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We demonstrate that, in an appropriately chosen axial gauge, the leading contributions to the scale

breaking of quark and gluon distributions in quantum chromodynamics arise from fully renormalized ladder

graphs. These may be conveniently summed using the Bethe-Salpeter equation and reproduce the standard

results obtained via the operator-product-expansion-renormalization-group analysis. The diagrammatic,

analysis makes it clear that scale breaking (from the two-particle reducible ladder graphs) of the

distributions is universal and factorizes, in any parton-model application, from the short-distance (two-

particle irreducible} "subprocess. " In addition, the dominance of ladder diagrams can be used to justify the

Altarelli-Parisi approach to scale breaking including a demonstration that their infrared regularization

scheme ari.ses naturally when quark and gluon wave-function renormalization is properly included.

I. INTRODUCTION

Despite' the beauty of the operator-product-
renormalization-group approach to the analysis
of scale breaking for deep-inelastic scattering
in quantum chromodynamics (QCD), an intuitive
(Feynman) diagrammatic understanding has been
lacking. This has led to some uncertainity as to
how to extend this type of analysis to reactions
other than deep-inelastic scattering.

In this paper we demonstrate, by extending a
method developed by Appelquist and Poggio'
in (Q'), theory that a simple diagrammatic under-
standing of scale breaking in Q D is possible.
Instead of the renormalization-group equations
we use the Bethe-Salpeter equation and work in
the leading-logarithm approximation. The oper-
ator-product expansion is replaced by t;he more
pedestrian partial-wave expansion of the Bethe-
Salpeter equation. If one chooses an appropriate
axial gauge, then only renormalized h,dder graphs
contribute and t:he scale-breaking diagrams are
easily summed. The axial-gauge ladder structure
makes it clear that the scale-breaking structure
and related singularities in the hadron masses
are entirely associated with the two-particle
reducible ladder sum and factorize from the two-
particle irreducible short-dis tance "subprocess"
(qy*-y*q in the case of deep-inelastic scattering).
This implies that any parton-model calculation is
modified by the scale-breaking effects of QCD in
the most straightforward manner: One simply
employs universal scale-broken quark/gluon dis-
tribution functions (as determined in the axial
gauge by the two-particle reducible hdder sums-
one for each interacting quark or gluon). In the

axial gauge one computes the two-particle ir-
reducible part of the short-distance subprocess
(which is infrared finite) to a desired order in
o.', ("Q'"), the moving coupling constant evaluated
at an appropriate momentum transfer squared,
and folds this together with the scale-broken dis-
tribution functions of the colliding objects. To
leading order in c.,("Q"') the short-distance sub-
process is always an elementary "Born" graph,
e.g. , qy~- y*q for deep-inelastic scattering,
qq=Ij, 'p, for p, pair production, q,q, -q,q, for
high-P~ jet production, etc.

We perform explicit calculations for deep-
inelastic lepton scattering off quarks. We dem-
onstrate that the straightforward solution of the
B|:the-Salpeter ladder equation in the axial gauge
reproduces the s tandard anomalous-dimension
results for S'] The calculation of the longitudinal
structure functio'n W~, which vanishes in the
leading-log approximation, introduces the addi-
tional complication of nonleading contributions.
One fjnds that the dominant contribution in such
a case occurs when the nonleading effects are
confined to a single loop integral, the one at the
top of the ladder nearest the hard photons.

In Sec. II we first exhibit the diagrammatic
method and its implications for general short-
distance parton-model applications in a model
field theory, Q theory in six dimensions. In Sec.
III the method is extended to @CD, illustrating
its'.application to deep-inelastic scattering of
leptons off quarks. In Sec. IV we show how this
diagrammatic technique can be used to derive
the Altarelli-Parisi' scheme for scale-breaking
calculations. In particular, the dominance of
ladder diagrams justifies their intuitive brems-
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II. DEEP-INELASTIC SCATTERING IN P THEORY
IN SIX DIMENSIONS

Appelquist and Poggio' have shown how to use
the Bethe-Salpeter equation to analyze deep-in-
elastic scattering in P field theory in six di-
mensions, (Q'), . In this section we review and
extend their method, remaining within the context
of the model. W'e shall thus be able to discuss
some general features of the method, free from
the spin and gauge complications of @CD. These
latter complications will be treated in Sec. III.

We shall be concerned with the behavior of the
two-particle scattering amplitude M(p, q), where
the momenta are defined in Fig. 1, in the limit

q'- ~, p'/q'- 0, (o -=2p .q/q'- 0. (2.1)

Throughout, we take all momenta to be Euclidean,
and continue back to Minkowski space only at the
end of the calculation. Since the limit defined
above is not the one appropriate to deep-inelastic
scattering, we shall have to continue to the phys ical
region»1 by means of the usual moment ex-
pansion.

Appelquist and Poggio showed that the Bethe-
Salpeter equation can be used to analyze the be-
havior of M(p, q) in the limit (2.1). They ob-
served that if K(P, q) is the two-particle irre-
ducible amplitude, then K(p, q) is free from in-
frared singularities as P - 0. The. limit (2.1) can
then be taken for K(P, q) as a simple short-dis-
tance limit, and K(p, q) is given simply by the
one-particle exchange graph in Fig. 2,

q2 1-&-~
K(P, q)- —,ln (2.2)

k

M)

FIG. 1. The Bethe-Salpeter equation obeyed by the
.two-particle scattering amplitude, M. K is the two-
particle irreducible (2' kernel.

qK) + (M) (K)
P~7
p p q

k

strahlung model and their scheme for regularizing
the infinities in the moments of the bremsstrahlung
distributions emerges as a natural result of prop-
erly including quark and gluon wave-function re-
normalizations. Section P summarizes our re-
sults and their implications.

In a second paper we will demonstrate how this
diagrammatic method may be used to provide a
simple analysis of deep-inelastic scattering of
leptons off nearly real photons and of jet produc-
tion in photon-photon collisions. Because of the
elementary nature of the photon, it turns out that
processes such as yy-q f via quark exchange
exhibit naive scaling.

FIG. 2. The short-distance limit of the 2PI kernel.
The vertex blobs represent the 1PI vertex corrections.
The blob on the propagator represents the full propa-
gator correction with the asymptotic behavior displayed
in Eq. (2.3).

The anomalous dimension y is associated with
the asymptotic form of the full propagator,

1 (q'D(q')- —, In)q'. ( A.
' (2.3)

To understand the behavior (2.2) we first recall
that the square of the fully renormalized vertex
behaves as'

g'(q'/X') -=4m n, (q'/X')-
b ln q' &' (2.4)

when evaluated at a symmetric Euclidean point.
A renormalized vertex consists of the one-particle
irreducible (1PI) vertex and half a propagator
renormalization for each of the three lines. Hence
the square, g'(q'/A. '), contains a factor [In(q'/A. ')]~
from the propagator renormalizations. 'The square
of the amputated 1PI strong vertex thus behaves
as [b In(q'/X')] " ~. Since the 1PI vertex is in-
frared finite this behavior is characteristic [up
to corrections of higher order ing'(q'/X')] of the
squared 1PI vertex evaluated in the asymmetric
momentum configuration (p, q, p —q; p'=0,
q'-~) appropriate to the Bethe-Salpeter equation,
Fig. 2. The kernel of Fig. 2 consists of the asym-
metrically evaluated 1PI vertex squared and one
fully renormalized propagator behaving in the
limit (2.1) as q '[In(q'/X')]", which yields finally

1 1
K(p, q) -

[ I (,/, )]„,„—,[In(q'/X')]",

which is just Eq. (2.2). Corrections to this asym-
ptotic form are of relative order [In(q'/X')] ', and
arise both from the asymmetric momentum con-
figuration and from higher-order kernels.

Note that we have taken the relation (2.4) for the
running coupling constant as a fundamental as-
sumption of our analysis. In the following, we
scale all momenta such that X = 1.

