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Improved strong-coupling expansions and matrix Pade approximants for lattice theories
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A generalization of Hamiltonian perturbation theory is presented. The method solves. a low-energy sector of
the theory exactly while systematically accounting for higher-energy states perturbatively. It produces an
expansion for the mass matrix of the low-energy sector. In applications to lattice theories, the mass matrix
can be extrapolated to the continuum limit using matrix Pade approximants. The method is illustrated for a
lattice potential model and fast convergence to the continuum limit is verified numerically.

I. INTRODUCTION

Haxniltonian strong-coupling expansions provide
one with a systematic calculational program for
dealing with strong-coupling problems in discrete-
spin systems and lattice gauge theory. The meth-
od has had some success, using extrapolation pro-
cedures such as Pade approximants, for finding
approximate results in continuum field theories
which are weakly coupled at short distances.
Strong-coupling expansions have been applied to
spin systems to determine phase diagrams' and
to model field theories to study spontaneous mass
generation, ' quark confinement, ' mass spectra, '
and continuum limits. The method's most grandi-
ose aim is the calculation of the mass spectrum
of quantum chromodynamics in 3+ 1 dimensions.
Even for this theory, low-order results are in

many cases quite reasonable. ' The following mass
ratios are a sample of results:

m, /m „=0.822 (0.820),

m„/m„= 0.824 (0.834),

m, /m~= 0.820 (0.147),

m, /m„=0. 972 (1.0, broad),

me/mN= 1.05 (1.32),

m /m = 1.17 (1.35),

m„ /m„=1. 12 (1.17),
1

f,m, /f, = 0.7 (0.70),

where the numbers in parentheses are the experi-
mental values for these ratios. It is interesting
that these predictions involve no free parameters.
The lattice coupling g does not appear in the mass
ratio because g vanishes in the continuum limit as
a consequence of asymptotic freedom. Ne see
from this list that all the mass ratios are calcu-
lated quite well except for the pion. The pion

should, in fact, be massless in quantum chromo-
dynamics formulated with an isodoublet of mass-
less quarks if the ground state spontaneously
breaks chiral SU(2) symmetry. ' Unfortunately,
this symmetry is broken by the lattice fermion
method used to represent quark fields in Ref. 6 so
although the continuous symmetry is expected to
emerge in the continuum limit of the lattice theory,
these calculations are not sufficiently accurate
(of high enough order) to establish this.

Other strong-coupling calculations of the mass
spectrum have been performed using different lat-
tice fermion methods. In those which do not ex-
plicitly break chiral SU(2) symmetry, a massless
pion-is naturally obtained. However, then low-or-
der calculations do not produce realistic nucleon-
6 splittings or a sufficiently massive g. Clearly,
better calculational techniques are needed as well
as higher-. order expansions. It seems particularly
important to attack the difficult features of the
mass spectrum with accuracy and not be satisfied
with rough estimates of the masses of many states.
In this regard the nucleon-6 and the g-g splittings
are important quantities. To appreciate this recall
that in the MIT bag model. ' the s-wave pseudoscalar
mesons required the calculation of instanton ef-
fects within each hadron to explain how the pion
could be so light while the g could be so heavy. '
And the nucleon-6 splitting required relatively
hard gluon exchange between the quark constitu-
ents of these baryons. If these explanations are
correct physically, lattice calculations, which
begin with a strongly coupled version of the theory
on a coarse lattice, will be severely challenged to
obtain accurate numbers.

In this article a rather elaborate strong-coupling
method will be introduced and illustrated. It is a
straightforward generalization of strong-coupling
expansions. ' It can also yield approximate contin-
uum-limit results. The idea of the method is as
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follows. In an ordinary perturbation theory ap-
proach one writes the Hamiltonian as the sum of
two pieces, H=H, +XV. The "large" term H, is
presumably solvable and one has its spectrum
(e„~a) ) of eigenvalues and eigenvectors. The
eigenvectors of H will, in simple cases, be in
one-to-one correspondence with those of H, and
expansions for the spectrum (E„~A)fof H in terms
of the spectrum for H, can be obtained,

Raleigh-Schrodinger perturbation theory gives ex-
plicit formulas for the coefficients c„and g„, in
terms of matrix elements of the perturbation P in
the known spectrum of Hp. In the ease that the
state

~
a) is degenerate with other eigenstates of

H„ these formulas must and can be modified in a
simple way. The type of perturbation theory to be
developed here will generalize these familiar
cases. Its aim is to solve the "low"-energy sec-
tor of H. The method will account for the interac-
tions and mixing among the states of the low-en-
ergy sector exactly while accounting for the influ-
ence of the high-energy states upon the low-energy
sector perturbatively. In so doing, we can hope
to obtain a more accurate determination of the.

properties of the low-energy sector of the theory
than is done in ordinary perturbation theory where
all effects of V are treated perturbatively. Clearly
this approach is a type of "momentum slicing" and
has much in common with renormalization-group
calculations.

