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We present a method for constructing the grand unification gauge group G (of the type 6 or 6, where 6
is simple) corresponding to a given subgroup Gfh„„XG„„,. The essence of the method is to count the

leptoquarks and diquarks by generating the latter through Pauli-Gursey -transformations, to add that number

to that of the generators of Gfi„„XG„„„and to compare the result with various possible G's via

Diophantine equations. Specifically, we take G„l„——SU(3), or SU(4) with leptons representing the fourth

color in the second case. For. the flavor group, we consider generalizations of essentially all the examples of
flavor groups proposed so far, subject to the constraints of lepton-quark flavor universality and an upper limit

of 16 quark flavors so as not to destroy asymptotic freedom. The resulting system of roughly 200
Diophantine equations is easily numerically solved. After eliminating a large number of spurious solutions by

matching the ranks of Gfh,„X6„„,and G, we exhibit the remaining grand unification candidates. The
Georgi-Glashow SUL (2) X U(1) X SUc(3)&SU(5) is found to be a special case of SUI (n) X U(1)
X SU(3}&SU(n + 3). The Fritzsch-Minkowski SO(10), the Segre-Weldon SU(6), and Gursey-Ramond-

Sikivie E6, E, models are recovered alongside a surprisingly small number of new possibilities. In particular,
no semisimple unifying group of the form G is found for 2 & P (4. Finally, our results and methods are
compared with those of a recent review on the same subject.

I. INTRODUCTION

Suppose we take the idea of grand unification"'
seriously. Then how do we find a grand unification
gauge group 9 starting from a given "observable"
subgroup G„,„„&&G„„,that may be more or less
suggested by experiment? The answer essentially
lies in the observation that the really new ingred-
ient in grand unified models is the presence of
leptoquark currents which cause transitions be-
tween leptons and quarks. Accordingly, adding
the number of such new currents onto the number
of the flavor and color currents and demanding
that these match the number of generators of an
appropriate 9 should be a workable strategy.
This approach was the basis of two earlier arti-
cles" 4 which dealt with the same problem in a
much more limited way than is intended here.

Let us now enumerate and explain in more de-
tail the assumptions (not all of which are inde-
pendent) and the method that we will be working
with: (i) For a single coupling constant to serve
weak, electromagnetic, and strong interactions,
9 must be simple or of the form G && G x ' ' ' x G
=—G~, with G simple. In the latter case, we must
postulate a new discrete symmetry interchanging
the various factors G. (ii) The strong-interaction
gauge group is SUc(3), where the subscript C
stands for color. (iii) The only observable par-
ticles are color singlets, and quarks are color
triplets with the usual fractional charges. (iv)
The full internal symmetry 9 of the quark Lag-

rangian becomes manifest at extraordinarily large
energies (possibly of the order of the Planck
mass), and in that limit the masses of at least
the fermions can be neglected. (v) The previous
assumption means' that the massless quark Lag-
rangian also has Pauli-Giirsey" ' symmetry in
addition to the explicit symmetry described by

G„,„„xG „,. (vi) Combining (iv) and (v), we
conclude that 9 is obtained by extending G~„„
&& G „, via Pauli-Gursey transformations. The
latter are generated by diquark charges of the
form f dvqq or f dvqtq~, where q denotes a quark
field operator. (vii) The color-triplet parts of
the diquark charges supplement the color-triplet
leptoquarks mentioned in the first paragraph to
form diquark-]eptoquark currents that make the
proton unstable. Sufficient stability is attained
by giving masses of the order of G ' to the cor-
responding vector bosons. (G is, of course,
Newton's gravitational constant. ) At this point
one may either feel compelled to abandon this
line of reasoning and attempt to include gravitation
in the unified picture (possibly along the lines of
extended supergravity'), or one may optimistically
go on, as we shall here, if only to explore the
consequences of the above framework.

Our general method can now be summarized
as follows: It centers on constructing diquarks
from normal q'q currents by subjecting the latter
to Pauli-Gursey transformations. This also gives
us the number of diquarks. Since the number of flavor
and color currents is known at the outset, what mainly
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remains is tocheckthe totalagainst the number of
generators of various candidates for 9.