Instead of proving the infrared finitness of the
2PI kernel and thereby justifying the short-distance
limit in the manner of Appelquist and Poggio, one
could also proceed to examine directly the 2PI
graphs. other than the one-particle exchange and
show that they are suppressed relative to the
leading-logarithm behavior obtained from one-
particle exchange. This will be our approach in
the QCD case. This procedure for (Q'), theory is
illustrated, in Appendix A.
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6 k2 q2 ~~nyn ~
~ (2.7)

where y„ is a positive number depending only on
n. The integral vanishes for n cm in the following
sense: If m &n the result is proportional to p2,
and gives rise to terms of order P'/q', which we
neglect; if n &m the result is proportional to k'/
q', which does not contribute to the leading lnq'
order. That is,

dk2

k'l&' -lnlnq',

whereas

r
dk2

q'ln, k' lnq' '

In the limit (2.1) the Bethe-Salpeter equation
for M(p, q), shown graphically in Fig. 1, becomes

(lnq') ' '"
M(p, q) —

( ),

» d k

M(peak)(ink

)
b (2w}'k4 (q —k)'

(2.5)

where the upper limit k &q indicates the fact that
the leading behavior in lnq comes from the region
k «q, as one can easily verify by analyzing the
first iteration of Eq. (2.5), the box diagram (see
Appendix A). The factor (ink')'" comes from the
propagators joining K and M in Fig. 1. Ne shall
consistently analyze the Bethe-Salpeter equation
only in this leading-log approximation, which is
equivalent to the usual analysis of asymptotic
freedom via the renormalization group. '

The next step in obtaining the asymptotic so-
lution of Eq. (2.5) is to reduce it to an integral
equation in one variable by a partial-wave analysis.
The most elegant way to perform the analysis
is to exploit the O(6) symmetry of the equation

-[O(4) in the QCD case] by expanding in O(6) spher-
ical harmonics. ' %e shall instead present the
simpler analysis which results when terms of
order p'/q' are neglected. Then in the leading-
log approximation Eq. (2.5) is diagonalized by the

. power-series expansion

M(P, q) =, (»q') ' » g M (p' q')~" (2 6)
1

n=O

That this expansion diagonalizes Eq. (2.5) in
leading-log approximation follows from the in-
tegral

Differentiating with respect to q' enables one to
solve for the large-q' behavior,

M (P' q') =F„(p')(»q')'"", (2.9)

where the arbitrary function F„(P') reflects ig-
norance about the low-k' portion of the range of
integration. Equation (2.9) shows the emergence
of the anomalous dimension in deep-inelastic
scattering.

One can in fact determine the behavior of
F„(P') for large P' by imposing the boundary con-
dition that in the short-distance limit M(p, q)
-K(p, q), or, using Eq. (2.6),

as

M„(P', q') -1

p =XP, q =Xq,

(2.10a)

(2.10b)

which implies that for large p2,

F„(P')-(»P')" "
Finally, the solution can be written

M.() *,~') f() )( t=„t,.)'

(2.11)

(2.12a)

One finds that Eq. (2.12) is indeed a solution, of
Eq. (2.13).

In some applications it will prove to be more
convenient to use the Bethe-Salpeter equation
iterated in the opposite order (see Fig. 3) which
has the asymptotic form in the limit (2.1)

(lnq2) )» 1 & d6k
M(Pyq) .

b( )2
+

( )6 6 (Ink ) M(k q)

(2.14)

~e shall usually employ this form, which is more
closely analogous to the operator-product for-
malism.

Note that the kernel and intermediate propa-

where the function f„(p') is arbitrary except for
the condition

(2.12b)

The h. rge-P2 behavior can also be imposed as a
boundary condition on. Eq. (2.8), where it de-
termines the lower limit of integration whenP2
is large,

Q2 2

M„(P', q') =1+—",(ink') 'M„(P', k').
p2

(2.13)

Performing the angular integrations one then
finds that Eq. (2.5) reduces to

y ' dk2
M (p2 q2) 1+ n „,(Ink2)-iM (p2 k2) (2.8)

(M)
p k q

(M}

FIG. 3. The "reverse" Bethe-Salpeter equation.
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FIG. 4. The asymptotic behavior of the kernel enter-
ing the "reverse" Bethe-Salpeter equation of Fig. 3.
Note that all propagators and 1PI vertices are evalu-
ated, asymptotically, at k2. k q

(~c

(a)

(In q2) "
(k-q)

gators (Fig. 4) entering this "reverse" equation
are all evaluated effectively at k', an& that the
correct number of IPE vertices and propagator
renorma. lizations are present so that

(b)

FIG. 5. Connecting the amplitude M to the currents.
C is two-particle irreducible and thus has the asymp-
totic behavior of the one-particle exchange graph, as
shown in (b).

Using the expansion (2.6) one finds the partial-
wave equation for large p'

y ~ dk2
(p2 q2) I + n (lnk2) &M (k2 q2)

(2.16)

It is easy to verify that (2.12) is indeed the so-
lution of this equation. The fact that the two equa-
tions (2.13) and (2.16) are completely equivalent
can be seen by recognizing that they both imply
that M„(P', q') is a function only of the ratio $
= lnq'/lnp'. A little algebra then allows one to
cast either equation in the form

(2.i9)

(k ),[In(q'/X')] "
(k -q)' (2.20)

From Eqs. (2.18) and (2.19) we see that the nth
moment F„of the deep-inelastic structure func-
tion [Im(q A(P, q))/m], which is the coefficient
of co" in the expansion of q'A, behaves as

Note that in renormalizing the current attachment
vertices in such a manner as to define the re-
normalized charge squared e~', we have to supply
a propagator renormalization; thus the one-par-

, ticle exchange current attachment kernel C has the
asymptotic form

E -f (p')(Inq')"~ ~" (2.2i)

In order to calculate a reaction such as deep-
inelastic scattering one must connect the ampli-
tude M to the full 2PI "current" attachment graph
C, [see Fig. 5(a)]. Using either of the approaches
discussed above for the 2PI kernel one may es-
tablish for C that only the one-particle exchange
graph, Fig. 5(b), survives in the leading-log ap-
proximation. This yields an equation for the cur-
rent, scattering amplitude A of the form

(lnq') "
A(p, q) — ),

cf'k (ln k') ~
+(lnq')"

(2 ),„, (k ), M(p, k),

The quantity y„/b —y is thus the anomalous di-
mensionusually found by using the renormalization
group. The P' behavior is similarly controlled
by the anoinalous-dimension combination, y„/
b —y, once wave-function rpnormalization of the
initial quark line (with momentum p) is incor-
porated.

Qne particularly important point is now apparent.
The (Inq')"~~' powers arising from divergent loop
integrations have been separated from the short

P( k( k2 p2

Qu, ()&—((, )=c() (vz)

(a)

(2.iv)

2

lnq''t "~ ~

(2.16)

where we have defined

which for partial waves becomes to leading log Q~H~Q +~ ((() Q2)-2y

(b)

FIG. 6. (a) Massive p-pair production showing the
separation of the kernel H which is 2PI in both of the
colliding quark channels. (b) H is infrared finite as k&
and k2 0 so that its short-distance limit dominates as
Q2~oo ~
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distance one-particle-exchange limit of the
"Born" current attachment graph of Fig. 5(b).
This same procedure applies to other parton-
model processes. As a second example consider

pair production, Fig. 6(a). The amplitude
H describing the attachment of the colliding quarks

1 and 2 to the massive p, pair is defined to be 2PI
in the channels of each of the two quarks. It is
infrared finite, and thy. s its leading behavior comes
from the short-distance limit of the simplest
graph, shown in Fig. 6(b). The full p, 'i(, production
amplitude is thus

with

fd'k M '* dk). ). ~1& ). (Ink 2)2)' 2 2(P2t 2) (ink 2)2)'H(k k Q)(2&)' k ' ' (2w)' k ' (2.22)

H(k„k„Q)-(standard bare diagram with renormalized charges) (lnQ') '")'"2='"'. (2.23)

Note that we have again i.solated the scale vio-
lations resulting from the accumulating logarith-
mic divergences in the amplitudes M, and M„
which are measured in deep-inelastic current
experiments. Equations (2.22) and (2.23) thus
imply that the standard Drell- Yan' formula is
applicable for the leading-log behavior of p,

'
p,

pair production provided that quark distributions
incorporating the leading-log scale violations are
used. The fact that the amplitude which is two-
particle irreducible in both of the quark channels
may be asymptotically approximated by its sim-
plest "Born" contribution with properly renor-
malized vertices and propagators is crucial.