In summary, we will split the spectrum of H,
into a low-energy subspace S~ and a high-energy
subspace S~. The Hamiltonian will be diagonalized
exactly within S& and the effect of S~ on S~ will be
comput;ed perturbatively. Formulas correct to all
orders in X are needed and will be recorded in the
text. In practice one chooses S~ to be rather small
but still elaborate enough so that good estimates
for the low-energy spectrum of H can be obtained
without needing to do many terms in the strong-
coupling expansion. Of course, the mass of a par-
ticle of H should be independent of the exact size
of S~.

As one wouM expect this perturbation theory is
not new. It has been used in atomic and nuclear
physics where it is referred to as an "effective
operator" method. ""We will develop it in an
elementary fashion in the text because it is not-
familiar to many physieists outside of these spe-
cialties. However, the more technical aspects of

the method —such as a proof that a connected for-
malism exists' —will be left to the references.
This article, however, will provide all the formu-
las needed to employ the method and the statements
that the method makes sense (for example, that
particle masses are intensive quantities).

After the perturbation theory for a lattice Ham-
iltonian has been set down, we need a method of
taking the continuum limit. In past calculations,
dimensionless quantities such as mass ratios and
matrix elements were extrapolated to the contin-
uum limit using diagonal Pads approximants. Since
diagonal Pads approximants possess nontrivial in-
varianee properties and are known to converge for
a wide class of functions, this extrapolation method
has been used with success in many calculations
of atomic, statistical, and mathematical physics.
In the scheme here, we need to extrapolate a mass
matrix for the subspace S~. A natural way to do
thi, s is with matrix Pad& approximants. ~ ~ Ma-
trix approximants are discussed in the text and
their mathematical properties which suggest that
they are a good way to use our perturbation theory
expansions are reviewed.

Finally, we will present an example of the tech-
nique. We will compute the first few levels of the
lattice linear potential model and note that the
method produces levels which appear to converge
quickly to the correct continuum values. This ex-
ample is simple enough that it will be clear why
these matrix methods can produce better series
than the simplest, one-state, strong-coupling ex-
pansions. A discussion of other calculations in
progress constitutes our concluding remarks.

II. MATRIX BRILLOUIN-WIGNER PERTURBATION THEORY

Suppose we wish to solve the Hamiltonian

H= Hp+ XV (2.1)

given the spectrum of Hp Separate the spectrum .

of H, into a "low"-energy part and a "high"-energy
part,

(e., ~p, )): "low" energy,

(e~, ~p~)}'. "high" energy.
(2.2)

Our problem is the computation of the low-energy
spectrum of H,

(2.3)

in which the "low"-energy states (
~ p )) are treated

exactly and the "high"-energy states ~ are-
treated perturbatively. First we obtain an implicit
matrix equation for E& by generalizing the method
of Brillouin and Wigner. "
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Since the spectrum of H, is assumed to be corn
piete we can write

)y»=g ~y«&&y, (e,&++ (y', ) g', 0,&. (2.4)
J

This will be a useful formula if the amplitudes
Q& + ~ P&) can be computed in a power series in X.
To do this, project Eq. (2.3) against the state

which can be solved by iteration. In particular,
iterate Eq. (2.5b) one step,

(2.5a)

which gives

To simplify the notation define

(2.5b)
vz a»+P vz»a»i) .

E) —EJ
(2.10)

&oil c~&=au &&'I &»=a.i-
Then if H is applied to Eq. (2.4),

H
~ Q» = E~

~
&I)~&

= Q ( e«+ X V)
~ Q «)a«~

(2.6) Inserting this result into Eq. (2.8) gives

1E aiQ»t il( +xv~+ P i vq
—.