As to the specific applications, we wish to
demonstrate that the approach we have outlined
can be used with considerably differing types of
flavor and color groups by actually deriving the
corresponding grand unification groups whenever
such unification is possible. We believe that it is
quite worthwhile to keep our options concerning
the flavor, color, or chi.ral structures of gauge
theories as open as possible, given the recent
very fluid state of the subject both on the theo-
retical and experimental fronts. Experimentally,
the number of quark flavors has not' neatly stopped
at four as was widely expected, and also, the
existence of at least one new heavy lepton, ' most
likely with its ow'n neutrino, is now well establish-
ed. In addition, the recent highly energetic three-
and four-muon events" are quite possibly related
to yet newer quark and/or lepton flavors. " As is
to be expected, there is even a wider variety of
new possibilities in the theoretical field. Theories
with up to twelve quark flavors" have been pro-
posed, as well as theories such as SU(3) && U(1),'4

SU~(2) & SU„(2),"where the last one leads to the
unifying group" SO(10) if the leptons are taken
to represent the fourth color. Thus, to make our
search for grand unification fairly complete, we
consider generalizations of all the above cases
and quite a few others not mentioned in the litera-
ture so far. However, we hope it will be clear
to the reader that our method can also be easily
adapted to find grand unification groups for flavor
and color alternatives that we have not treated
here.

A short preview of the main results has already
been given in the abstract. What we find remark-
able is that most of the solutions here have been
discovered in earlier searches in which a small
flavor group was the starting point. The fact
that very. -few additional cases were found upon
enlarging the flavor group seems to indicate that
the grand unification scheme favors more eco-
nomical flavor groups [except in the case of
SU~(n) x U(1) x SUc(3) cSU(n+3)]. It is perhaps
even more surprising that no semisimple group
of the type G~(I' ~ 4) provides a solution.

The plan of the paper is as follows. In Sec. II
we introduce diquarks via Pauli-Gursey trans-
formations and indicate how they can be classified
and counted by considering simple examples. In
Sec. III we outline the alternatives we will con-
sider. These involve a number of different inter-
nal-symmetry groups for the flavor group, dif-
ferent choices for the chiral structure of the
flavor currents. , different sets of diquark and
Iepto(luarks, and two possibilities [namely SUc(3)

and SU(4) a SUc(3)] for the flavor-singlet subgroup
of 9. We then set up our Diophantine equations.
Section IV consists of a presentation of methods
to eliminate most of the spurious solutions to the
aforementioned equations, followed by tables in
which the surviving solutions are exhibited. We
discuss some mathematical and physical aspects
of the theories we have found in Sec. V. We also
bri.efly compare our methods and results with a
recent paper of largely overlapping interest.

Here qc denotes the charge-conjugate wave func-
tion. In the Dirac-Pauli representation, q =—y,q~.
The same operation can naturally be extended to
field operators. The fact that this three-para-
meter group is nothing but SU(2) justifies the
expr ession rotated above. The one-par ameter
chir ality tr ansformation

q-exp(ivy, )q

of course also preserves the helicity of a pure
helicity state.

Now we consider the U(1) generator Q:

(2)

where we now take q to be a fermionic field opera-
tor. The effect of (1) on (3), and (1) combined
with (2), is to produce the new charges

D~ = dv q y5y2q*, Dj =— dv q y2y5q (4)

D2= dVq y2q D2= dVq y2

respectively. Clearly, in the above case the
charges (5) identically vanish owing to fermion
anticommutation relations and the fact that y, is
symmetric in the Dirac-Pauli representation. Qn
the other hand, (4) survives since y, y~ is an anti-
symmetric matrix.

The above situation generalizes to quark fields
with color and flavor in the following way. A di-
quark operator is nonzero if and only if it is anti-
symmetric under the combined interchange of
flavor, color, and Dirac spinor indices. We now

II. DIQUARKS AND LEPTOQUARKS

It is well known that when masses are neglected
and internal-symmetry-breaking interactions
turned off, a spin- —,

' particle q admits an extra
"internal" symmetry. Particle and antiparticle
states of the same helicity can be rotated into each
other through Pauli-Gursey transformatipns de-
fined by
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introduce a restriction on the color properties
of diquarks. Since we expect they will be accom-
panied by leptoquarks which are necessarily
color triplets, we only consider color-triplet
or antitriplet diquarks. Thus, arith the color rep-
resentation alzoays constrained to be antisymmet-
ric, symmetric (antisymmetric) flavor combina
tions go with y, (y,y, ). It would be very simple
(except for increasing the number of alternatives)
to also include color-sextet diquarks in this
scheme, but we leave them out because they do
not seem to be really necessary in a grand uni-
fied field theory. When the generators of 8
are applied on a representation contacting the
quarks and the leptons, the color charges shuffle
the quark colors, the flavor charges do the same
to quark and lepton flavors, while the leptoquarks
change quarks .and leptons into each other. The
color-triplet diquarks in turn fit in nicely with,
the lepto(luarks (both group theoretically and in
possible physical processes such as proton decay
into leptons and mesons). There is no similar
need for color-sextet diquarks in this minimal
picture.