Note how two factors of (lnQ')", one for each
quark participating in the "Born" process, must
be supplied in order to correctly define the re-.
normalized couplings inside the "Born" ampli-
tude [Eq. (2.23)]. Thus t~o factors of (lnQ') "

appear in Eq. (2.23) and are absorbed into the
behavior of the two colliding quark distributions,
just as occurred in the deep-inelastic current
case. %e again obtain quark distributions char-
acterized by anomalous dimensions y„/b —y, where
y„/I) comes from M and y comes from renor-
malization of the "Born" quark amplitude.

This procedure generalizes to high P ~ and other
short-distance processes. A factor (ln "Q"')'
for each participating initial or final quark must
be absorbed into the 2PI Born graph in order that
all couplings in that graph are correctly re-
normalized at the moving point "Q"' associated
with the kernel (of course for a high-P„sub-
process "Q'" is of order 4Pr'). The leftover
(ln "Q"')~ factor is combined with the leading-
logarithmic behavior obtained from the ampli-
tude I, describing the connection of a given
initial- or final-state quark to its associated
initial- or final-state hadron, to yield the standard
scale-broken quark emission or decay prob-
abilities.

III. DIAGRAMMATIC 'METHOD FOR DEEP-INELASTIC

SCATTERING IN @CD

F(p, q)= —,pf (p', t*)( (3.1)

then one can generate the amplitude for q+f+
gluon -y *+y* (Fig. 10), by the minimal-coupling
prescription (letting p-p+k, extracting coe-
fficient of k ). One obtains

Pi0) ~ -=
(F q, p.

p, b, j = -q, v

p, o, a---- q, p,

-p, b, O---

FIG. 7. Fermion and gluon amplitudes.

A. Lipatov Gauge

Extension to QCD of the diagrammatic method
of analyzing deep-inelastic scattering in leading-
log approximation is straightforward, provided.
that a certain gauge is chosen. Unless a special
gauge choice is made, one finds that ladder di-
agrams are not the only contributors to leading-
log approximation.

To be specific, let us consider the problem of
deep-inelastic scattering off spin-averaged quarks.
That is, we wish to evaluate the amplitude cor-
responding to the diagram in Fig. 7(a). As before,
we first perform the evaluation in the limit
q'- ~ with 2p q/q' —= (d -0, and with p' = 0. The
straightforward extension of the Bethe-Salpeter
equation of Fig. 4 would be given by the ladder
diagrams of Fig. 8. In QCD, however, diagrams
such as that shown in Fig. 9, in.which a gluon
emanates from the interior of a vertex, can con-
tribute to the leading-log behavior.

To analyze such contributions in detail, let us
consider the subdiagram shown in Fig. 10. If one
is given the amplitude for q q-y*y* [Fig. 7(a)]
in the form of a power series in ~,
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G
L

FIG. 8. (a) Bethe-Salpeter equation for S'. (b) Bethe-
Salpeter equation for G. Full vertex and propagator re-
normalization blobs are understood to be present on all
internal lines.

FIG. 10. The amplitude for 1-gluon emission from a
qq yQ* amplitude.

to use gauge invariance to generate the gluon
coupling amplitude in fact simplifies the leading-
log "ladderization" proof relative to the P' case.

In Lipatov gauge the propagator of a gluon of
momentum 4 is given by

(3.2)

Additional terms which arise in both Eq. (3.1)
and Eq. (3.2) do not contribute to the leading-
log order; for example, terms proportional to
P' rather than q in Eq. (3.1) can easily be found to
be negligible in leading-log approximation when
substituted into the Bether-Salpeter equation of
Fig. 8.

Now the crucial observation is that these internal
gluon-emission amplitudes, such as Eq. (3.2),
are proportional in leading-log approximation
to q„. If, therefore, the gauge is chosen in which
the gluon polarization vector E is orthogonal to

& ~q=0) (3.3)

then the internal gluon-emission diagrams such
as Fig. 9 will vanish to this order. Since a sim-
ilar axial gauge was used by Lipatov in order to
eliminate nonplanar diagrams, we shall refer
to this as Lipatov gauge. ' In such a gauge the
naive ladder-type Bethe-Salpeter graphs of Fig. 8
give the correct leading-log result. Although
we shall use Lipatov gauge hereafter, we remark
that it is not impossible to work in other gauges.
In that case, one can add the nonvanishing di-
agrams of Fig. 9 to those in Fig. 8, and deter-
mine the internal gluon emission amplitudes by
the minimal-coupling prescription, as in Eq.
(3.3). Diagrams in which more than one internal
gluon is emitted are higher order in n, and do
not contribute to the leading-log behavior.

Similar procedures applied to the (singlet)
gluon channels prove that only the gg-y~y* am-
plitude contributes in leading log. The ability

(a) (b)

FIG. 9. A possibly important diagram in @CD. In-
ternal gluon emission amplitudes such as this survive in
the leading'logarithmic behavior if the Feynman gauge
is employed, but are nonleading in axial gauges,

1 q, k„+k q„q'k„k„
k' ~"

q k (q k)'

P,„(k)
k2 (3.4)

The singularities at q -4=0 can be handled by the
principal-value prescription of Kaintz, Kummer,
and Schweda (KKS).'

B. Calculation of 8',

Making the usual decomposition (v=p. q)

w, „(p,q) = -5', (v, q') ig„„-

8'~ - -,' V&%'2 —W, , (3.6)

which vanishes in leading-log approximation.
The Bethe-Salpeter equations for W'„shown

diagrammed, tically in Fig. 8, are diagonalized in
leading-log approximation by expansions, which
generalize Eq. (2.6),

(3.Va)

where i,j are flavor, a, 5 are color, and &, 7 are
Lorentz indices. As remarked above, terms
proportional to p' in E do not contribute to leading
log. The relatively simple form of G given above
comes about as follows: Gauge invariance re-
quires that the on-shell limit of G,(k, q) be pro-
portional to

g — ' ' ' +O(k~ kok, ) . (3.8)

+W(vq )()„-";)(). ",
) . (35)

e consider in this section the calculation of the
transverse structure function W„and defer to
the next section the calculation of the longitudinal
structure function .
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The terms of order k or k,k, do not contribute
to leading log. Moreover, the second term above
does not contribute since we employ the Lipatov
gauge for intermediate gluon propagators in the
ladder. The amplitude G is, therefore, effectively
proportional tog„, as stated in Eq. (3.7b).

Using the expansions given in Eq. (3.7) to sim-
plify the Bethe-Salpeter equations of Fig. 8 re-
sults, as before, in equations diagonal in the
index n, in leading-log approximation. The per-
formance of the loop integrals is identical to the

calculation of critical exponents. See especially
Gross and Wilczek, Appendix B.' Note also the
analogy between the diagrams of Fig. 2 of that
reference and our Fig. 8. The only difference is
that working in Lipatov gauge eliminates three
of the seven diagrams, but of course the more
complicated propagator (3.4} reintroduces a.

comparable level of complexity. Sample ca.l-
, culations are given in Appendix B. The result

is the coupled equations

bll Q dk2 b~ ~ dk2f' (p' q') = I'" (lnq') " + "" (ink') 'f' (/2' q')+ " (ink') ""&"Fg (/2' q')
p2 p2

(3.9a)

b" ' dk2
(p2 q2) g (lnq2) I& -G.F (lny2)-1+yF-yo pe (y2 q2)

p2 i

b" ' dk'

p
2

(3.9b)

We follow the notation of Politzer'; the b",~ differ
from the usual anomalous dimensions y» in that
the latter include contributions of self-energy
diagrams whereas the- former do not; the quan-
tities y, are defined as y, =y,/b/, where y, is the
self-energy piece in Politzer's notation. The
subscript n = 1.,I. designates transverse or lon-
gitudinal structure function. For the transverse
case we are considering at present, the inhomo-
geneous terms given by the tree graph in Fig. 6
are simply'

(3.9c)

where Q, is the chaige (.in units of e) on the ith
quark. The values of the y's and 5's are listed
in Appendix B. The diagonaI term b» and the
associated y~ differ from those obtained, say,
in Feynman gauge. However, the combination
bz~ —y~ associated with the anomalous dimen-
sion of the gauge-invariant operator S', yieMs
the standard result. The importance of considering
such combinations is even more apparent in the
Altarelli-Parisi scheme where b» y~ b~~ and y~
are all separately infinite.