-, xv») a igI

+ g (e', +XV) ~y,&a„. (2 'I)
J

Projecting this equation against ~Q, &,

jaU= Q ('«A+ VA)aM' Q

&yaw= Q (e«5m+ XV&«)a«~

+ g XV,.z, XQ&vz~ Vjg&&, (2.9)

Using Eqs. (2.5b) and (2.8), our problem is solved.
Substituting Eq. (2.5b) into the last term of Eq.
(2.8) gives

1+Q &V.~, l& V~~, a~,q.'E-&
J,J ~ J

(2.11)

So, to determine E& to second order in X, the last
term in this equation can be dropped and the E&
can be obtained self-consistently by diagonalizing
the matrix in parentheses. If the low-energy sub-
space were one dimensional. , then this result re-
duces to the more familiar Brillouin-Wigner per-
turbation expansion. If the low-energy subspace
were degenerate in zeroth order, then the equation
again reduces to another more familiar special
case. By substituting Eq. (2.10) into Eq. (2.11) re-
peatedly, one finds,

«, »»=P (~Ji,,+i v, ,+g i v„, i v, ,+ "
J 11

1 1+ Q iv», xvqq, . xv '''lv~)a»1E~ EJ 1 2E)- QJ 2 3
J1f~ oem' Jg 1 2

1 1
A'Vj J E I A yJ J I XyJ J XyJ J' g J g

~

1 . —gJ 1 2E, —6J 2 g E X+1 N+l~ (2.12)

So, to compute E& to Nth order in X, the last term
in this equation can be dropped. Then Eq. (2.12)
reduces to a matrix in the "low"-energy subspace.
It is still an implicit equation for E& but it does
treat the mixing within the low-energy subspace
exactly while the influence of the high-energy

states is accounted for systematically in pertur-
bation theory. Later in this article Eq. (2.12)
will be written in Raleigh-Schrodinger form as an
expHcit formula for the eigenvalues E,

It is best to rewrite Eq. (2.12) in a more ab-
stract but clearer form. Define the projection
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operator P onto the low-energy subspace S~ and
let Q= 1 —P. Define a resolvent,

in S~, but organize the Hamiltonian as

H= Ho+ V, (3.la)

G(E)—
0

(2.13) where

Next let g,. be the projection of the exact state ~g&&

onto the low-energy subspace. In the notation of
Fq. (2.12), P,. is the column matrix

(2.14)

Now Eq. (2.12) can be written as a time-indepen-
dent Schrodinger equation with an energy-depen-
dent potential,

(2.15)

and

HO=HO —APb, V=A, V+ ZPb (3.1b)

(3.1c)

(3.1d)

P, =projection operator on ~Q,&,

P~= pr ojectio noperator on ~p,).
The value in writing Eq. (3.1a) is that H, has the
same value when applied to either

~ p, & or
~ p, &,

where c is the unperturbed energy matrix

0 0

a, ~y, &=~, ~y, &,

ff,
~ y, &

= e,
~ @,&.

(3.2)

0 &, 0

0 0
(2.16)

III. MATRIX RALEIGH-SCHRODINGER PERTURBATION

THEORY

and the effective potential 0(E) is

'U(E) = P[V+ VG(E) V+ VG(E) VG(E) V+ ' ' ' ]P,
(2.17)

where the projection operators P remind us that
Eq. (2.15) is a finite-dimensional matrix equation
in the subspace S~. Here E is just a number which
represents one of the eigenvalues E,. of the implicit
eigenvector-eigenvalue problem, Eq. (2.15).

This fact will help in making the transition from
Brillouin-Wigner to Raleigh-Schrodinger pertur-
bation theory. The price one has paid is that V
contains the operator EPb which is zeroth order
in X. However, this additional term has such a
simple structure that for a~y given order in X it
can be accounted for to a/l orders. So, in the end
we shall have a conventional perturbation expan-
sion in X and the levels &, and Eb will be arbitrary.

For the decomposition of Eq. (3.1a), the effec-
tive potential has the form

~(E)= V+ V .— V+ V „V V+ ~ ~ ~,
E a. E ffo-

(3.3)

where Q=I -P, —P~ and the factors of P=P, +P,
which appear in Eq. (2.17) have not been written
in explicitly. Since

The "Schrodinger" equation in the low-energy
subspace,

QP~= P~Q= 0,
we have

(3.4)

(E ~)g= U(E)g, (2.15)
and

QV= QV VQ= VQ (3.5a)

can be used to determine the energies E,. self-con-
sistently. Alternatively, one can find an explicit
formula for E,. by generalizing the usual procedure
of passing from a Brillouin-Wigner perturbation
expansion to a Raleigh-Schrodinger expansion. We
will do this exercise here for the case that S~ is
two dimensional. This choice is made for easy
presentation —the generalization to larger sub-
spaces is straightforward.