Now let us illustrate the above remarks with a
simple example. We choose a vectorbke" flavor
group SU(n). Denoting flavor indices by Greek
and color indices by Latin letters, the only di-
quarks that we admit are

))'„(8)-=c'" deq~, y,q„-,3 ),n n+1
(6)

Notice that now we have one set of charges and

their number is given by a linear expression in n
in contrast to (6) and (7) where the number of di-
quarks is quadratic in n. The above examples

and their Hermitian conjugates. The expressions
in parentheses show the SU(n)„,„„&SUc(3) trans-
formation properties of these objects. Hence-
forth, we only consider quarks in the fundamental
representation of vectorlike SU(n). If quarks in
other flavor representations are introduced, there
will be additional possibilities with different num-
bers of diquarks.

The situation is different if the flavor group is
generated by charges of a definite chirality. As
an example we consider SU~(n). The left-handed
quark fields then behave as the fundamental n
representation while the right-handed fields are
singlets. Let us now write our diquarks in the
form

(6)

will suffice to guide us through the somewhat
more complicated cases in the next section.

The dicluarks (6)-(9) are obviously all flavor
nonsinglets. When combined with their leptoquark
parts they form currents corresponding to the
gauge bosons which cause proton decay in second
order. This is the reason why masses comparable
tot" ' 'have to be brought in. However, another
type of leptoquark operator also occurs naturally
in unified gauge theories. If we think of lepton
number as a fourth color, we have three additional
leptoquarks and their Hermitian conjugates. These
are necessarily flavor singlets since the SU(4)
of color and lepton number is assumed to commute
with the flavor group. Being flavor singlets, they
generally do not have accompanying diquarks.
Hence, they cannot contribute to proton decay in
second order but in fourth order. A trilinear
coupling of three leptoquark bosons each of which
tags on to one quark may result in the decay
P-v, v,e'. This process, as well as the possible
second-order decay E'- p, 'e can be made suffi-
ciently rare by giving masses zG '~' (10' GeV)
to these bosons. .

I,et us summarize the conclusions of this sec-
tion:

(i) For a vectorlike SU(n) flavor group we have
flavor -symmetric and -antisymmetric color-trip-
let diquarks. Including their Hermitian conjugates,
there are respectively 3n(n+1) and 3n(n —1) of
these charges. A third possibility is to consider
them together, in which case we get 6n'.

(ii) For SU~(n) or SU+(n), the total number of
diquarks and antidiquarks in 6n.

(iii) With SU(4) „„there are three extra flavor-
singlet leptoquarks and their conjugates. Com-
muting these leptoquarks and antileptoquarks we
also get a new flavor-singlet leptonic charge.
These make up the seven generators needed in

going from SU(3)..)» to SU(4) )„. Notice that the
introduction of flavor -singlet leptonic charges
implies the existence of a new flavor-singlet in-
teraction for quarks and leptons.

III. FLAVOR AND COLOR ALTERNATIVES

We now present the flavor and color groups that
we will be dealing with in this paper. Our basic
assumption here is one of lepton-quark flavor
universality. Although this assumption is in ac-
cord with experimental observations involving
the lighter quarks and leptons, it has not yet been
tested for the heavier new quarki8, 9 and lepton&0

species. Cases where leptons and quarks trans-
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form under separate flavor groups have also been
considered"; in such models the observed lepton-
quark universality has to be the result of a special-
ly arranged pattern of symmetry breaking. We
will not be treating such models in this paper,
although our methods could be generalized to
cover them as well.