As usual, one must treat singlet and nonsinglet
amplitudes separately. The singlet case, which
is considerably more complicated; is relegated to
Appendix C. Defining nonsinglet amplitudes f"
=f'-f/, i', one sees that (3.9}simplifies to

f"„(p',q')=F'~(l qn) 2"F

y"I~ = -»&"Iz+» 1~1~ (3.12)

and where, as in Eq. (2.12), the function A„(P2)
is unknown except for the restriction

A„(p') -1. (3.13)

One finds T, the forward spin-averaged am-
plitude for Compton scattering off quarks, from
E by taking the spin average, T = —,

' Tr(jiF ) to
obtain

&.(~, q') =gf. „(p',q')~".
n=o

(3.14)

We now employ the standard theorem which states
that the expansion coefficients of the amplitude
T in powers of & are related to the moments of

b" ~ k2FF (lny2)"lf0 (y2 2)
p2

(3.10)

This equation, which is essentially identical to
Eq. (2.13) encountered in the (Q'), model, has
the solution

fi/ (p2 q2) y'iJQ (p2)(lnq2) OFF/22(lnp2)-bFF/2

(3.11)
where
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the structure function W =- Im T /2v; i.e.
(x = I/4u)

W.(x, q')x" 'dx = ,'f„-„(P',q') . (3.16)
FIG. 11. The inhomogeneous terms contributing to the

4t (q
~ n)t structure necessary for Wz.

Thus E4I. (3.11) reproduces the well-known result
of logarithmic scaling violation in QCD. 4 The
asymptotic P' deperidence is written out in more
detail than usual, because it will be convenient
to integrate over P' in subsequent applications.

C. Calculation of V&

p„P„W„„=-, v4uW (P, q) . (3.16)

The calculation of S'~ introduces some in-,
teresting new features, in that this amplitude
vanishes in the leading-log approximation we have
been considering. The inhomogeneous term in

Fig. 8 coming from the tree graph gives zero
(i.e., order 1/q') contribution to W~, and there-
fore, the leading-log ladder graphs we have been
summing give zero contribution.

The longitudinal structure function TV~ can be
projected by the operation

Nonvanishing contributions to W~ must involve
loss of the leading logarithm in at least one loop
integral. The leading contribution to W~ will
involve such loss in only one loop integral.
Moreover, we show in Appendix D that this must
occur in the first loop, the one nearest the hard
photons. The diagrams which contribute are
shown in Fig. 11. %hat happens, then, is that
these diagrams give a nonvanishing contribution
proportional to g(q b,)'. It is easy to verify that
this form, once generated, propagates unchanged
through successive iterations of the Bethe-Sal-
peter equation (in leading-log approximation,
which we reinstate after obtaining the nonleading
contribution of the first loop only). 'Thus we
need consider amplitudes of only this form, and
can ignore the first seven structures in (3.18).
For the longitudinal amplitude we thus write,
instead of E4I. (3.7),

ln solving the Bethe-Salpeter equation, we shall
need to consider amplitudes E~(k, q) for quarks
with intermediate momenta k, whereas the pro-
jection of W~ in (3.16) involves the final mo-
mentum P. To avoid confusion, let us consider
the quantity

F =6 ~be~ 4 Zfs„V' q )4u
n-4

n

(q &)' rGi babgs ~—
4 ~C's, n@ iq )4u

q
~,n

(3.19a)

(3.19b)

W~(n;p, q) = n, n„W„„(p,q), (3.17)

which will yield W~(P, q) = Wz(P;P, q) at the end of
the calculation when 4„ is set equal to P . Since
there is now a third four-vector 4 on which

W~(&; p, q) depends bilinearly, there are eight
possible structures for this amplitude:

4P &, PP ~q ~g P(P

A ~p ~, e(P ~)',

4(q &, P(q &)',

q'(q &)'.

(3.18)

The first five of these vanish when 4-p, since
we a,re taking P'=0 (that is, neglecting mass
corrections such as P'/q'). The next two vanish
for spin-averaged quarks, and we conclude that
only the last structure, g(q ~ 6}', gives a non-
vanishing contribution to 8'~ off spin-averaged
quarks. The tree graphs in Fig. 8 give, however,
no contribution to this structure. Moreover, it
is not difficult to show that none of the first seven
structures in (3.18) when iterated in the Bethe-
Salpeter equation yields any contribution to this
structure. Thus 8'~ vanishes in the leading-log
ladder-graph approximation, as stated.

Substituting these expansions in the Bethe-Sal-
peter equation, given by Fig. 6, one again finds
E41. (3.9) but with the inhomogeneous terms cal-
culated from the diagrams of Fig. 11 (see Ref.
10)

Q C2(B)
0 2~2$ lnq2 n +1 & (3.20a)

2ZP, q T(g) 1
v b lnq' (n+1)(n+2) ' (3.20b)

lg Wq'(x&q )x" 'dx P, „4v blnq'(n+1)

Our analysis of deep-inelastic scattering off
quarks, having yielded all the usua1. results as a
test of our diagrammatic method, is now com-
plete.

The solution of these integral equations is ex-
actly as for 8'„with the only difference being in
the inhomogeneous terms. The singlet case is
discussed in Appendix C, the nonsinglet solution
is given in Eq. (3.11). From E4ls. (3.11), (3.9c),
and (3.20) we recover the usual result"
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IV. DERIVATION OF THE ALTARELLI-PARISI SCHEME P (1 k q

We will now employ the Lipatov gauge (or,
more generally, any axial gauge with the trace
of the gluon propagator being —2 in a leading-log
sense) and our Bethe-Salpeter techniques to de-
rive and justify the scheme proposed by Altarelli
and Parisi2 (AP) for understanding asymptotic
freedom. Several ingredients in their paper are
ad koe; these include: (a) the calculation only of
bremsstrahlung (in our language, "ladder" )
contributions; and (b) the regularization of the.
divergent moments of the bremsstrahlung cal-
culations in the prescribed fashion. Moreover,
the "master equation, " on which their method
is based, they obtain from the standard operator-
product, renormalization- group result. We
shall see that all these ingredients emerge nat-
urally in our approach.

We have already proven that the ladder approxi-
mation gives the leading logarithmic result when
axial gauge is employed. Also the moving coup-

FIG. 12. The nonsinglet reverse Bethe-SB.lpeter equa-
tion.

ling constant is incorporated into the kernels
and Born terms of our Bethe-Salpeter equation.
In fact, we need only show that there is a parti-
cular method for computing the anomalous di-
mensions arising from the ladder Bethe-Sal-
peter equation which looks like that used by
AP; their method differs in the choice of a
regularization scheme other than that of KKS
used in Secs. II and III, and in delaying diagon-
alization of the Bethe-Salpeter equation to a
later stage of the calculation.

We shall concentrate on the nonsinglet case.
The reverse Bethe-Salpeter equation for qq
-y*y* in the fermion nonsinglet channel is,
dropping the trivial charge factors for simpli-
city, (see Fig. 12)

(1nq~) ~
~

4 d k P 22(P k)y )kA(k, q—)gya

(p —q) 3 (2)T)'(p —k)' k b ink
(4.1)

where P z is defined in Eq. (3.4) and where we have taken the W(-=- 2g „Wpv) projection. The (3) is the
color group factor C,(R). We write A(p, q) as

A(P, q) =a(P, q, 2P q)P+b(P, q', 2P q)g.