To begin, organize Eq. (2.15} so that it has the
appearance of ordinary two-state degenerate
Brillouin-Wigner perturbation theory. Let E, and

e„(a,0 c~} be the unperturbed energies of the states

Q Q

&-H, Z-H,

So, Eq. (3.3) simplifies to

(3.5b)

Qg =~, -H ' gb=~ -H '
a b

(3.7)

'U(E) = &Pq+ V+ VG(E) V+ VG(E) VG(E) V+ ' ' ',
(3.6)

using &q. (2.13). It is convenient to define two
more resolvents,
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Then

= Q g,"'(e, —E)"
neo

(3.8)

Vg )I+).Vg m+1 V((g E)n+m ~

)fan fS

(3.9}

The factors of (e, —E) on the right-hand side of

Recall that E denotes one of the eigenvalues E~, so
there is no problem with operator ordering in Eq.
(3.8). If this expansion i.s substituted i,nto E(I.
(2.15) we have

(E —e,)g= [hP~+ V+ VG(E}V+ VG(E) VG(E) V+ ' ' ' jg

hP~+ V+ P Vg, ~'V(e, -E)"
n

this equation can be eliminated by iterating this
equation. This is the final manipulation necessary
to obtain a Raleigh-Schrodinger perturbation ex-
pansion.

Suppose that only even powers of V occur on the
right-hand side of Eq. (3.9). This special case
occurs often in practice and we will deal with this
case to fourth order to illustrate the technique.
The general case will be recorded in the Appen-
dix. So, in this case,

V(E) = 4P~ e VG(E) V+ VG(E) VG(E) VG(E) V+ ' ' '

(3.10)

and E(I. (3.9) becomes

(E —e,)g= 4P&+ g Vg, V(e, —E)"

+ g Vg n+1Vg m+1Vg I+1V(e E}num+i

nymph l

(3.11)

But this expression can be iterated by replacing
(e, E) by '0-('E), as given by E(I. (3.10), on the
right-hand side,

8
(g ~ )(=Igp, +p vg.""v gv, + Q vg. "v(-&z,)" (-))"+Q vg. ""vg.""vg.'"v(-g&~)

n m nt tnt l
(3.12)

g m+1( ] )m~m g Q ( 1)mg m~m

tn= o mls o

a

1+kg, g, '+a

& -Ho+4 E~-HD
(3.13)

So, to second order in V, E(I. (3.10}becomes

V(E)- ~P ~ VG(E) V+ ~ ~ ~

+g Vgm+1V( gP )m

= rgP + Vg, V+ Q Vg,
' V(-1) b P

= 4P&+ Vg, VP, + g Vg, "'~V(-1) rg"P&
mao

= 4P~+ Vg VP + Vg~VP~, (3.14)

where we have used E(I. (3.8) and have only col-
lected terms to fourth order in V. The infinite
sums in E(I. (3.12) will now be done explicitly. In
the second term of E(I. (3.12) we meet the sum

where we have carefully dealt w ith the m = 0 term
in the sum and have inserted 1=P, + P~ in the fourth
line of this manipulation [since U(E) acts within
the low-energy subspace this replacement is cor-
rect]. Now E(I. (3.12) reduces to

(g —c,)(=I gv~+ Q v(-1)"g,""v(gv~+ vg~vp~

+ Vg, VP, )"

V( 1)ng nm V( 1)mg m+i

x V( ])lg l+1V(gP )nvm+l1ii)
z

(3.15)

First, simplify the second term on the right-hand
side of this equation. To second order in V,

(rgpq+ VgqVpq+ Vg, Vp, )"
= 6"P~+ 5~P, + pg4" PqVg~VP~

)

+4" P,Vg, VPq+b" PqVg VP,

+ &~P, Vg, VP, , (3.16)

where we have used simple properties of projec-
tion operators to collect terms. The final sums
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1x6.n+yfi+E, o

P~, otherwise,
(3.18)

and the sums are the same as in Eq. (3.13), so we
find

Vg, Vg, Vg, VP, + Vg~Vg~Vg~VP~. (3.19)

Collecting all this we have our desired result,

Et/) = (e,P, + e~P~+ Vg~VP~+ Vg, VP,

+ Vg, Vg, Vg, VP, + Vg~Vg~Vg~VP~

Vg'~ VPqVgqVPq —Vg+b VPa VgqVP

—Vg, VP, Vg, VP, —Vg,g, VP~Vg, VP,)g.

