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Nonlinear models as gauge theories
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In the usual formulation of nonlinear models (such as chiral models), there is invariance under a nonlinear
realization of a group G„which becomes linear when restricted to a subgroup H„. We formulate them so that
they become gauge theories for a local group A~. It is the local version of a global group Hc. When the
gauge transformations are unrestricted at spatial infinity, only H~ singlets are observable, and the usual
formulation is recovered. When the gauge transformations are required to reduce to identity at spatial
infinity, the usual formulation is no longer recovered. In particular, (1) nonsinglets under Hc become
observable, (2) the classical vacuum becomes degenerate under suitable conditions as in Yang-Mills theories,

(3) the spontaneous symmetry breakdown of GF seems complete. (In the usual formulations, GF is broken
down only to H„.) It is shown that the instanton and meron solutions of Yang-Mills theories are also
solutions of certain nonlinear models. It is also shown that in a certain class of nonlinear models in

(Euclidean) (3+ 1)-dimensional space-time, there are no instanton solutions for any choice of the groups.

I. INTRODUCTION

Some years ago, models based on "nonlinear
realizations of a group G~ which become linear
for a subroup H~" were popular. ' ' We will gen-
erically call. such model. s as nonlinear models.
The group Q~ was usually a chiral. group such as
SU(3) x SU(3), and the group H~ was usually its
parity-conserving diagonal subgroup such as
SU(3). These models were successful in explain-
ing the low-energy behavior of strong interac-
tions. There seems to be less interest in these
models now as realistic models. ' This is because
of the following reasons: (1) They are apparently
not theories with invariance under a gauge group.
There are indications that elementary-particle
interactions should be described by gauge theo-
ri.es. (2) They may not be renormalizabie.

In this paper, we formulate these models so
that there is invariance under a gauge group X~.
The group 3C~ is the local version of a global
group H~. The global group H~ is isomorphic to
H~, but has a different action on the dynamical
variables. The standard formulation is recovered
by choosing a specific gauge. Our approach is
very close to that of Callan ep p$. and Volkov. '
A similar formulation of O(3) nonlinear o models
has been carried out by O'Adda et al. » (See also
Ref. 5.) Thus nonlinear models can be regarded
as gauge theories as well. The renormalizability
of these models is still in doubt.

It will be seen below that the group G~ resembl. es
the (global) flavor group, and the group Hc the
(gauged) color group. Further the spontaneous
breakdown of G„ to H~ in nonlinear models is
guaranteed without the necessity of Higgs poten-
tials. (In the normal quantum chromodynamics,

the mechanism which spontaneously breaks the
chiral flavor symmetry is at best not direct. ' In
this respect, nonlinear chiral models may be
superior. ) We may also note that nonlinear mod-
els are models for current algebras. Current
algebras have good empirical support.

In summary, (1) nonlinear models are gauge
theories of a group X~ which is the local version
of a global group Hc, (2) they have global invari-
ance under a group t"~ The latter contains a sub-
group H~ isomorphic to H~ and G~ is spontaneous-
ly broken to H~, (3) they are models for current
algebras. These features seem desirable in par-
ticle physics and suggest that such model. s merit
careful study.

Fermions can be introduced in nonlinear models
by the normal prescriptions of gauge theories.
An alternative method is to supersymmetrize the
models. " We will also briefly indicate this gen-
eralization.

Consider a normal gauge theory with a gauge
group S and the associated global group R. If (R

is unrestricted at spatial infinity, then only sin-
glets under R are gauge invariant and hence ob-
servable in the classical theory. In addition. , the
classical vacuum is not degenerate. However, it
is often assumed in gauge theories that gauge
transformations must reduce to identities at spa-
tial infinity. This assumption has a profound ef-
fect on the classical theory. Nonsinglets under R
become gauge invariant and observable. Further,
in (d+ 1)-dimensional space-time, the classical
vacuum becomes infinitely degenerate if the homo-
topy group vgB) is nontriviaL The instanton solu-
tions then describe quantum-mechanical tunnelling
between these vacuums. These are known re-
sults' and their proofs will be recalled in the text.

