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It is shown that the O(3) non-Abelian gauge theory possesses charge-monopole duality in the sense that,
analogous to the ordinary magnetic vector potentials, one can construct O(3) “electric vector potentials,”
gauge-invariant combinations of which constitute the physical variables. However, while the Hamiltonian
could in principle be expressed in terms of such variables, it would be very complicated; the definition of the
potentials is thus not unique. The O(3) magnetic gauge group is separate from the ordinary electric gauge
group. One can also formulate the theory in terms of electric (Wilson) or magnetic (Nielsen-Olesen) flux
loops; the property of the loops which identifies the electric or magnetic gauge group as O(3) is studied. The
possible phases of non-Abelian gauge theories are discussed briefly. The phase with real massless gluons, if it
exists at all, is more complicated than the corresponding phase in an Abelian theory in the sense that it is
not known how to construct a trial vacuum state without an infrared energy divergence. This phase should
not be distinguished from the other phases by the absence of symmetry breaking, again in contradistinction
to the Abelian gauge theory. The phase with complete Higgs symmetry breaking and that with confinement
are electric-magnetic duals of one another. The relation between the Wilson condition, applied to loops at a
fixed time, and the confinement of infinitely massive quarks is studied; it is hoped that the analysis will be
helpful in constructing wave functions for hadronic states with confined quarks. It is suggested that Weinberg-
Salam-type models may confine due to instanton effects though, for a around 1/137, this has no practical
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significance.

I. INTRODUCTION

Non-Abelian gauge theories appear to treat
charges and monopoles on a very different footing.
The symmetry underlying the theory is a charge
symmetry, but there seems to be no analogous
symmetry associated with monopoles. Neverthe-
less, evidence for an underlying symmetry be-
tween charges and monopoles has gradually been
increasing. Wu and Yang' found that one could
obtain a potential distribution with a magnetic
field varying like 1/72 at large distances. ’t Hooft?
and Polyakov® showed that one could obtain a
monopolelike solution of the static field equations
in the presence of a Higgs field. The asymptotic
behavior of their potentials was identical to that
of Wu and Yang. With a suitable gauge choice,
the magnetic field at infinity had the precise mono-
pole form

Tk

F“}=6°‘3em W . (1,1)

In an SU(n) theory the strength of the monopole
was n Dirac units.

Nielsen and Olesen® proposed that the “strings”
of the dual model might be representations or
idealizations of vortices of magnetic flux in a
superconducting vacuum. Such vortices could only
exist if the gauge symmetry was completely
broken by Higgs fields, and they would have to
contain fewer than n» Dirac units of flux. The
model could allow open strings only if Dirac
monopoles were present to absorb the flux at

the ends. Nambu® emphasized that monopoles
could only exist in the superconducting vacuum
if they were joined by quantized vortices of mag-
netic flux, and that, in the Abelian model which
he considered, they would be confined in mono-
pole-antimonopole pairs. Mandelstam® extended
his consideration to non-Abelian models.

’t Hooft and Kogut and Susskind’ then suggested
that color confinement would occur if electric
flux were squeezed into vortices. ’t Hooft pro-
posed a nonrenormalizable model in which such a
phenomenon might occur.

The question arises whether the electric flux
confinement proposed in Ref. 7 could occur by a
mechanism similar to the magnetic flux con-
finement of Ref. 4. Mandelstam® suggested that
one might construct a “magnetic Higgs vacuum”
as a coherent plasma of Wu-Yang monopoles,
just as an ordinary electric Higgs vacuum was a
coherent plasma of charges. Such a vacuum
would be expected to confine electric flux in the
same way as an electric Higgs vacuum confines
magnetic flux. ’t Hooft? independently made a
related suggestion. He considered a gauge theory
with partial Higgs symmetry breaking, and a re-
maining unbroken Abelian gauge group. If the
’t Hooft~ Polyakov monopoles in such a phase be-
came tachyonic, apew phase with confinement
properties might result.

’t Hooft'® later suggested that the properties
of the Higgs and confinement phases might be
expressed in terms of the operators which created
vortices of electric and magnetic flux. The
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former are the Wilson-loop operators, the latter
the operators which create Nielsen-Olesen vor-
tices. He showed that, in a phase without mass-
less particles, the vacuum-expectation value of
at least one of these operators should decrease
like the exponential of the area of the loop as the
loop became large. The phase in which the

Nielsen-Olesen operator decreased like e™* was

the Higgs phase, that in which the Wilson operator.

decreased like e~* was the confinement phase.