For convenience we spin average; only the g parts will survive, as usual. Thus

k»[Afj]-2p q» kTr[j)(P-0)]--2p q.
For the internal part of the Bethe-Salpeter equation it is pedagogically useful to separate the

( )
(P - k).qe+(P k)eq

(b) -d (P —k).(P k)aq' (,)-—
g22)) a 2 ( k)

b 2
and —

[( k) ]2
c

parts of P ~(p —k). We then obtain

,' Tr[Py.gA(k, q)P—y]P.,(P k)—
2q k=k2 ~a+b & 4p ~ k —4q pba'

+ 2q oga+b, [(2p k —2k )2p q —2q k2k p —2(p —k) 'q2p'k] —2bq (- 2p'k)2 2

(p- k) q k'

+ ~ la+2, 2)2 —2) li —25)2 —2) t)
q2(- 2p k) )' 2q k

(p —k) q
' ( k'

(4 2)

(4.3)

(a)

(b)

(c)

(4.4)

This structure simplifies greatly if "light-cone" techniques are used to evaluate the d 0 integral of Eq.
(4.1). We use the light-cone frame'2

M2 M2 v v k +0 k +0
P = P+, O, P —4, q, q, , k= zP+, k~, zP— (4.5)

and the method of performing thedk'integrationby picking up the pole in k' in the (p —k) ' propagator, i.e.,
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q'kf(k', k. q) J qk'
q q«k

f(k'. k q)
(p- k)' 2z ' g- k)'

dz t
k'=«q'kJ'(k =«M' — ', k ~ q=«(«q),1 —z ( 1 —z'

where we define for future use
2

x= q'
2P ~ q

(4.6)

Note that 2P.k-k - —k, '/(1 —z) for P =M -0. The limits on the z integral come from re(luiring that the
singularity structures of f(k', k q) lie on the opposite side of the k' axis from that of 1/(p —k)'. Following
the line of argument presented in Secs. II and III we find that the important range of integration is

I

2 2 — 2k, &q, =-q
The leading-log contribution we seek will have the final structure

dk 1

k, b ink~

Corrections to the integrand of order k, '/q, '. do not contribute to the leading log;

r dk~ k 1 1
kj qj b ink, '

b lnq, '

(4.7)

(4.8)

(4.9)

With this in mind one can greatly simplify the trace structure (4.4). We obtain in the leading-logarithmic
approximation

4bp q(z —1)

bp qz
—,
' Tr[fty (A(k, q)py~]P z(p —k) - k2 x( 8

1 z

(a)

(b) (4.10)

O(1), not O(p. q) . (c)

The above forms obtain under the leading-log approximations

2k q-2zp q, (p-k) q-(1 —z)p q,

(4.11)

We obtain W(q', p', x) by taking Imb'(p, q)/2v to yield [recall k'=- k„'/(1 —z) +zp' and q2=- q,~j

the latter being the source of the (1 —z) behavior in (4.10). The singular behavior is only apparent but
will require temporary regularization as we discuss shortly.

Inserting (4.10) into our integral equation (4.1), using (4.6), and defining b' =2P qb, we have

(P —q)' 3l Bv 1 —z z bink, k,

t'4) ' dz 1+z' '~ dk, ' 3 X
(4.12)

This is the key e(luation. The various pieces of the trace structure (4.10) have combined together to give
the bremsstrahlung structure

(4.13)

I

where

and

,
)

4 (x,(k, 2) 1+z' 1
3 2v '1 —z k2 (4.14a)

(, g '(k, ') 1
4v 4vb ink ' (4.14b)

G, &,(z, k,') is the probability for emission of a
secondary quark q with fractional longitudinal mo-
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mentum z and transverse momentum k, from a
primary quark. The Bethe-Salpeter equation has
instructed us to employ the moving coupling con-
stant o,(k,') in G, &,. We may now diagonalize Eq.
(4.13) by taking moments

x" 'W, (-q', p', x) dx= ,'f, „-(q',p'), (4.15)

where

b FF
— lim

6~0
„~ 1+z2 1 4 (4.17)

In writing (4.16) we have incorporated the trivial
sign change of the Born term necessitated by our
unconventional choice for the direction of q (see
Ref. 10). Note that b~„ is logarithmically diver-
gent as z-1, in our leading-log light-cone ap-
proximation, and that we must momentarily insert
a cutoff to keep z&1 —e. 'This infrared divergence
comes from the second term of P ~ present in an
axial gauge. The solution to (4.16) is

with the result

f„„(q',p') =2(I~,') '~

n
'

ln'Ig d]nQ 2

+ FF & @2 P2 416
ink,

simple algebraic maneuvers. Thus we have seen
that the AP regularization scheme is actually ac-
complished by properly including the wave-func-
tion renormalization effects. The anomalous di-
mension y»/2b is independent of regularization
scheme and integration techniques, but its two
components b~~/b and y~ depend strongly on the
approach employed. Needless to say b~~/b and

yc display similar divergences to those encoun-
tered above, but again the combination is finite
and yields the usual result. The AP expressions
for bFc and bcF are finite. Sample light-cone tech-
nique calculations of b"„c and bcF are given in Ap-
pendix E. One quickly discovers that in these
cases the contributing trace terms are the same
in the light-cone technique as in the earlier tech-
nique of Sec. III based on KKS regularization. %e
summarize the results below:

b "FF =.
z"-'dz

b" = dz2[z'+ (1-z)']z"-' —
i

1

CF 2]

-4 n'+n+ 2 ('1
8m' n(n+1)(n+2) &2

f (q b2) -2(]nq )6F ~ 4(luff ) ~pz ~. (4.16)

Thus the experimentally meaningful quantity is
the anomalous dimension of the gauge-invariant
operator W„

t 1+ 1 z -~t4

0

1 n2+g+ 2 4
16m n(n —1) 3

(4.22)

n bn7FF FF
2b b

(4.19)
bG~ =, dz2~ + +z(1- z} z"-'(3),1 ' ( z (1 —z)

87t' 0 I 1 —z z

[see Eq. (3.14)] and not b» itself. In fact a sim-
ple calculation in Appendix E using the same in-
tegration techniques yields c z 2 + z z(1 —z)) z($(

rF =, lim dz (4.20)

i.e., an unweighted integral over G, &,(z), so that

y» 4 (-1) d (
"-' —1)

1+z'
2b 3 8g b 0 1-z (4.21a)

with

1 2 ~ 1 &4

167r' n(n+1} ~2 j (3

(4.21b)

Note that the z-1 singularities have canceled be-
tween b~~/b andy~, allowing us to take &-0, and
the standard' result (4.21b) is obtained after a few

bcc-&c,
1 4 4

16m' ri(n —1) (n+ 1)(n+ 2)

1 1 1 4 1
+4 —. + — (3)- —n

, , j 3 16m'3 ~ 2

(4.23)
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We have inserted the group-theoretical constants
C,(G) =(3), C, (R) =(—,') and T(R) =(-,') per fermion
flavor. Up to this point we have carefully avoided
discussing y~ and b« in detail in either the light-
cone or KKS regularization approaches. These
calculations are clearly somewhat lengthier than
those presented. A brief outline of the interesting
details appears in Appendix F. We have written
the gluon part of y~ in such a way as to make the
cancellation of. its divergences with those of b~~
apparent. This is discussed further in Appendix
F.

V. DISCUSSION

(o) (b)

FIG. 13. Typical graphs contributing (a) to W&, (b) to
w~.

I

We have developed a method for diagrammatic
analysis of deep-inelastic scattering in QCD. In
a particular axial gauge, which we call the Lipatov
gauge, the leading contributions come from ladder
graphs obtained from iteration of the Bethe-Sal-
peter equation corresponding to Fig. 8. Typical
diagrams contributing to leading behavior are
ladders such as in Fig. 13(a). The analytic ex-
pressions corresponding to these diagrams are
obtained by solving the Bethe-Salpeter equation.
This equation is reduced to a simple integral eq-
uation in one variable .by expanding in O(4) partial
waves, or, more simply, by apower-series expan-
sion in z =2P q/q'. This expansion corresponds
to the operator-product expansion in the usual
formalism. ' The close analogy of the two methods
is further shown by the correspondence between
the Bethe-Salpeter diagrams in Fig. 8 and the
diagrams used in calculating the anomalous di-
mensions in the renormalization-group approach.