The situation is similar for nonlinear models.
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If the gauge group K~ is unrestricted at spatial in-
finity, there is complete "color confinement"
(that is, only singlets under the global group Hc
are gauge invariant and hence observable}. Also,
there is no vacuum degeneracy due to the gauge
group. ' The formulation of nonlinear models de-
veloped here is equivalent to the older formula
tions ' (at least at the classical level} only if Kc
is unrestricted at infinity. The remarks about
the symmetry breakdoson from G~ to H~ are also
accurate only under this condition. These older
formulations set up the Lagrangian directly in
terms of Hc (and Kc} singlets, and hence do not
show nontrivial gauge properties. If the elements
of Kc are required to reduce to identity at spatial
infinity, the older formulations are no longer re-
covered at the classical level. Nonsinglets under

H~ become observable. Yhe vacuum becomes in-
finitely degenerate if vgHc) is not triviaL Thus
nonlinear models show topological features which
resemble those of normal gauge theories. Fur-
ther, heuristic arguments show that the spontan-
eous breakdown of G~ is complete.

When Xc is restricted by boundary conditions
and the vacuum becomes degenerate, there is the
possibility of jnstanton and meron solutions
which tunnel between these vacuums in nonlinear'
models. " (We are interested in such solutions in
Euclidean space-time. ") It will be shown that
there are no instanton solutions in (3+ 1'}-dimen-
sional space-time for a class of these models.
For another such class, there are such solutions
in (3+ 1)-dimensional space-time. The method of
Atiyah et a&.

"can in fact be adapted to construct
some of the solutions. Further, the possible ex-
istence of "meron solutions" in some nonlinear
models will be established by showing that the
known meron solutions of Yang-Mills theories"
are also solutions of a nonlinear model with Q„
= SU(2) x SU(2), Hc = diagonal SU(2). Instantons
can of course exist also in other space-times. In
particular, the Belavin-Polyakov'~ solutions of
the nonlinear o model in (1+1)-dimensional space-
time can be interpreted as solutions which tunnel
between its degenerate gauge vacuums. ~ As in
the usual gauge theories, the presence of these
tunnelling solutions forces us to redefine the
quantum ground state and introduces a term in
the effective Lagrangian which violates discrete
symmetries.

In Sec. II, we formulate nonlinear models so
that they become special sorts of gauge theories.
The extension of our approach to supersymmetric
nonlinear models is indicated. In Sec. III, we
discuss the consequences of restricting the gauge
group at infinity. The possibility of instanton and
meron solutions is studied in the final section.

II. FO1+4ULATION OF NONLINEAR MODELS

A. General remarks

(2.1)TrL(p)L, (o) = 5„.
For o. ~ [H], the generators L(n) are taken to
span the Lie algebra L„of H and are called T(o.):

L(n)= T(o.), o. - [H].
The remaining generators are called S(i}:

L(i) = S(i), i o [H] + 1 .
Note the commutation relations

[L(p), L(o) ] = tent„,L(X),

where

[T( ), T(P)]= ~„„T(r),
[T(&),s(i)] =ic.„s(j), -

[S(i),S(j)]=i[a,, T(o.)+D,,,S(k)].

(2.2)

(2.3)

(2.4)

(2.6)

(2.6)

(2.7)

(Of course, since TrS( j) [T(o.),s(i)] = TrT(a) [S(i),
S(j)], we have the equality C „.= D„. .)

Let 9= {g)denote the local. group associated
with G. An element g is thus a field on a (d+ 1)-
dimensional space-time hI"" wi.th values in Q:

M4"~x-'g (x) c G.

The Lagrangian density g in any nonlinear model
is a function of g and B„g(Ref. 16):

L'=@g, &,g) .. (2.9)

It is required to be invariant under certain trans-
formations which we now describe.

There are two types of such transformations on

(1) A local gauge transformation,

g(~) -g(x)h(x), h(x) c H. (2.10)

This local transformation group on 8 is the gauge
group Xc." Its global version i.s the group" H~:

g(~)-g(~}h„h,cH,
h, independent of g. (2.11)

The transformation groups K~ and Hc act on 8 to
the right.