(3.20)

Equation (3.20} gives the Raleigh-Schrodinger
matrix perturbation theory for the eigenvalues
E~. Clearly the projection operators P, and P,
serve to organize the 2 x 2 matr ix structur e of
this equation. The reader will probably find it
useful to write Eq. (3.20) directly as a 2 x 2 ma-
trix. The generalization of Eq. (3.20) to cases in
which odd powers of V occur in 'U(E) is handled in
a similar way, and the resulting formula is re-
corded in the Appendix.

Some comments concerning this result and its
derivation should be made. In the derivation we
partitioned H into two pieces H, and V so that both

~ P,) and ~P,) had eigenvalues e, when operated on
by H, . One can check that this particular arrange-
ment was not significant and that Eq. (3.20) follows
in general. For example, we might have chosen
H=H', + V' where H', =H, +dP, and V'=XV-b, P,
and stiil have arrived at Eq. (3.20}. Another non-
trivial check of the scheme is made by assuming
that e, = e~. Then Eq. (3.20) reduces to ordinary
degenerate perturbation theory. [Degenerate per-
turbation theory follows trivially from Eq. (2.15)
because then the zeroth-order & matrix is propor-
tional to the identity. ]

It has probably occurred to the reader to ask if
Eq. (3.20) could not have been obtained more di-
rectly. After all, it involves simple resolvents
g, and g~, so one would guess that the summations
such as Eq. (3.13) could be avoided if the original
problem were better formulated. This is, in fact,
the case." After using this formalism for some
time on lattice gauge theory calculations, it was

making up the second term are essentially just
geometric series. After some algebra, this term
becomes

VggVPp+ VgaVPa VA VPg~AVPg Vga VPaVgaVPa

—Vg,g~VP~Vg, VP, —Vg,g~VP, Vg~VP~. (3.17}

In the last term of Eq. (3.15}we meet the expres-
sion

pointed out to us that this type of perturbation the-
ory is used in nuclear and atomic physics for the
same reasons we developed it here. ' It has also
been studied by mathematical physicists who have
established useful results and properties we will
quote below. In the realm of nuclear physics it is
referred to as the "effective operator" method.
The -mathematical physics studies have supplied
several useful results which we discuss briefly:

(1) Note that the 2 x 2 matrix in Eq. (3.20) is not
Hermitian. This implies that the eigenvectors P,
and g, will not in general be orthogonal. However,
this result is not unexpected. Since g, (p,) is the
projection of the full state vector ~g) (~P,)) into
the low-energy subspace, the fact that P, ) and

~
g,) must be orthogonal if they have different en-

ergies, does not imply that g, and g, are ortho-
gonal. However, since E, and E, are the energies
of a problem which is explicitly Hermitian on the
full Hilbert space, we are assured that the E, are
real. It can be shown that the 2x 2 problem can
be replaced by an explicitly Hermitian one. '4 The
perturbation theory then has additional terms and
will not be discussed here. It may, however, be
useful in the future.

(2) Particle masses are intensive quantities
while the vacuum energy is extensive. These sim-
ple facts are not manifest even in the simplest
Raleigh-Schrodinger perturbation expansions for
field theories with nontrivial vacuum fluctuations.
However, Raleigh-Schrodinger perturbation theory
does have these properties and it is the various
complicated terms in Eq. (3.20) which are essen-
tial here. A direct proof of these properties is
best made by developing a connected perturbation
formalism. Such a formalism exists for Eq.
(3.20).' " In field theory calculations one can also
check that the 2 x 2 matrix of Eq. (3.20), when cal-
culated relative to the vacuum energy, is intensive
or, at least, has intensive eigenvalues.

IV. THE CONTINUUM LIMIT AND MATRIX PADE
APPROXIM ANTS

The Hamiltonians for lattice field theories, certain
spin systems, and even potential models have the
property that the expansion parameter A. diverges in
the continuum limit. Extrapolation methods such
as the Pads approximant have been used to contin-
ue the perturbation series beyond its radius of
convergence and obtain estimates of the energy
spectrum of the continuum problem of rea? inter-
est. ' ' The calculations have mainly dealt with
mass ratios or dimensionless matrix elements—
quantities which should have finite values in the
continuum limit. Then diagonal Pads approxi-
mants could be formed from the strong-coupling
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series and the continuum limit (X- ~) could be
taken directly. More sophisticated and reliable
procedures have been suggested and applied to
models to obtain more quickly convergent se-
quences of approximants. In the procedure de-
scribed in Ref. 15, one forms the [N/N] Padd
approximant for a strong-coupling series of 2N
terms and finds a value for the expansion param-
eter A.„where the approximant is to be evaluated.
A successful recipe for choosing X„equates it
with the distance from the origin of the most dis-
tant pole in the [N/N] approximant. This proce-
dure can even generate sequences of approximants
for functions with essential singularities at infin-
it 15