In view of all these points of analogy between
electric and magnetic quantities, one is tempted
to enquire whether a non-Abelian gauge theory
possesses a complete electric-magnetic (or
charge-monopole) symmetry. The answer to this
question would give us more insight into the
phases of the theory and, in particular, into the
confinement phase.

If we ask the question from a dynamical point
of view, i.e., if we ask whether we can write a
reasonably simple Lagrangian in terms of “elec-
tric vector potentials”!! instead of the usual
magnetic vector potentials, the answer appears
to be negative. In this respect non-Abelian theo-
ries differ from Abelian theories. The elemen-
tary quarks and gluons in non-Abelian theories
definitely have electric rather than magnetic color
degrees of freedom.

However, we may also distinguish between a
gauge theory and any other theory kinematically,
i.e., without reference to a specific Lagrangian.
A gauge theory cannot be defined in terms of
local, physical variables. One can introduce
local potentials A,‘_’f, but these should be regarded
as auxiliary quantities. Only gauge-invariant
combinations thereof constitute the physical op-
erators. Alternatively, one can formulate the
theory entirely in terms of physical, nonlocal
operators, such as fixed-time Wilson-loop op-
erators or, for Abelian theories, operators which
create charged particles with their Coulomb
field. .

We should expect the kinematic definition of a
guage theory to have direct experimental con-
sequences. In a phase with massless particles
one can easily detect such particles and the as-
sociated long-range interaction between charges
and monopoles. In a phase without massless parti-
cles one can detect the linearly rising Regge tra-
jectories associated with high-angular-momentum
electric or magnetic flux loops; the centrifugal
force would oppose the collapse of the loops. In
the presence of quarks the leading trajectories
would probably be associated with open flux tubes
stretched between confined quarks.

We wish to show that, from the kinematical
point of view, gauge theories are completely sym-

metric in electric and magnetic quantities. We
can define “electric vector potentials,”** analogous
to the ordinary magnetic vector potentials, or we
could define a set of Nielsen-Olesenloop variables,
analogous to the Wilson loop operator. We could
construct all operators in the Hilbert space in
terms of these operators; if we used the electric
vector potentials, only gauge-invariant combina-
tions thereof would constitute physical operators.
The Hamiltonian, expressed in terms of our new
variables, would be a very complicated function.
The definition of our new variables is by no means
unique; in any quantum theory one only obtains

a more or less unique set of fundamental vari-
ables if one demands that the Hamiltonian adopt

a simple form when expressed in terms of them.

We adopt, as our starting point, the creation
operators for Nielsen-Olesen loops proposed by
’t Hooft. In order to use such vortices for the
construction of a complete set of “magnetic”
operators we must answer several questions, such
as the following:

(i) How can we construct a gauge-invariant
operator which creates a Nielsen-Olesen loop in
a non-Abelian gauge theory?

(ii) What property of Wilson-loop or Nielsen-
Olesen-loop operators distinguishes between dif-
ferent gauge groups? We shall ask for the prop-
erty which identifies the gauge group as O(3),
since we shall not consider more general groups.

Before we can examine the questions just posed,
we have to discuss some general properties of
gauge theories, which we shall do in the following
section. It is a nontrivial, and thus far unsolved,
problem to construct a trial vacuum state with
finite energy in a non-Abelian gauge theory.'?

We refer to states within the physical Hilbert
space rather than to states in the enlarged Hilbert
space associated with unphysical gauges. The
infinities we have in mind are not ultraviolet
infinities; they remain if we apply an ultraviolet
cutoff and cannot be removed by renormalization.
We have given arguments to indicate that the
problem might be solved by constructing a mag-
netic Higgs vacuum mentioned above,®® and we
hope to elaborate on the subject in a future paper.
For our present purpose, the important aspects
of this question pertain to the residual gauge
group associated with physical gauges, such as
the axial gauge which we shall use in this paper.

We shall show that the correct vacuum, or any
trial vacuum with finite energy density, must be
invariant under transformations in the residual
gauge group, aresult firstindicated by Schwinger.*
As a consequence, we shall show that any op-
erator with finite matrix elements between physical
states must be invariant under such transforma-
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tions. The latter property is also true if we use
the temporal gauge (which is not a physical gauge);
operators with finite matrix elements between
physical states must then be invariant under all
fixed-time gauge transformations.