(2)'A global transformation

Let G= {g,) be a compact, eonneeted Lie group
which is given as a group of unitary matrices.
Let H= {h,) be a (closed, connected} subgroup of
G." The group G can be the chiral SU(3) x SU(3)
and the group H its parity-conserving diagonal
SU(3) subgroup.

The (Hermitian) generators of the Lie algebra Lo
of G are L,(o), o=1, 2, . .. , [G], where [M] means
the dimension of M. Their normalization is
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go independent of g. (2.12)

B. Construction of nonlinear models (no Fermions)

The construction of 2 proceeds as follows. Let

g(x) -h, g(x), h, cH. (2.13)

The transformation groups Q~ and H~ act on 8 to
the left.

The Lagrangian density is required to be invari-
ant under both (2.10) and (2.12). This has the fol-
lowing consequences:

(a) The Lagrangian density can be regarded as
a function of fields with values in the space of left
cosets G/H. " This is as in normal formulations.
For instance, at least locally, "'we can write

This global transformation group is the group Q~"
Its- associated subgroup" H~ has the action

~„(g)=g s~.
[~„(g)dx" is the Maurer-Cartan form "]. We have

&„(gh)= h'~„(g)h+ h~()„h.

(2.21)

(2.22)

+) v(&) = sg (du sv(d) + [(d~~ ~v] =0 (2.23)

Hence ~, is a "trivial" connection.
Consider next the projections of ~„ into the Lie

algebra I.„and its orthogonai complement:

Thus under the action of K on 9, (d„ transforms
as a gauge potentiaL The associated field strength
is zero:

g(x) = e"('""("h(x) =-k(x)h(x) .
The gauge invariance (2.10) implies that

(2.14)
A„(g)= &(o() TrT((y)w„(g) = 7{()()A-„(g),

B„(g)= S( ) T S(') „(g) -=S( )B„'(g),

(d„(g) =A„(g)+ B„(g).

(2.24)

(2.25)

(2.26)

(2.15)Z(g, ()„g}= N(k(x), s„k(x}},
which recovers a canonical form of g.~

(b) The global symmetry G~ acts on $, by the
rule

Since h 9„bcL~, we have the identities

T(()() Tr T(o()h~s„h= h~b„h,

Trs(i)h~s h= 0.
It follows that

(2.27)

(2.28)

~,(x) -'
g;.(x),

where

&i(((x)s(() &i(~&(x)s( ) (h( I)xEo~

(2.16)

(2.17)

for a suitable h'(x) (=H. The transformation (2.16)
is in general nonlinear. But it becomes linear
when restricted to H~ This follows from (2.6)
which impl. ies that

hP(i)h '=D(h )t,S(j),

where (D(h,)) is a representation of H. Now,

h, exp [i),(x)s(i) ]=exp(i&,(x) [h,S(i)h, '])h, .

(2.18)

(2.19)

With the identification h (x) = h„we thus find,

g',.(x) = D(h, )„g,(x), (2.20)

which is a linear transformation law."
Thus, by (a) and (b), 2 is a function of g, which

is invariant under a nonlinear realization of Q~
which becomes linear when restricted to II~ This
is the standard definition of 8 in nonlinear mod-
els. '

Thus nonlinear models can be regarded as de-
fined by Lagrangian densities g of the form (2.9)
with gauge invariance under 3C~ and global invari-
ance under Q~ The standard formulation is re-
covered by the gauge choice g(x) = k(x)."

A„(gh) = T(().) adh~, TrT(p)(d„(g)+ h(s„h

= h~A„(g)h+ h~() „h,
B„(gh)= S(i)D(h)„TrS(j)(0„(g)

= h~B,(g)h.

Here (adh] is the adjoint representation of H:

(2.29)

(2.30)

hT(a)h~=adhq T(P). (2.31)

(2.32)Z&»= Tra„a„,
Z")=+ —,

' TrZ„„(A)Z„„(A).
(Note the resemblance of Z(2) to the conventional
Yang-Mills Lagrangian density. It will be impor-
tant in Sec. IV B.} With the gauge choice g(x}
= k(x), these reduce to the Lagrangian densities
discussed earlier. ' We will also see that for Q~

(2.33)

The matrices adh and D(h) are real. , and by (2.1),
orthogonal.