For 9 we limit ourselves to G~(I &P & 4) where
G is (a) SU(k), (b) SO(k), (c) Sp(k) (k even). Thus
for a given P, we haveP(k' —1) generators in case

'

(a), Pk(k —1)/2 in ease (b), andPk(k+1)/2 in 'case
(c). We treat the exceptional groups separately
since the flavor-color content of their generators
has been already discussed elsewhere. '

We consider two choices for the subgroup of 9
that commutes with the flavor subgroup: (A)
SUe(3), i.e. , the color SU(3) and (B) SU(4). In
the latter case SUe(3) is a subgroup of SU(4). We
will sometimes loosely refer to this alternative
as SU(4)„~„since leptons can be thought of as
making up a fourth color. However, it should
be kept in mind that this SU(4) does not share
the important property of being exact that is en-
joyed by the real color SU(3). Hence, the use of
the term "color" for case (B) is somewhat im-
proper —it is only meant to be a shorthand name
for the flavor-singlet subgroup of 9.

Next come the possibilities concerning the chiral
structure of the flavor group. We treat two main
categories: (I) vectorlike flavor groups, (II)
chiral flavor groups. We will more explicitly
state the cases included under (II) later.

It remains now to list the flavor groups and the
possible diquark combinations allowed by each of
them. Starting with (A) (I), i.e. , the case of
SU(3)„„,and a vectorlike flavor group, we try
the following for G„,„„:(1) SU(n), (2) SU(n) x U(1),
(3) SU(n) xSU(n), (4) SU(n) xSU(n) xU(1). The
motivation for picking the above groups is basical-
ly to generalize some popular and simple models
proposed so far. They also represent the most
symmetric and the most obvious alternatives.
For example, (1) simply corresponds to n flavors
and (2) might stand for n light and n heavy quarks,

chosen in equal numbers for greater symmetry.
One can easily invent more complicated cases
and investigate their consequences in the same
way if one so desires.

Regarding the number of various diquark com-
binations for (A) (I), we recall from Sec. II that
(A) (I) (1) and (A) (I) (2) have already been handled.
For these we can have (i) flavor-symmetric di-
quarks, Sn(n+1) in number, (ii) flavor-antisym-
metric diquarks, Sn(n —1) in number, and (iii)
a mixture of (i) and (ii) with a total of 6n' diquarks
It is not difficult to obtain all possible color-triplet
diquarks corresponding to (A) (I) (3) and (A) (I) (4)
by considering all combinations of the five basic
cases: flavor symmetric or antisymmetric in the
first or the second SU(n) (2 x 2 =4 cases) plus 6n'

diquarks with one quark from the first SU(n) and

the other from the second SU(n). We obtain 31
possible combinations by choosing one, two, three,
four, or all fi:ve at a time of the above five cases. .

Some of the numbers of diquarks for the 31 possi-
bilities turn out to be identical and we end up
with 13 distinct expressions which we list below:
(i) 6n(n-1), (ii) 6n(n+1), (iii) 12n', (iv) 6n',
(v) 9n'-3n, (vi) 9n2+3n, (vii) Sn(n —1), (viii)
3n(n+1), (ix) 12n'+6n, (x) 12n' —6n, (xi) 15n'
+Sn, (xii) 15n' —Sn, (xiii) 18n'.

The chiral groups of (A) (II) are easier to handle.
We again limit ourselves to the most familiar
cases: (1) SU~(n), (2) SU~(n) x U(1), (3) SU~(n)
x SU„(n), (4) SV~(n) x SU+(n) x U(1). We have seen
in Sec. II that the number of diquarks for (1) and

(2) are 6n. For (3) and (4) the e,»q~~y, q~~ structure
gives 3 &n &&n which must be doubled to include
the conjugate generators, 6n' all in all.

We are finally ready to set up our Diophantine
equations. The right-hand sides of the equations
will successively consist of the expressions (a),
(b), (c). The left-hand sides will be given by the
number of generators of G~,„„plus that of the
generators of G„„,[8 for SU(3), 15 for SV(4}]
and of the diquarks. We list the left-hand sides
of (A). To find the equations for (B) one just
adds on seven to each case.