Clearly we need a generalization of the Pads
approximant to matrices. l' uckily "matrix Pads
approximants" exist and have good mathematical
properties. ""We will review the definition of a
matrix approximant and list some of its properties
here. Given a series for a matrix function,

(4.1)

[L/M] r-i = [M/L] z' (4 2)

where T is the matrix to be approximated, and T
is assumed to be invertible. Another property
which lies at the heart of the fast convergence of
sequences of diagonal approximants is their in-
variance under Euler transformations. "

Theorem: If P„(X)/Q„(A) is the [M/M] Padd ap-
proximant to f(X), then P„(r)/Q„(x) is the [M/M]
approximant to f(x) where a=AX/(1+BR). The gen-
eralization of this theorem to matrix Pads approx-
imants holds identically.

Matrix Pads approximants have some special
properties mhich we mill list:

where M& are matrix coefficients, one can form
a [L/MJ matrix Pads approximant,

(4.2)

where P~ and Q„are matrices. The coefficients
in the matrices P~ and Q„are obtained by the ob-
vious generalization of the procedure used for
ordinary approximants. Since P~ and Q„do not
commute, it is natural to ask whether the matrix
approximant is unique. Thi.s is true and a proof
which parallels the proof of the uniqueness of or-
dinary approximants can be found in Ref. 11.
Other useful properties of ordinary approximants
generalize to matrix approximagts. Recall, the
"duality" theorem" of ordinary approximants.

Theorem: If P~(X)/Q~(X) is the [L/M] Pads
approximant to f(X), then. Q„(X)/P~(X) is the [M/L]
approximant to 1/f(X) if f(0) o0. The generaliza-
tion reads

(1) Matrix approximants are basis independent. ~'

In other words, if the matrix M(X) undergoes a
similarity transformation, then its matrix approx-
imants undergo the same similarity transforma-
tion. This is important, because it means that in
our applications we can set up the low-energy sub-
space S~ in any basis we please and always obtain
the same energy eigenvalues.

(2) The matrix approximants to a Hermitian an-
alytic matrix [At(X*)=A(X)] are also Hermitian
analytic. "

(3) Diagonal matrix approximants to a unitary
ma, trix are unitary. "

In conclusion, we will form approximants for
the masses of the particles in the low-energy sub-
space S~ by computing its mass matrix in strong-
coupling perturbation theory. A dimensionless
matrix Taylor series will then be obtained by di-
viding through by an ordinary Taylor series for a
"reference" particle. This must be done in order
to obtain a matrix series which has a finite value
in the continuum limit. Then the matrix series
will be replaced by a sequence of matrix Pads
approximants. The naive continuum limit X-~
can then be taken, or a more sophisticated se-
quence of approximants using the methods of Ref.
15 can be made.

1 82

2m ex
(5 1)

in one spatial dimension. There are many mays of
placing this theory on a lattice. We choose the
method shown in Fig. 1 where the lattice spacing
is denoted a and the minimum of the potential lies
between two lattice sites. The discrete form of
the second derivative is chosen to be the most
naive form,

d , f(x) =—,[f(x+ a)+f(x —a) —2f(x)],dg 0
(5.2)

V. AN EXAMPLE OF THE METHOD-THE LINEAR
POTENTIAL

We will illustrate this calculational method in a
simple potential model. Field-theoretic calcula-
tions are in progress and mill be reported else-
where. " Potential models provide a nontrivial
testing ground for this technique since the most
naive strong-coupling methods produce rather er-
r'atic sequences of estimates for the energy lev-
els. ' We mill present an example here mhere the
matrix methods produce improved results allowing
a naive continuum limit to be taken directly.

First, consider a lattice version of the Schro-
dinger equation for a linear potential,
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FIG. 1. The lattice version of the linear potential. (a) (b) (c)

d'f(x) =f(x+ a), d f(x) =f(x —a) .
The Hamiltonian now becomes

(5.4)

and the lattice is labeled by odd integers so the
linear potential is replaced by

(5.2)

It is convenient to introduce "shift" operators

FIG. 2. Perturbation theory graphs: (a) first-order
mixing, (b) second-order effect, and (c) fourth-order
effect.

the first excited state of this model by computing
the mass matrix in a truncated subspace of the
space of all antisymmetric states. The subspace
S~ will consist of just the two lowest lying anti-
symmetric states, Eg. (5.9b) and

Jf=-,(d'+d -2)+ylnla. (5.5) (5.9c)

It is convenient to introduce a dimensionless op-
erator,

(5.8)

where x=(2mya') '. We do perturbation theory in
the kinetic energy,

W= Wo+ 2x-xV,
where

V=d'+d .