In summary, we find that
(i) A„(g) transforms like a gauge potential under

the transformation g-gh, ;
(ii) B„(g}transforms like a vector in the repre-

sentation (D(k)) under the same transformation.
(iii) It is also evident that (d„, A„, and B„are

invariant under the action of the global Q~
Thus, Lagrangian densities constructed out of

A„and B„which are invariant under the local K
wil. l be invariant under (2.10) and (2.12). Two such
typical structures are (up to overall constants}
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=SU(2), Hz=U(l), (2.32) is the 0(3) nonlinear o
model. . This example is worked out fully by
O'Adda et al.

We may note here that D„(A)gt transforms sim-
ply under Kg and .Gy.

I,= -g{[ko„[2o.&.]])g'
=k[e, 8„C]
=2ie a~& &s ~

as a simple calculation shows. Since

(2.46)

D„(A)g' '-" I 'D„(A)g',

D.(A}g" "=' [D.(A}g'] g!.

(2.34)

(2.35)

Here D„(A) is the covariant derivative 8„+A„.
Thus

Z"&= -Tr{[D„(A)gt] [D„(A}gt]') (2.36)

is also invariant under (2.10) and (2.12). But this
is not different from (2,32). To see this, let us
define

(2.37)

By (2.26), A„(g) is the gauge transform of I,(g}
by the group element g:

A.(g}=g'I.(g}g+g'8. g.
Therefore,

D„(A)=g'D„(I)g

and

(2.38)

(2.39)

Example: the nonlinear a model4

Let G=SU(2) and Hc= U(1). We choose L(p) as
follows:

1'(I)= g, /v 2, S(i) = o,/~2, i = 2, 3 (2.41)

Here cr, are Pauli matrices. The choice is con-
sistent with (2.1). Let us define the triplet of p
fields by

(I/2)" 'go g'= (I/2)' "o,y, -=C .
We have

Trq@=y y =2 Tro& =1.

(2.42)

(2.43)

We now show that Zu' is =,'8„p 8„p,
=—--, Tr(8„4)' so that it is the conventional non-
linear o model. We have'

g~»=Trl I .
Now note that

I)o„[2o„S(i}]] =e„.,~»,S(a)

= s(i) .
Hence

(2.44)

(2.45)

D„(A)g'= g'D„(I) =g'I „(g)= -&„(g)g'. (2.4o)

Since B (g) is anti-Hermitian, this shows that g"'
g(3 )

I

due to (2.43), it follows that

(2.4V)

8"'=+ ~ TrF„„(I)F„„(I).
It follows from (2.46) that"

8„I„—8„I„=[8„@,8„C ]
= C»C[8„e,8„C],

[I„I„]= --,' C TrC [8„@,8„@],

F„„(I)= 2C»C [8„4,8„4],
8&'&=,&, (Tr {@[8,C, 8„e]j}'.

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

C. Construction of nonlinear models with Fermions

(a) Fermion fields can be introduced in a con-
ventional way in these models. " Thus if I'
= {d(h)j is a unitary representation of H, and q is
a (multicomponent) fermion field which trans-
forms as

q -d(h)'q,

then for example

(2.55)

a"&= -q [y,D,(A)+ m]q (2.56)

is invariant under both (i) g-gk, q-d(k) q and

(ii) g-g, g [cf. (2.10) and (2.12)]. Here D„ is of
course to be evaluated in the representation I".
Such Lagrangian densities have been studied pre-
ViOuSly. '8'

(b) A more interesting generalization consists
in promoting g to a superfield "with values in the
group G." (That is, g= exp[iL(a)f ] where f are
even Hermitian superfields. ) The derivative 8„
in v, A, and 8 is then to be replaced by the
supersymmetric derivative d~. This gives their
supersymmetric analogs &, A, and Bo.
The gauge group K~ is to be replaced by the
corresponding supergauge group. Its elements
depend on points in superspace and has "values
in the group II~." Lagrangians can be con-

'(8„y-.}(8„y.). (2.48)

Of course, since S"' are functions of fields with
values in G/H (due to invariance under K ),~ and
G/H is parametrized by C for the groups con-
sidered, these Z "are necessarily functions only
of @,

For possible later use, we express Z~" in terms
of C. From (2.38},
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structed as before, with mell-known modifica-
tions required by supersymmetry. Such a gen-
eralization of 2u' in (1+1)-dimensional space-
time for G=SU(2) and Hc=U(1) leads to the super-
symmetric nonlinear o model of O'Adda et aL and
Kitten. "

A detailed study of such supersymmetric mod-
els has not been carried out.