(A) (I) (1) (i) n'+7+Sn(n+1), (ii) n'+7+Sn(n —1), (iii) n'+7+6n',

(2) (i) n'+8+Sn(n+1), (ii) n'+8+3n(n —1), (iii) n'+8+6n',

(3) (i) 2n'+6+6n(n -1), (ii) 2n'+6+6n(n+1), (iii) 2n'+6+12n',

(iv) 2n'+6+6n', (v) 2n'+6+9n'-3n, (vi) 2n'+6+9' +Sn,

(vii) 2n'+6+3n(n —1), (viii) 2n2+6+Sn(n+1), (ix) 2n2+6+12n +6n,

(x) 2n2+6+12n' —6n, (xi) 2n'+6+15n'+3n, (xii) 2n2+6+15n' —Sn,

(xiii) 2n'+6+18n',

(4) add 1 to (i)-(xiii) above;
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(D} (1) n'+7+6n,

(2) n'+8+6n,

(3) 2n'+6+6n',

(4) 2n'+7+6n'.

which clearly gives m+3 =k. Thus the Georgi-
Glashow Sv~(2}x U(1) x Svc(3) c SU(5) is seen to
be a special case of Sv~(n) x U(1) x Svc(3) a Sv(n
+ 3). It is very easy to verify that the above series
is a real embedding consistent with our assump-
tions. The rest of our results are shown below.

It is easy to see that equating each expression
above to (a), (b), . and (c) and repeating this proce-
dure for case (8) results in 36 x 2 x 3 =216 equa-
tions in the unknowns n, I', and k. After choosing
some practical limits on n (16 flavors maximum
to preserve asymptotic freedom") and P (~4), it
is a straightforward matter to solve these equa-
tions numerically op even a hand-held program-
mable calculator. We present the solutions in the
next section.

IV. SOLUTIONS

(1) (i) one flavor
sv(3)

(ii) sv{6)
(2) (ii) SV(3) x U(1)

(111) SU(2) x U(1)
(3) (iv) SU(3) x SU(3)

F

Sv(6)
so(9)

(A) (II)
[Chiral flavor, color SU(3)]

(A) (I)
[Vectorlike flavor, color SU(3)]

f 1avor 8

The above approach initially yields a, rather
large number of solutions. Fortunately, the ma-
jority of these are simply numerical coincidences
and do not correspond to actual embeddings. A

few simple additional tests help to eliminate the
spurious solutions. These are (i) to ensure that
G has more generators than either the flavor
group or the color group in the cases where 9 =G~
for some P &1, (ii} to check that rank (G„,„„)
+rank(G „,) =rank9. The latter test is possible
as G„,„„&G„„,is extended to 8 by introducing
color-triplet generators which cannot contribute
to the rank of 9. A good example for the former
is the solution (though with P & 4) SU(2) (Ref. 26)
to (A) . (II) (3) for n = 3: 8 x 3 x 3+6 = 26 x 3 = V8.
However, this is clearly inadmissible since SUc(3)
/SU(2). An example for the second test is the
solution 9 =SU(15) to (A) (I) (1) (i) for n ='I: 49+7
+3 x 7 x (V+I) =15' —1 =224. This is ruled out
since the rank of the left-hand side is 8 while that
of the right-hand side is 14.

'

The remaining solutions, though much reduced
in number, still include some false ones. For
example, if there is a solution that passes (i) and

(ii) and if it is of the type 9 = [So(2l +1)]~ for some
I and P, then 9 = [Sp(2l)P' is also a possible solu-
tion. Thus the roughly ten surviving cases must
be examined individually to see whether the adjoint
representations of the suspect 9's have the correct
decomposition with respect to G&,„„&&G „,. The
representation tables of Patera and Sankoff'3 help
considerably in this last step.

We now exhibit the actual solutions. There is
one series of solutions that can be obtained in
analytic form. When we attempt the embedding
(A) (II) (2) (n'+6n+8 generators) in 9 =SU(k) we
must have @2+6n+ 8 = (n+ 2)(n+4) = (k —1)(k+ 1)

(2)
(3)

SV,(n) x V(1)
Svi(3) x SU„(3)

(Ii) (I)
[Vectorlike flavor, color Sv(4)]

SU(n+ 3)

(1) (O sv(2)
(ii) sv(4)

(3) (iv) Sv(2) x SU(2)

so(9)
So(12)
So(10)

(B) (11)
[Chiral flavor, color SU(4)]

(3) SU,(2) x SU„(2) SO(10)

The exceptional groups G„F4, E„shown in
the above table, have been previously'4 construc-
ted with the methods described in this article.
The decompositions of the adjoint representations
of G„F4,, E„and E, given in Refs. 20 and 21
agree with our findings. E, could not have been .

obtained in our scheme since its flavor group is
SU(3) x SU(3) x SU(3}.

