams; Since
all the gluons external to subdiagram S must be
simultaneously soft, one can integrate over its
entire range of internal momenta without violating
the phase-space condition.

The sum over cuts gives the discontinuity of a
Feynman integral for the reduced diagram (now .
an amplitude) in the neighborhood of the singular
point in question, but integrated over all en-
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c

FIG. 1. Contribution to cross section for massive-
quark potential scattering with soft-gluon emission. An
average (trace) is taken over the initial quark color f;.
p; and p; denote the initial and final quark momenta.
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FIG. 2. A typical reduced diagram of the scattering at
a pinch singular point. V; and V, denote hard vertices,
the heavy wavy line to J a gluon jet, Sy, g the (cut) soft-
gluon Green’s function. The light wavy lines are soft.

ergies.? One then reapplies the Coleman-Norton
criterion® to the uncut integral. First, note there
is no way that both the on-shell quark line p; and
the possible finite-energy (but less than E_,,)
gluonic jet J can arrive at the space-time point
corresponding to V, after free propagation from
V,. Therefore, collinear divergences due to
gluonic jets cancel in the sum, and we only need
to show that divergences due to soft gluons cancel.

By power counting,®* these soft gluons may only
couple to the fermion atthree-point vertices. We or-
ganize into a “skeleton” expansion those graphs which
giverise to such three-point vertices atthe pinch
singular point. Thenwe find that, because of Lor-
entz invariance, the soft gluons may only couple
through the effective vertex y,T (where T is the
relevant color coupling matrix from the La-
grangian.)

A typical logarithmically divergent reduced
diagram with n soft gluons divided among the lines
p on either side of the (forward) scattering am-
plitude, and with an arbitrary number attached
to the intermediate on-shell line p;, is shown in
Fig. 3.

We now show that cancellation occurs among
the different eikonal fermion denominators which
arise from attaching a given soft gluonic Green’s
function S in all ways.

FIG. 3. Reduced diagram after the sum over cuts, 1
through m of the gluons are sequentially attached to the
left quark line and m + 1 through » are sequentially at-
tached to the right. For all mz, the color factor [Eq. (1)]
is the same.

We will begin with the case of reduced graphs
that are two-particle irreducible (2PI) in the
vertical channel. Then at least one soft line is
attached to p;. In the sum over spins and colors
a constant numerator matrix factor '

n
(Tp X Ty X 00 XT gy X Ty X oo e XTl)'H(ﬁyui)ﬁ
i=1

(1)

multiplies the spin-color factor occurring between
hard vertices V, and V,. The trace over the
color and spin is taken. As mentioned before,
the cancellation occurs between the different ei-
konal factors associated with (1) without any need
to consider the factors between V, and V,.

In (1) we have only exhibited the # factors, which
are responsible for the divergences when the
singular point is approached. All other terms
are at least of order %; and so are nondivergent.
Similarly, we only need consider the eikonal
parts of the fermion denominators. The sum over
all m of the eikonal factors associated with a fixed
color group factor (1) in Fig. 3 is

1
ceea

n

p-3

m=0 - amaﬂl, m-1

mym=1y **°y 1

y (=) ’
Cne1 O ety mez * Oty oooyn
where '
@i e n =20 (Rythy e k). )

Note that we have chosen a convention where the
k; always flow out of S.
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FIG. 4. (a) Examples of insertions of “fake momenta”
§; into self-energy and 2PR subgraphs. (b) Example of
self-energies where 6 insertions give zero identically.
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It is easy to see that the quantity D vanishes
identically. Stated physically, unaccelerated:
charges (in this case, the fermionp,) donot radiate.

The proof that D=0 follows immediately from

. » ) 1
2mD’fwdxx+ie LI (x+a; ...,l+is)_0°

- iy i=19

(3)

This eliminates soft-gluon divergences from
PSP’s whose reduced diagrams are 2PI. The
two-particle reducible cases present a slight
difficulty because eikonal denominators vanish
identically for self-energies attached to the ex-
ternal lines.

This difficulty can be removed by introducing
“fake” momenta J; into the highest-numbered
gluon vertex of each of the 2PR or self-energy
diagrams as illustrated in Fig. 4(a). The 3,
momenta are taken to route in the same dirgction
as p. With these 9;, the cancellation still works,
and the physical result is recovered in the limit
6, ~0.

For certain terms, finite 8’s give identically
zero without any sum over graphs. For example,
in Fig. 4(b), the insertion of a 6 before a final
self-energy gives

?17. % (p)u(p) =0 when p2=0. (4)

Thus, outgoing self-energy terms need not be
included in the sum over graphs. The effect of
such outgoing self-energies is just to cancel the
wave-function renormalization factor (Z'/2)°2 in
the definition of the cross section.

To illustrate how the “6 mechanism” works,
consider a self-energy graph with » vectors
attaching to the fermion line as in Fig. 5(a). Near
the SP, the integral is approximately equal to

T, 7 y—— Tl — L
f L 1, F %Sv m 42 2p.<]§;lzj+5>
xé(io;la). (5)

Since we integrate over all the internal momenta
of F(I,) at the PSP, F(l,) is respectively even or

FIG. 5. (a) and (b) Two 6 inserted 2PR graphs with
the same color factor.’

odd if the number of its external lines is even or
odd. Thus, when 0 is strictly zero, the loop in-
tegral (5) is always odd in the I; and therefore
zero. Now we examine the neighborhood of the
SP by letting the 6 be finite.

If we denote the 2p .2J%_ 1,=C;, and 2p-5=4,
the denominators that come from the different
signs of the I; (the neighborhood of Z;=0 in the
integration) give a combination of denominators
equal to k '

1 1 1

Al n-1 n-1
IHci-a Ilc+a)

= [2(% Hc,) §Ci2]+O(A).

i=1 j#i
(6)

Again, the sum of the self-energy and all
possible 2PR graphs with all possible subsets of
the lines I, reattached [with the same color matrix
factor—see Fig. 5(b)] to the outgoing line will can-
cel, leaving only the self-energy on the final line
to be absorbed in renormalization.

In conclusion, we comment that our method of
proof applies to QED as well, and is simpler than
the usual proof of infrared cancellation. How-
ever, our method does not enable us to exhibit
the exponentiation of the divergences or the €
dependence of the finite remainder.
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