III. VACUUM STRUCTURE OF NONLINEAR MODELS

A. General considerations on observables in gauge theories

Let us consider any theory (not necessarily
nonlinear} which is invariant under a gauge group
8, (The associated global group is R.) If q(x, t)
denotes a trajectory (a solution of the equations
of motion) in this theory, then so is its gauge
transform (roy)(x, t), where r is a space-time-
dependent gauge transformation (r c (R). Now,
there are nontrivial gauge transformations r
which reduce to identity- at some time zero, say.
Thus for a given set of initial data q(x, 0), we have
many possible trajectories (7 o r))(X, t) . The Cauchy
problem is therefore ill defined unless me restrict
our considerations to those functions {9 of q which
are invariant under 6l=(r); Here N, is the con-
nected component of S. The observables of the
theory are by definition the set 6. If suitable in-
itial data are specified from this set 6, then their
time evolution can be uniquely specified. Thus
requirements of determinism define observables.

We will see below that the two groups 8 and S
may or may. not coincide depending on the a,symp-
totic conditions we put on elements of S. Such
conditions have an effect on the structure of the
observables in the classical theory. In particular,
if 6l 06l, the factor group 8/(R can act nontrivially
on the classical vacuum. This, of course, is the
source of the vacuum degeneracy of certain Yang-
Mills theories.

1. No asymptotic conditions at infinity on the gauge group

Here we impose no conditions at spatial infinity
on elements of S. Then it is known that I,= tR."
The observabI. es are thus invariant under (R. Fur-
ther the global group A of constant gauge trans-
formations is a subgroup of 8,. Hence classical
observables are singlets under A.~ Finally, since
(R/6l is trivial, there is no vacuum degeneracy due
to the gauge group.

2. Asymptotic conditions at infinity on the gauge group

In recent formulations of gauge theories, "one
assumes that at spatial infinity, the Yang-Mills

potentials vanish and the gauge transformations
reduce to identity. Then in (d+ 1)-dimensional
space-time, (Rx6l if the homotopy group vgB) is
not trivial. In this event tR/(R is an infinite cyclic
group generated by an eiement T, 6l/6l= fT"j„'."„.
The observables need be invariant only under (A.

They can change under T".
Further, it is obvious that the set of constant

gauge transformations 8 is not a subgroup of S.
In fact, 6tnB= identity. As a consequence, there
are S.-invariant objects mhich are not A singlets. '
For instance, if q is a quark field, let

q'(x) = V(x)q(x), (3.1)

where V(x) is the representative in the represen-
tation I (cf. Sec. IIC) of

U(x) = P expl &x+,(x„x2 x3~x4)l (3'2)

Here P denotes path ordering. Regardless of the
boundary conditions, the gauge transformation
A„-~~A„r+ ~~8„r induces the transformation

U(x) -xt(x„x„-,x )IT(x)r(x) . (3.3)

Thus, q is gauge invariant with (2.55) (with h re-
placed by r} and the boundary condition. But if r
is global= r„ then clearly

q'(x) - d(~,) tq'(x) . (3.4)

B. Nonlinear models

1. No asymptotic conditions at infinity on the gauge group

Remarks similar to IIIA1 apply to nonlinear
models with S=X~ and B=H~. Let us first ex-
amine the simple case G=SO(3), Kc=U(1), and
the Lagrangian density Zu' (cf. Sec. II). The ob-
servables are invariant under arbitrary gauge
transformations g-gh, A, c.K~ with no conditions .