The calculation of a process which vanishes in
leading order, such as the longitudinal structure
function, differs only in the form of the inhomo-
geneous term in the Bethe-Salpeter equation.
Those shown in Fig. 11 are the contributors to
lV~. A typical diagram which results is shown in
Fig. 13(b). One finds that the leading contribution
comes when only one loop integral loses its lead-
ing logarithm; moreover, that loop must be the
one nearest the hard photons. Hence those shown
in Fig. 11 are the only possibilities. Since the
contribution of these loops to W~ is not of leading-
log order, use of the Lipatov gauge no longer elim-

inates nonplanar graphs and the crossed loop can
occur at the top of the ladder in Fig. 13.

Although it is gratifying that our method repro-
duces the usual results, it is appropriate to ask
whether it has any value beyond the pedagogical.
We find that it has both computational and inter-
pretational value. In a subsequent paper we shall
describe the computation of the process y*+y*-hadrons, a rather more intricate computation
than the ones presented here. We find that the
diagrammatric method provides a more straight-
forward and transparent calculational tool than the
operator-product and renormalization-group
machinery, although that may be a matter of per-
sonal taste.

As for the rnterpretational value of the method,
it is clear that it enables one to justify with pre-
cision the Altarelli-Parisi' bremsstrahlung scheme
for calculating the ariomalous dimensions, includ-
ing an understanding of the importance of wave-
function renormalization in regulating the diver-
gent moments of the bremsstrahlung distributions.
More generally, it allows one to make contact
with the pictorial parton-model approach. We have
demonstrated that the leading-log series (in the
axial gauge) arises entirely from the two-particle-
reducible. ladder graphs, in a given quirk channel,
in which each rung of the ladder is renormalized
one-particle exchange and in which the ladder ser-
ies factorizes from the simplest renormalized
"Born" diagrams used for attachment to the deep-
inelastic currents, p, 'p pair, high-p~ subpro-
cesses, or other short-distance probe. Thus all
parton-model applications are in fact justified in
the leading-log approximation, provided that: (a)
the quark-parton distributions incorporate the
scale breaking as calculated from the leading-log
or asymptotic freedo~ approaches, or are those
directly measured at appropriate Q' values in

deep-inelastic scattering, and (b) that the ele-
mentary short-distance subprocess is expressed
in terms of fully renormalized coupling constants
e„' or (Qo'), the extra (lnQ') "&'"G' wave-function
renormalization pieces for each initial or. final
quark (gluon) participating in the subprocess hav-
ing been incorporated into the scale-broken dis-
tribution functions as discussed in Sec. D. We
learn that in justifying the leading-log factoriz-
ation, integration over A,, of the quarks is crucial.
Thus, for instance, if a p, 'p, pair of given Q' and

Q, is examined, i.e., the annihilating quark and
antiquark have correlated k, 's, then the simple
parton-model factorized approach is not obviously
correct. We also learn, from the diagrammatic
structure of terms which do not contribute to
leading log but are down by only a single log, that
the approach of factorizing a parton distribution
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(a) (b) APPENDIX A

FIG. 14. Examples of graphs contributing in next to
leading log for (a) p+ p" pair production, (b) deep-in-
elastic scattering.

from the simplest "Born" (no-loop) contribution
to the given short-distance process does not work
to next order in 1/In@'. .For instance, in the p-
pair case a diagram such as Fig. 14(a) will con-
tribute a term of order 1/In@' relative to the
leading-log series (in the axial gauge). How to
relate. this 1/in'' correction to similar ones for
deep-inelastic scattering, such as the Fig. 14(b)
diagram, is not apparent. However, a general
calculation procedure is obvious: One calculates
the short distance 2PI (in all channels} component
of the cross section to a desired order in n, (Q').
This will bring in the 2PI parts of diagrams like
14(a) and 14(b) as higher-order corrections to the
simplest "Born" contribution; this 2PI component
is then folded together with the full scale-broken
distributions of the quarks (or gluons} participat-
ing (i.e., entering into) this 2PI component. The
scale-broken quark/gluon distribution functions
contain all knowledge of the external hadrons and
related mass singularities, and theoretically may
be computed to any desired order in 1/in@' by
systematically retaining higher-order cor rections
to the 2PI kernel. These higher-order corrections
to the scale-broken quark-gluon distribution func-
tions are, however, not directly measured by the
deep-inelastic structure function, which is sen-
sitive, as well, to higher-order corrections to the
two-particle irreducible-current attachment kern-
el.
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while I ) k2 yields

" dPf4 (in/2)»
Q2 2 $8 (Ing2)2+27. h2)p (A2}

Both regions are suppressed by a full power of
(ink'} ' relative to the single-particle exchange
graph. In general, the k' to ~ region is obviously
unable to yield a leading behavior because the in-
tegral is convergent for any 2PI kernel. The l2

& k' loop integration region could have become im-
portant had the /2 integration been primitively log
divergent as, for instance (neglecting moving
coupling constants),

dl2 - ink'
)2 (AS)

instead of

dl2
/2 (A4)

This same log-divergent integral is that which
would be associated with an infrared divergence
as P'- 0 coming from the lower limit. 'This is a
specific example of the relation between a leading-
log derivation and the infrared finiteriess of the

i4 %&p

I k

i
I

P

(a)

&p-I+k

I

p

(b) (C )

FIG. 15. (a) A crossed ladder two-particle irreducible
kernel; (b) th6 simplest one-particle exchange 2PI ker-
nel; (c) the uncrossed ladder of same order ing as (a).

We consider here the example of the single
crossed-ladder 2PI kernel relative to the one-par-
ticle exchange kernel [Fig. 15(a) vs 15(b) and

15(c)]. We do this in the context of the reversed
Bethe-Salpeter equation (2.14). For k2» f,2 we
divide the l' integral into the region /2& k' and l'

(For simplicity we neglect l ~ k, l p, and

P - k dependences which can be easily included us-
ing the techniques discussed in the text. ) For P
& k' the crossed ladder gives

1 dl2&4, 1
(I Pn}-1/2+rl2(lny2)-3/2-wl2 (iny2)-a

y3 k4 j4 g2k2

(Al)



%ILLIAM R. FRAZKR AND JOHN F. GUNION

2PI kernel. 'The two are equivalent in the ((t('),
and QCD cases. In a general 2PI graph one con-
tracts those lines carrying k (a possibly important
region of loop variables is l'&k') and examines
the reduced graph for log divergences j dl2/P in
the subintegrations. One can show in general that

there are none following counting procedures like
those discussed in Appelquist and Poggio's Ap-
pendix A. '

We may also easily compare the crossed-ladder
contribution to the ladder contribution [Fig. 15(c)]
which yields

1 dl'l' (ink')'" t
dl'l' 1 1 1

bk' ink' l'b lnl' b' J 2 l' (lnl')"'" k'b' ink' ink'
+- ln 11@'+ (A5)

We see that the ladder contribution begins to develop an exponential series 1/ink'(1+ ln ink'+ —,'(ln ink')'
+. . . ) from the P&k' region. The 12&k' region is suppressed by a full (ink') '.

In this appendix we show in detail some sample calculations in our formalism, and list the results for
the anomalous dimensions. First consider the contribution of the qq -gg ladder kernel to the gg-y*y*
amplitude, G„Fig. 16(a) (including a factor of -2 for summing over closed quark and antiquark loops)

~t
d k Tr[lfy, (II-P)y,le, ]

' ~ (2v)' k'(k-P}'b ink' (Bl)

We wish to isolate the g„part of this amplitude. We can do this by noting that the polarization sum opera-
tor

( )
Paqv+Pvqa q PePv««P q Q q)2

(B2)

effectively projects out the g„part of the amplitude since other terms' are small or zero. For instance,
any term proportional to q, or q, yields zero in the Lipatov gauge, while any term proportional to p, or p,
yields an order P'/q' contribution relative to

P«g«= —4+ 2+ OQ'/q') ——2 .