(5.7)

(5.8)

(5.9a)

Qn a coarse lattice g is very small and we can use
it as an expansion parameter. Since g diverges in
the continuum limit, we must use extrapolation
methods to deduce continuum results from these
calculations.

Consider the spectrum of this lattice potential
model. In the strong-coupling limit (x= 0), the W-
energy operator is diagonalized by placing the par-
ticle on a particular site Since .sites a ln l

have
the same value of W„ the eigenstates naturally
fall into two classes: those with symmetric wave
functions and those with antisymmetric wave func-
tions. Using the notation ln), the strong-coupling
ground state is

In the notation of Sec. III the state of Eq. (5.9b)
will be denoted

l a) and that of Eq. (5.9c)
l
b) The.

effective potential V(E) will be computed in Ra-
leigh-Schrodinger form to fourth order in V.
Since odd orders of V contribute to 'U(E), the
formula in the Appendix must be used.

We now sketch the calculations. The zeroth-or-
der contribution is obviously

1 0
(5.10a)~aPa+~aPo= 0 3

It is convenient to visualize elements of the per-
turbation theory calculation with figures. In Fig.
2(a) we depict the single action of d —it moves
the particle one unit to the left. It is easy to ob-
tain the first-order mixing among the states,

1 -1
(5.10b)PVP= x

In second order, graphs resembling Fig. 2(b) con-
tribute. For example, if the particle is on site 3,
V can move it to site 5 or sjte 1. However, the
resolvents g, and g~ contain projection operators
onto the high-energy subspace, so only the se-
quence of steps 3 5-3 can contribute. The g~
energy denominator for this transition is (8 —5)

The total second-order contribution is

The first excited state is

(5.9b)

The perturbation V does not mix states with dif-
ferent symmetries. We will obtain the energy of

0 0
PVg~VP~+ PVg, VP, = I(, (5.10c)

where the second term on the left-hand side van-
ishes identically. Third- and fourth-order effects
are calculated similarly. For example, a non-
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vanishing third-order contribution is

0 0 1 1 0 0
PV VP P=

0 1/16 -1 0 1/16 0J
(5.10d)

In fourth order, graphs such as.rig. 2(c) contri-
bute

0 0
(5.10e)

Additional simple cal.culations provide all the terms
in 0(E). Collecting all these calculations gives

the series Eqs. (5.11) and (5.12) at second order.
Dividing Eq. (5.11) by Eq. (5.12) gives

(E/E )y-
1 0

0 3 -1 -1
-3/2 +1

(5.14)

We form the [1/1] matrix Pads approximant to the
right-hand side. It is useful to record the gen-
eral formula for this manipulation. Suppose w' e
have a series

0 3 -1 2 0 -1/2.
0 0 0 0

I= mo+ m, g+ m~,2 (5.15)

3 4

1/8 0 1/32 0 (5.11) where the coefficients are matrices. Then the
[1/1] matrix Pads approximant to M is

We also need the strong-coupling expansion for
the ground-state Eq. (5.9a),

[1/1]~(x) = mo+ xm~(mz —xm2) 'm~, (5.16)

as the reader can easily verify. Therefore,

Eo=-1+g —-g + -g ——~ + ' ' '1 2 1 3 1 4 ~ ~ ~
4 16 (5.12) lim [1/1]„(x)= m, —m, m, 'm, .

A nontrivial check on the algebra done in obtain-
ing Eq. (5.11) can be made by finding the lowest
eigenvalue of the matrix and expanding the result-
ing square root in powers of z. The resulting pow-
er series must be identical to the simple strong-
coupling expansion of the energy E, of the first ex-
cited state, Eq. (5.9b). But the series for E, can
be computed directly,

lim [1/l](x) = —,
'

-9 21

whose lowest eigenvalue is

E,/E, = —,'[25-(16+81)' ') =1.894.

Applying this algebra to Eq. (5.14) gives

29 -9
(5.18)

(5.13)

and the agreement is easily verified. Of course,
Eq. (5.11) has the advantage that the mixing be-
tween the two lowest antisymmetric states is
treated exactly, while in Eq. (5.13) it is not.