'at infinity on h. They are thus functions of the
field P [(2.42)] with values in G/H. The latter is
a singlet under the global H~. The classicai vac-
uums correspond to p = constant. The different
vacuums are related by the action of the global
group G~, g-g, g which rotates the constant p to
different directions. This degeneracy is like the
vacuum degeneracy due to the Higgs potential. It
is not due to the topology of K~ unlike the vacuum
degeneracy of some Yang-Mills theories.

Such considerations generalize to any nonlinear
model. An observable is invariant under g-gh

All observable configurations related by T" have
the same energy since T is a gauge transformation
which leaves the Lagrangian invariant. That is,
there is an energy degeneracy. In particular, the
vacuum is degenerate.
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for arbitrary space-time dependence of h. (We
assume that no field besides g is present. } It is
thus X~ invariant, and H~ singlet, and a function
of a field with values in G/H. (In the preceding
discussion, P is such a field. ) Further (2.15) is
now generally valid. Thus, with no conditions on
X~, the present formulation is equivalent to older
formulations. ' ~ '

Let us next examine the vacuum structure of any
nonlinear model. The classical- vacuums corre-
spond to~

g=gp@ y (3.5)

where goc G is constant and h(x) cH has any
space-time dependence. [Then, e.g. , p in (2.42)
is constant. ] For then

A„(gok) = k~8„h (3.6)

is a "pure gauge" and the Lagrangians of Sec. II
vanish. By a gauge transformation of K, we
can first reduce (3.5) to constant g,. Two such
vacuums g, and gp' are now gauge equivalent if
gp gpkp kp cH being constant. Thus the vacuums
are in one-to-one correspondence with G/H.

In quantizing such a theory, this degeneracy is
removed by orienting the vacuum along a particu-
lar left coset, say H. This is as in Higgs models.
In terms of g„ this amounts to setting g, = e. [The
field p of (2.42) is then oriented in the first di-
rection. ] The remaining symmetry of the vacuum
is H„since hpgp= hp=gphp is gauge equivalent to
g,. [The little group of P=(1,0, 0) is U(1).] Thus
the global symmetry G~ is spontaneously broken
down to H~ There are as many Goldstone bosons
as the dimension of G/H. " These are the pions
of the chiral model with G = SU(2) x SU(2) and H
= diagonal SU(2).

2. Asymptotic conditions at infinity on the gauge group

t considerations similar to IIIA2 now apply to
nonlinear models with S=X~, @=X~, and B=H~.
If v)Hc) is not (identity), Rc/Kc = (T")„".'"„and ob-
servables can respond nontrivially to T". There
are also observables which are not invariant under
Hc. For instance [cf. (3.1) and (3.2)],

(3.7)

is such an observable.
A field configuration gpss is a vacuum of such a

theory~ (cf. Sec. IIIB1). Gauge equivalence under

X~ means that the inequivalent vacuums are given
by (g, T"}'„"„when 3'/Kc = (T")„.„is not trivial.

In quantizing the theory, the degeneracy due to
gp is removed by giving it a spec ific or ientation,
say g, = identity e. Quantum theory thus spontan-

eously breaks the global symmetry (2.12). The
breakdown seems complete. We can see this as
follows. The symmetry of the vacuum is given by
those global transformations sp c Qz such that

s,T"= T"h, h(= X, (3.8)

since T" and T"h. are gauge equivalent. At spatial
infinity, T" and h-e. But s, is global, so s, -=e.

Note that this situation is strikingly different
from III B1where the vacuum has the symmetry
of H~ We hope to study the structure of this
symmetry breakdown elsewhere.

It should now be clear that at the classical lev-
el, with the above conditions at infinity, the pres-
ent formulation of nonlinear models is not equiv=
alent to the older ones. For instance, since the
observable g' [(3.V)] is not Hc invariant, it can not
be expressed in terms of the Hc-invariant p for
the So(3) model of Sec. II.

A. Instantons

I, Lagrangian density 2 ~ = Tr8„8„(Eq.(2.32)j
We wish to show that for this Lagrangian den-

sity, there is pg0 instanton solution for any gauge
group in (3+ 1)-dimensional space-time.

In the vacuums of these theories (in Minkowski
space), B„=0. By (2.26), this means that ~„=A„
and so by (2.23) that E„„(A)= 0. Hence there is
an WAX which fulfills

(4.1)

Letg=gh. Then e,g=0 or g=g, =constant. Thus
the vacuums are given by (3.5).