Thus [see Eq. (3.7b)]

Gl 2+ g @2 2)~n 1/ 2

n~

receives a contribution from Eq. (81) of the form

(B4)

esO f1~0

where we have dropped quark label and color subscripts.
In evaluating P„Tr[ ] we drop terms which do not contribute in leading log and obtain

1

P„Tr[ky, (g -P)y,@]= BP qk'+ 16 (2P 'kq 'k —k'P 'q)+ 0.

(B5)

(B6)

We now use the angular integration identity (for the leading-log terms}

(BB)

(B9)

to obtain (including an extra minus sign to convert the integration to Euclidean metric, and with v=P q)

—16v ' 1dk' (Ink')-"%% ",, (I ( 2 2 ) - Qp. )n-~

n~p

So we have a piece in our dk' integral equation for g» of the form

16 ' k'bink' (n+1)(n+2) '""
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Comparing this result with Eq. (3.9b) we see that

(810)
-4 n'+n+ 2
Bm' n(n+1)(n+2)

'

As an example of the leading-log approximations built into (85) we show in what sense the third term of
P„Tr[ ] in (86) is 0. In actual fact it is

2 2 8, Tr[ffP(k-P)Pgg] ~"""'-,Tr(if/)'fP@) =—,(2q kp k- vk') . (811)

Since p 'k is effectively of order k', this term is of order k and cannot yield log-divergent integrals.
As a second example we consider the calculation of b» and y~ for S,. As is well known, these are

separately gauge- and regularization-scheme-dependent quantities. Only the .combination associated with
the anomalous dimension of the gauge-invariant quantity 5', is invariant. 'The graph we are considering
is shown in Fig. 17 which yields a contribution to the behavior of I", of the form

d'k (r, kF,Ifr, )&,.(k -P)
(2v)' 5 i~'(k —P)' (812)

Consider first the -g ~ part of I'

fl j.
Y V',Aq (-g 8) = —,Pf,,„(k',q'), , (k9 - 2q 'kk+ k'g) . (813)

As usual, only the second two terms survive in the leading-log approximation. Using (8'I) and the Ieading-
log identity

(814)

we obtain, after expanding (k —P) and incorporating the minus sign for conversion to a, Euclidean integral1, , 2p q
"'

q '1 dk' 2 1 1 2p q)"'
~Z 'f""~''q' ' q' ~ 2k251~'sv' Z s m+1 '

~
~

@~0 n

That is, there is a term in the integral equation (3.9a) of the form

(815)

2 oX ~EE d~
y2

k2 lnk2 f& n( iq ) (816) n(n+ 1) (a)

with b"I,„=, -2 —(b)8m' m
(81V)

yn
Bv'n(n+ 1) I 0. (c).

The other terms in ~
& also yield contributions to

b», namely,

The last two terms depend explicitly on our method
of handling the singularity at (k —P) 'q=0. For
instance, the only contributing integration for the
[(k —P) 'q] ' propagator term in the KKS regulariz-
ation scheme reduces to the form

(al (b)

FIG. 16. The gg-qq ladder kernel contribution to
gg-y y*, i.e., to 6 of Eq. (3.7). (4) The qq —gg ladder

, contribution to qq p*p~, i..e. , t» of Eq. (3.7).

p z k q

g

FIG. 17. Contribution to I
&

from the qq qq ladder
' kernel, Eq. (812).
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f d4k 2 d4k

(2z)'k'(q k)' q' (2s)'k' (818)

1
28m2b

' (819)

The net power of lnq' arising from those various
components as per E(ls. (3.10) and (3.11) is

f„(P', q') - (lnq')"

with

(820)

bFFa = —yFn

One must of course calculate yF using the same
gluon propagator and regularization scheme. One
obtains

only the amplitude 8', is gauge invariant, and
there these quantities appear in the standard
anomalous dimension combination

y,=,
(
1 +4+ [/

—
~

(82S)]Bi)'b
~

n n+1 ., mJ 3~

as discussed above. 'The above is the standard
result. One sees this gauge dependence of b» andm

yF in a much more severe fashion in our justifica-
tion of the Altarelli-Parisi scheme in Sec. IV.
Each is separately infinite, when calculated naive-
ly using light-cone techniques, but the combination
again yields the usual answer.

1 t( 2 " 1
+4 —I, (821)

16m'b
~

n(n+1) . mf

which is the standard result for the anomalous
dimension of the nonsinglet component of Wl.

In the preceding, of course, we have not written
explicitly the group-theoretical coefficients C, (R)
= —', for biz and yz and T(R) =-„per fermion type,
for biz. [Our convention is the standard one:
T r(X, ') = 2 a,nd l, ~ =gT()(}(,/2)y„(1)A"'].

We conct.ude this Appendix by listing the values
of the y's and b's in our gauge and regularization
scheme:

t'4'(

2 8))' (3]~
'

1 11 4 fll&a=-
16m' S 3P] ', '

i) (4&

18m' ( n(n+1) 18m) (2)

(822)
-4 n'+ n+ 2 I~1~

o~ 8))2 n(n+1)(n+2) (2]
'

1 n'+n+2 4
16m' n(n' —1) 3~

'

+ 1(s) .2 t 1 1 " 1~
8w' ( «(w —1) (m ~ 1)(m+ 2) I2 m7

/

The numbers in ( ) are the group-theoretical
numbers C,(G}= 3, C, (R}='—, , and T(R) = —, (per
fermion type), nf is the number of fermion fla-
vors. The normalizations and signs of E, and

6, have been chosen so that these results can be
directly compared with those of Gerogi and Polit-
zer and of Gross and Wilczek. ' One curious fea-
ture of the Lipatov gauge and the KKS regulariz-
ations scheme is that b» and yF both differ from
those calculated, say, in Feynman gauge. Of course

APPENDIX C

In this Appendix we discuss the solution to (3.9a)
and (3.9b) for the singlet case; the index a= 1 for
W, is understood. 'The number of flavors is nf.
We define the singlet quantities

bn 'dk
f.(P' q'} =F.(lnq') +

b
(Ink') 'f.(k', q')

p2

bnFG ~ dk'

lb

(Cla)

bn ) ip dk2
n&g„(p', q') = 0+n& —,(ink') ' ~"&f (k', q')

p2

bn ' yk
, (ink') 'n&g„(k', q') . (Clb)

p2

Define

n — bFF „ bF
l

n GF — bGG
f y yG

b

(C2)

We now temporarily drop the n superscripts and
subscriots. It is easily verified that the forms

"11nq'j "(lnq')
(Csa}

foal

and
n nf

F„'=F„=2+@,.'.
f~l

The E(ls. (3.9) take the form when summed over i,
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n q2 dk2 q dk 2 a gk 2 -
lnq2

n n~r ln

dk 2 dk

$5+2

-y" (lnq') " ln
ln
lnP' (D4)

Here we have used the identity

/f2
dk'(ink') " ln 2

-m! (lnq') "in/
ln&2

(D6)

derived by differentiating m times with respect to ~ and setting ~ =0 in the identity

(D6)

[The series (D6} is easily derived by repeated
integration by parts. ] Taking Q",— of (D4) we

find that loss of the leading log at the mth loop
results in a net ladder sum of order

lnq~ & y
lnP' (lnq')" ' (DV)

APPENDIX E

Obviously the m =1 term dominates,
One important point should be noticed; the loss

of the leading log is characterised by a k'/q' cor-
rection. This is because we must generate a
structure [for instance, q'(q 6)' of (3.19a)] which

is explicitly of order q'/k' relative to the Dirac
structure which is naturally present in the lead-
ing-log pieces of the mth loop.