Now we extract some results. First, truncate

The exact answer for E,/E, is 2.30, so the matrix
method is 17% low. The ordinary Pads approxi-
mants give the estimate 3 for this ratio, so the
matrix method has reduced the fractional error by
almost a factor of 2.

Now consider Eqs. (5.11) and (5.12) to fourth
order The m. atrix equation for E/E, becomes

1 0
(E/E.)y= + x

2 -1
-1 -1

9/4 -3/2 -55/16 9/4

-11/8 -13/4 69/32 'I 5/16 (5.20)

M=mo+m, g+m~ +m3X +m4g .2 3 4 (5.21)

Then,

[2/2]„=(1+P,x+ P~') '(n, + n, x+ n~'), (5.22)

We now replace the right-hand side of this equa-
tion by the [2/2] matrix Pads approximant. It is
again useful to record the [2/2) matrix Pads for a
general series,

f

the matrices m, ,

o moy

p, =(m~m, '-m, m, ')(m,m, ' —m, m, ') ',
P, = (m, m, ' m3m2 ')(m, m, ' -m2m, ') ', (5.23)

n, —m~+ p, mo,

n, = m, + p,m~+ p,mo.

So,

where the matrices P, and n, are obtained from iim [2l2]„(x)= p, 'n, . (5.24)
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Performing the matrix calculations for Eg. (5.20)
gives

33.87690 -11.37838

4 810877 310 o

The lowest eigenvalue of this matrix is

Ei/Eo = 19.34389 - 17.15784 = 2.18605, (5.26)

which is just 5% below the exact answer T.his
result should also be compared against the ordi-
nary [2/2] Pads approximant estimate for this
mass ratio. It is 3.286 which is 62%%up abov'e the cor-
rect answer. This example illustrates the fact
that the ordinary Pads approximant gives a slowly
convergent sequence of approximations in poten-
tial theory. " One method of speeding the conver-
gence is that of Ref. 15 in which an optimal g„ is
chosen at every order N. This procedure works
well, but the matrix method allows the naive ~-~
limit to be taken directly. One can also apply the
g„method to the matrix calculations. It does not
change the estimates substantially.

It is clear that the reason the matrix method
works well is that it produces a better wave func-
tion for the first excited state than the most naive
method. Since the first excited state has a node,
the. state must extend over several lattice sites
before a lattice calculation of its energy'wi1. 1 be
reliable. By accounting for the mixing in the low-

energy subspace nonperturbatively, we can achieve
this.

VI. CONCLUDING REMARKS

Application of these methods to field theory
spectrum calculations have begun. An application
to the Schwinger model will be discussed else-
where. " The reason we are hopeful that the meth-
od will produce good results in (3+ 1)-dimensional
lattice quantum chromodynamics is that particle
states with realistic short-distance components
can now be incorporated into a systematic strong-
coupling procedure. We hope that our understand-
ing of the pion, the g, and the 6-nucleon splitting
will be improved by these efforts.
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APPENDIX

The generalization of Eq. (3.20) to the case where odd orders of V contribute to the effective potential
will now be recorded. The derivation using tQe methods of the text is straightforward but tedious. Using
the same notation as the text [in which 6= ~e- „e,g=(1-P, -P,)/(&, -H, ), g~=(l -P, —P~)/(e~-H, ) we
find

Eg= [e,P, + e~P~+PVPe PVgqVP~+ PVg, VP, + PVgqVgqVP~

+ PVg Vg VP —PVg 'VPVP+ d PVg 'g~VPVP~+ 4PVg, 'g~VP~VP

—5 PVg, 'g~ VP~VP~+ PVg, Vg, Vg, VP, + PVg~Vg~Vg~VPt, —b PVg, 'g~VP(PVPVP~+ P~VPVP+ PVP~VP)

+ a2PVg, 'g~'VP(P~VPVP~+ P~VP~VP+ PVP~VP~)

PVg, 'g~'VP~VP~VPa PVgo'VPs Vga VPa -PVga VP Vg VP
I

—PVgg&VP Vg&VP~ —PVgg~VP&Vg VP —PVg Vg, VPVP

—PVg, Vg, 'VPVP+ PVg, 'VPVPVP+ h(PVg~Vg, 'g~VP+ PVgg~Vg, 'VP+ PVg, g~Vg, VP)(PVP~+ P,VP)

—LL'(PVg, 'Vg, g, VP+ PVg~Vg, 'g~'VP+ PVgg, 'Vg, 'VP+ PVg, 'g~'Vg, VP)P, VP~] g
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