It follows that in Euclidean 4-space R', we need
a solution g with the behavior

g-gok as ixi -=(x,'+x,'+x, '+x,')'i'- . (4.2)

The degree of mapping defined by h. from 8B =$'
into H gives the instanton number 4. ,For the
latter, we have

2k~
J da„e„„~ Tr(A„B)A + rA„A)A, )

az4

=-
Jt do„g„(A) .

ag4
(4.3)

IV, INSTANTONS AND MERONS IN NONLINEAR MODELS

When the vacuum becomes degenerate as in
IIIB2, it becomes of nterest to investigate tun-
nelling between these vacuums. Instanton solu-
tions in the Euclidean (d+ 1)-dimensional space-
time describe such tunnelling. (This is our defini-
tion of instantons. We do not, use self-duality
properties in defining them. ) Meron solutions""
are also relevant in semiclassical calculations
(Callan et al. '). We now discuss instantons and
merons in nonlinear models.
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By (4.2), The condibons on N are

But

k O(- da'„g„(gp ~

Sz4
(4.4)

(a) NtN=1. (4.11)

(b) There is a (k+n) x k matrix M with the following
properties:

(4.5)

8 Tr T(3)F„(w)

~„g„((d)c(: e„„,p TrF„„((g)F),p(e) = 0.
Applying Stokes's theorem to shrink 9R' to a
point, we find k=0. Hence the result.

This proof, valid for d= 3, need not be true for
d43. Thus the SO(3) model of Sec. II has degen-
erate classical vacuums for d= 1 since i(, [U(1)] = Z.
It is readily inferred from the work of D'Adda et
al. [cf. their Eq. (15)] that the Belavin-Polyakov
solutions' describe tunnelling between these vac-
uums. A standard reasoning" then shows that the
effective quantum Lagrangian density contains an
additional piece

(i) M =P —Qx,

where

and

= (1,io,.), o, = Pauli matrices.

(4.12)

(4.13)

, (4.14)

Here P and Q are independent of x.
(ii) MtM= t), (4.15)

where n is "real" (commutes with r„), and in-
vertible. (If 7, is replaced by rt, the alternative
duality property is obtained. )

( i.i.i) NtM = 0 . (4.16)
Thus if

dependent on the angle e. It violates discrete
symmetries. the matrix

(4.17)

T((x) Tr T(o.)g'S ~= h'S„h

for some h. Setting g=gA, , we find

(4 7)

Tr T(~)gte „g=0. (4.8)

It is easy to find nonconstant g which fulfill (4.8)
for suitable G and H. For instance, let G= U(n),

UA 0
H= U(k) =

0 1
(4.9)

where 0+ l=n (a subscript p indicates that the ma-
trix is p x p). Then (4.8) is fulfilled if gc U(l).
Note that A„(gh') =A (g) for space-time dependent,
h'(x) (= H'. So g(" is invariant under the gauge
group of H xII' and not just of H.

The Atiyah et al. construction for Sp(n) of in-
stantons of topological number k is in terms of
a (k+ n} x n matrix N with quaternionic entries.
The potential is

(4.10)

2. Lagrangian dense'ty 2 = Y4TrF„,(A) F„„(A)(Eq. (2.33)I

We show here that the self- and anti-self-dual
solutions of Atiyah et ~l."can be written in the
form (2.24). By a well-known inequality (cf. Ref.
10, Sec. 3.5), they extremize the Euclidean action
of g"' and solve the nonlinear model as well. Thus
the argument in IVA1 must fail for g"'. This
happens as follows: The vacuums are now defined
by F„„(A)=0instead of by B„=O. So (4.1) is re-
placed by the weaker statement

g= [N, N] (4.18)

is in Sp(n+ k). We can now imbed Sp(n) in Sp(n+ k)
by the identification

(4.19)

For its generators T((r}, we have

t(o. ) o

o o '
(4.20)

TrT( )T(p)= Trt( )t(p)=5„().