'Tr (y,A'.0-'rs A' 8 (p —k) -2pok' &t —
1

(b)

g0, (c)

to find the terms which yield an integration of the
form fdk /k~~' The.se terms are independent of

q~ and v. This must be true since we know that
terms which depend on q~ or v, through the axial
gauge used for P„8(p —k), must cancel because
E, (0) has no knowledge of q or v. Thus, for ex-
ample, structures such as

r dk~~ k

must cancel among themselves. We obtain

In this appendix we first calculate y~ using the
infinite-momentum, light-cone techniques, and
conclude with the calculation of b~ and b~~. By
the Ward identity we may calculate the wave-func-
tion normalization behavior from the vertex dia-
gram of Fig. 19. For the spin average, at zero
momentum transfer, we have

where we have labeled the -g„s, etc. , parts of
P„B by (a), (b), and (c) as before. The sum of
the contributions listed in (E2) yields the results
[recall that k' - —k~'/(1- z) etc. ]

2

z, (o} f' d.f', ",",'=,

I

—,
' Tr(Y p')E, (0) =2p E, (0}

d'k P„~ (p —k)
(2w)' (p —k} k4

x 2»(re P'rsY) . (El)

1 1+@'
= lnA2 2 dg8n2 1 —z

(Es)

The d4k integration will be performed using. the
light-cone techniques of Eq. (4.6).

As before there are three contributions corre-
sponding to the three components of Pne. We wish

FIG. 19. The vertex diagram used to calculate the
lowest-order contribution to Z& = Z2.
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(T-----p k q

(AT------

{a) {b)

FIG. 20. The self-consistent integral equation which
must be obeyed by the yqq vertex and fermion propaga-
tor

FIG. 21. (a) The qq gg ladder contribution to A (qq
mr*). (b) The gg qq ladder contribution to B{gg

-v*9).

In standard fashion y~ is read off as the coefficient
of lnA. ' in this lowest-order calculation and y~
=yz/b. Note that the fermion propagator or,
equivalently (by the Ward identity) the inverse of
the photon qq vertex behavior,

S (P)- —, (lnP')~

actually is the self-consistent solution of the inte-
gral equation diagrammed in Fig. 20. The bare
vertex Born term is absent asymptotically since
the yqq vertex behavior, (lnp') &2, is such that
the power —y~ (once regularized) is positive.

We now turn to calculations of b~ and &~~.
They are defined as the distribution function mo-
ments which connect the spin-average amplitude
b'(P', q', 2P q) =2P qb of Eq. (4.11) and the gluon
amplitude 2c'(P', q', 2P q) =2P qc, where b and
c are defined by the fermion and gluon-amplitude
leading terms, analogous to (S.V),

&(qq-y*y*)-db(P', q', 2P q),

&.&(g.ge-r*r*)-g.&P q'c(P', q', 2P q), (Z5)

and we have temporarily dropped color indices.

is obtained from the trace structure

"Tr"= —,Tr[gy„(P- g)y&]J'&n(k)P„, (k)g«

x c'(ba, q2 2q ~ b) . (z6)

One quickly discovers that in the light-cone tech-
niques the only important contributions come from
the terms

v + Itl vg U Cf U~ v~
+Ant ( )+v(}tg01 gPAt

' q, b
+

(q, Q)2

which combined with the above trace yields asymp-
totically

b
1+(1—2}'

2b2 1+(1—2)
( )z2 z2

Inserted into the integral-equation contribution of
Fig. 21(a}this yields

We calculate the diagrams of Figs. 21(a) and 21(b).
For Fig. 21(a) the illustrated contribution to the
spin- average amplitude

—2'Tr(p'bq') =2P qb =b'

b'(P', q', 2P q) =- d&g dz 1 + (1 2) t(b2
Sm 2&k~2 ln&~2 „z z

(z9)

The moments f, „and q, „'(defined earlier) are the moments of b' and 2c' (note factor of 2)

b dk~2
1f, n( Jq} b y 21nb 2 gl, n( J. } t

J
(zlo)

where bn~ is as given in Eq. (4.22) (which includes the color factor).
The contribution of Fig. 21(b) to P„(P)[g~c']=- 2c'(P', q', 2q P} is obtained from the trace structure

(- 2)»[r.%ter, (F-P')]I'., (P}b(P',q', 2P q)- (- 2)b2b q2&', 4z2 —4z +2
(E11)

[This is the light-cone reduction of the corresponding trace of Appendix B, (B5). The —2 is the fermion
quark+antiquark loop factor. ] Thus we have

n

c'(P', q', 2P q)=
dk~2 —2
21np 2 Sg2

dg—[&2+(1-2) ]b'(b2 q2 2q b) (E12)

Hence the moments of 2c' and b' are related by
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$8
g, .(qi')= P

dk~2„2„k.f, , .(i),
J J

(El 2)

with ho~ as given in (4.22).

APPENDIX F

In this section we outline calculational details of &«and y~. Figure 22 shows the gg-gg ladder-kernel
contribution of importance. We use the light-cone notation. The contribution to B» (dropping color in-
dices) is

64k
a„(u q) f)("=(p & )' ))&"' ( 9 9 —» ))& 5()' ()D g(&)& (&)&c ()t a') (Fi)

Note that we use the fact that the three-gluon renormalized coupling squared has the same asymptotic be-
havior as the gqq renormalized square coupling. It is convenient to take the polarization sum using
I'»(P). The vertices are standard, e,g. ,

V "(p, -k, k-p) =(p+k) Z„.+(p —2k)„g .+(k-2p).g„. (F2)

The calculation is separated into two parts. First, we calculate the quantity

= &.g(k)&, „(k)a'g,

k2q q f q2 q4k2 ] q2km

a)' ' '( .a)''( ))' ( ~ "~' ) '(.))) (F&)

The object T„obeys some useful identities

q, T, =O,

k, k,T., -O,

+07 01

(p,k, +p ()k, )T„-0,
k'(p q)' 2, p k

P()PT ()) (,k)2 q, k

in.

) leading (F4)
log

s =p„„(p)v" "v""-I., (k p)—
4k' v-g 3k2+2p k ——

q (k-p
8p kq k

In other words we need only look for g, or P,P,
components of the left-hand side of Fig. 22.
Picking out these-terms we find

V Q'ks

v' v

(q k}' q k

which in light-cone language becomes

1 1 18 'Jt =8k' ~ 1-

(F6a)

8k' I' z +z(( —z)) . (F6b)

Of course, in a calculation using the KKS scheme
we would simply deal with the (F6a) structure in
the manner of Appendix B. In the light-cone meth-
od, using B„„(p,q) P„„(p)"—2c'(p', q', 2p q) and
B(„(k,q) -gq„c'(k', q', 2q k), we have

+SP~p ~.

Hence [using k2-2p k at the (p —k) pole]

(Fs}
2&'(p', q', 2p q)

I
I~

n I

~

~
2 ~ «

~
~

~
~

~ z 1
dki2 8 z 1

xc'(k', q' 2q k}, (FV)

FIG. 22. The gg gg ladder contribution to B@g~~Qg)

which is again of the bremsstrahlung form and
yields a relation between 2c'(p, q} and 2c'(k, q)
defined by
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2 ' z
6 = dz +Sw' 1-z0.

+z(1-z()z" ' .

(FS)

(o)

~ I'-. p

(b)

The calculation of y~ follows very similar lines.
One uses the Ward identity trick and calculates
the diagrams of Figs. 23(a) and 23(b) for the gluon
and fermion contributions, respectively. For the
gluon part, Fig. 23(a), the ygg coupling is the
standard

(»)sgt, —~tea, &,—g~t (F9)

One quickly discovers that only the g«piece
contributes to the log divergence as in the leading-
log ladder derivation, and thus the calculation is
very similar to that just performed. For the fer-
rnion part, the calculation is essentially the same
as that for b~~ except for the difference by a fac-
tor of 2, which is related to the use of 2c' in de-
fining the moments, g„.

Returning to the gluon part of y~, we note that
the expression which one naively derives is

FIG. 23. The gluon (a) and fermion {b) contributions
to the vertex (or inverse gluon propagator) renormali-
zation.

1
) o(gluon) =

Sm2
z 1-z

Zz
1

+ +z (1 —z(),

(F10)

i.e., an integral over the distribution function
G«(s) which has apparent divergences both at
z =0 and z =1. However, because of the symmetry
of the integrand it is clear that these divergences
are equivalent. We choose to rewrite (F10) in the
form given in Eq. (4.23) where all the divergence
appears at z =1 making cancellation with the z =1
divergence in b«apparent.
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