V. DISCUSSION

We have searched for grand unification groups
corresponding to a large number of flavor groups
and an even larger number of choices of diquark
combinations: 216 x 4 = 864 (counting each P sep-
arately) Diophantine equations were considered.
Since we allowed up to 16 quark flavors, the num-
ber of possibilities was actually roughly an order
of magnitude higher, around 10000. It is then a
relief to discover that the real solutions are as
few in number as shown in the previous section.
It is also surprising that no semisimple cases of
the form G" have survived for 1&P~ 4. %'e have
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systematically not gone beyond P&4, not only out
of considerations of practicality but also because
the lack of a clear physical motivation for the
discrete symmetry connecting the various factors
G of G~ makes such models appea, r somewhat
artificial. In addition, there is a greater tendency
for spurious solutions as P increases. Among
the cases examined, no solutio~ with P&2 even
passed the rank test.

Most of the final solutions we have obtained are
in fact models that have been proposed and exam-
ined previously. Hence we will not dwell upon
their particle contents and phenomenological pre-
dictions in detail, but will refer the reader to the
original papers. Thus the SU(6) of (A) (I) (2) (ii)
is nothing but the Segrh-Weldon'~ theory, the
SU(n+ 3) of (A) (II) (2) a generalization of the
Georgi-Glashow' SU(5}. The E, model of the
(A) (II) (3) has been put forward by Gursey,
Ramond, and Sikivie" and the vectorlike E, of
(A) (I) (1) {ii) has been constructed by Gursey
and Ramond. " The SO(10) theory of (B)(II}(3)
is that of Fritzsch and Minkowski" while the
vectorlike version of it in (B) (I) (3) (iv) and vec-
torlike E, of (A) (I) (3) (iv), though new, are pre-
sumably phenomenologically unacceptable. "'"Out
of the remainder, 6, has no room. for flavor and

F, only allows a vectorlike theory as does SO(9).
In fact, if we demand a flavor chiral group, the
only solutions are SU~(3) x SU„(3)x SUc(3) cE,,
SU~(2) x SU~(2) x SUc(3) c SO(10), and SU~(n) x U(1)
x SVc(3)c SU(n+3).

Comparing what we have done so far with a re-
cent article by Gell-Mann, Ramond, and Slansky, "
we find thai although our methods differ consider-
ably, we arrive at the same conclusions when we
start from the same assumptions, principally
that of quark-lepton flavor universality. With this
restriction, the above authors find three different
classes of solutions: (i) tbe exceptional groups
F„E„and E„(ii}tbe series" SU(n) x U(1)
x SUc(3)c SU(n+ 3), (iii) the series 80(n —6) x U(1)
x SUc(3}c SO(n). We have already seen that the
first two classes are included among our solutions.
Although the third class seems to have been ex-
cluded from our approach by the fact that we have
not considered SO(l)-type flavor groups, our solu-
tions 9 = SO(9), SO(10), 80(12) are in fact exactly
of this type. This is possible because of the weO-

known isomorphies SO(3) = SU(2), SO(4) = SU(2)
x SU(2), and 80(6) =SU(4).

The above-described agreement in results is
somewhat surprising when we contrast the methods
employed in the two searches. The authors of
Ref. 19 start from 9 and a representation of 9 that
contains the quarks and the leptons. They then
derive G„„„bypicking SUc(3) out of 9. We, on
the other hand, start from the adjoint representa-
tion of G„„„~G„„,and construct the adjoint
representation of 9. In Ref. 19, the chiral struc-
ture of G„„„is not important in the beginning,

. whereas in our scheme chiral and nonchiral cases
are handled separately from the start. Pauli-
Gursey transformations play a central role in
our paper while they are not even mentioned in
Ref. 19. It might appear that the SU(4)„„,possi-
bility is left out in Ref. 19, but this is not entirely
correct. The SUc(3) x U(l) in (iii) in the above
paragraph emerges as a subgroup of SUc(4) =SO(6).
However, it is true that SUc(4) is not considered
in connection with nonorthogonal gauge groups in
Ref. 19 and neither is the possibility that 9 may
be of the type G~. Strangely, these alternatives
do not actuany lead to new solutions consistent
with our assumptions either. On the other hand,
a class of models where leptons and quirks trans-
form under separate flavor groups is treated in
Ref. 19 and omitted altogether here. This sum-
marizes the overlapping and nonoverlapping as-
pects of the two treatments.
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