Here ft(o.)) are the Sp(n) generators in the n xn
space where N~&, N lives. Since

TrT((x)g~&„g= Trt(a)Nts, N, (4.21)

B. Merons

The meron solutions M„of SU(2) Yang-Mills
theories in four-dimensional Euclidean space-
time are of the form"

M~ = ~ttb, t, (4.22)

where t is a specific element of SU(2) [cf. Ref. 11,

the components of the potential are of the required
form (2.24). Thus the Sp(n) k-instanton solutions
of Atiyah et al. solve the nonlinear model defined
by 2"' for G=Sp(n+k), H=Sp(n). As remarked
before, 2"' is actually invariant under the gauge
group of Sp(n) x Sp(k).

The solutions of Atiyah et al. foi the other clas-
sical groups can be adapted to nonlinear models
in a similar fashion.
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and Eqs. (4.36) and (4.37) below]. They fulfill 6g= iL,(p) e,g, (4.so)

D„(M)F„„(m)= 0

except for isolated points in space-time.
Consider a nonlinear model with

(4.23) where &, are space-time-dependent parameters
and L(p)'s span the Lie algebra of G (Sec. IIA).
From this and the form of A„(g), one gets the fol-
lowing field equation for S(2' from (4.29):

(zi
(:= su(2) x sU(2) =

I
g= ~ s„T {(D„E„„)gL(p)g]=0. (4.31)

t'g, 0)
(4.24)

where g, are 2 x 2 unitary unimodular matrices.
Let H be its diagonal SU(2) subgroup {h=(; ', )).
We show that in such a model with the Lagrangian
density S~", (i) the potentials A„(g) are of the form
dictated by (4.22}, that is, that they are "half a
gauge, "(ii) any solution of D„(A)F„„(A)= 0 also
solves the field equations due to f"'. It follows
that for suitable g (specifically for g, = t, g, = 1),
the meron solutions also solve these nonlinear
models.

(i) We let

[Use {TrE„„'1((a))T(a)= E„„.] This is just the con-
servation law for the Noegher current of the sym-
metry transformation (4.30) with e, constant.
Equation (4.31) is the same a.s

Tr{(D„E„„)D„(g'I.(p)g) )= O. (4.32)

', 0 v„
y"-

Lv~ 0 (4.33}

Then the conventional field P is given by

Jt is instructive to rewrite the simplest meron
solutions in terms of conventional normal. ized
fields [like (((( in (2.42)]. Let r„be as in (4.14) and

(We can always reduce g to this form by a suitable
gauge transformation g-gh. ) We,choose for the
generators of H, It fulfills

(4.34)

g 0
T(a)=

2 0 y

g = Pauli matrices.
(4.25)

(4.35)

and is the field of the "SO(4}nonlinear e modeL""
The two simplest meron solutions have"

So

Trr(a) r(P) = 6., (4.26)

t= t1 = &ore (4,36)

It follows that

A„= T(a) TrT(a}g~e„g

g1~~gl
(4.2V)

gxs~gx l

where we used & o Tro gab„g, =g,.e„g,. Thus each
block is of the form (4.22). Of course, the equa-
tion D„(A)E„„(A)= 0 splits into two identical equa-
tions, one for each block.

(ii) We have

t=t =&~~

where

It follows that

(t (x)=x,

for t= t1 8.nd

(4.sv)

(4.38)

(4.39)

6d"= Tr{F„„(S„6A„+[A„, 6A„])j,
which after a partial integration becomes

Tr(D„F„„)6A„,

(4.28)

(4.29)

where the identity TrA [B,C] = TrB[C,A] has been
used. The variations of M „are not arbitrary,
they have to be induced by varying g. But in any
case (4.29) shows that the action is stationary if
D„F„„=0. This proves the result.

As an aside, note that the most general variation
ofg is

(I(,(x}=x„y„(x)= -x, (4.40)

for t= t2.
de Alfaro et gl.. solve a nonlinear o model which

seems different from ours.""They too find the
solutions (4.39) and (4.40).

We can similarly construct the g fields from all
the known meron solutions of the SU(2} Yang-Mills
theory. " General covari@nce can also be intro-
duced in 2"' by following the last paper of Ref.
11. Such a general. ization is of interest for dis-
cussing merons as shown in that paper.
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