In Sec. III we shall discuss the kinematical
definition of a gauge theory. We shall find the
property of the Wilson-loop operators which dis-
tinguishes an O(3) gauge theory from any other
theory. The possible color vibrational modes
of electric flux loops in a confined theory are
associated with the property in question.

In Sec. IV we discuss the construction of oper-
ators which create closed Nielsen-Olesen vor-
tices. Since the operators must be gauge in-
variant, the color direction of the magnetic flux
will be defined with respect to an internal co-~
ordinate, i.e., with respect to some field vari-
able, which need not be an elementary field. The
simplest Nielsen-Olesen operators possess the
commutation relations demanded by ’t Hooft,°
but the totality of operators of this type is not
sufficient to reconstruct all operators in the
theory. They are the magnetic analogs of electric
loop operators constructed from the ’t Hooft?
tensor, rather than of the Wilson loops. One can
then proceed to construct magnetic loop operators
which are analogous to the Wilson loops; they
require two internal coordinates to specify direc-
tions in color space. Rotations of such coordinates
constitute an O(3) magnetic gauge group which is
completely independent of the electric gauge
group.

From the magnetic vortex operators we could
in principle construct a set of “electric vector
potentials,” in terms of which all other operators
could be constructed. We should note that the
electric and magnetic variables are not related
by an equation of the form F*“:#”=¢e*" °F, .,
since the color indices do not correspond. The
term “electric vector potentials” is justified in
the sense that a loop constructed from them in
the manner of Wilson obeys the ’t Hooft commuta-
tion relations with the actual Wilson loops. The
O(3) character of the magnetic gauge group im-
plies that the color vibrational modes of Nielsen-
Olesen loops, in a phase where such loops are
stable, are exactly the same as those of Wilson
loops.

We should emphasize that we make no claim
for the practical utility of our magnetic operators.
We introduce them to exhibit the kinematical elec-
tric-magnetic symmetry of gauge theories. For
actual calculations we require the elementary-
field operators, which in this case are the electric
operators.

Our construction of the magnetic operators

verifies, and makes more precise, the conjecture
of Goddard, Nuyts, and Olive'® regarding the
magnetic gauge group in the special case of O(3).
We should, however, add the cautionary remark
that neither electric nor magnetic gauge invari-
ance is a symmetry in the usual sense of the
word; even global gauge invariance cannot be
treated as a symmetry except in Abelian theories.

In the final section we apply our analysis to
make some remarks on the phases of non-Abelian
gauge theories (without “sea” quarks). We also
discuss the relation between the Wilson criterion
and the inability of flux to spread out. Our treat-
ment differs from that of Wilson himself in that
we examine the energy of states at a given instant
of time, and we apply the criterion to fixed-time
loops. It is hoped that our arguments will indi-
cate how to apply the Wilson criterion to construct
trial wave functions for hadronic states with
confined quarks.

II. PHYSICAL GAUGES AND GAUGE-THEORY VACUUMS

In this section we shall demonstrate the follow-
ing properties of non-Abelian gauge theories.

(i) It is a nontrivial problem to find a vacuum
with finite energy density (even with an ultra-
violet cutoff).

(ii) We cannot really construct physical, trans-
lation-invariant gauges at all. Such gauges have
a residual gauge invariance, and matrix elements
of quantities which depend on the residual gauge
choice will not be finite. Particular gauges are
very useful for the purpose of physical or intuitive
arguments but, for a precise formulation, one
must restrict oneself to gauge-invariant quanti-
ties.

Let us first consider the Coulomb gauge. In
Abelian gauge theories the potentials A, or
charge-annihilation operators ¢, have finite
matrix elements, and the bare vacuum has finite
energy density. The Coulomb gauge in non-Abelian
theories is much more complicated, however.
The longitudinal component of the electric field
is then given by the formula [for O(3)]

EL=V(V26°‘_ﬂ+ge°‘YBAZVk)'lpq (2.1)

We note that the denominator is the sum of two
terms, one of which is a quantum-mechanical
operator. This latter term is absent in the Abelian
theory. The Hamiltonian density has the form

H =1E,%+positive-definite terms. (2.2)

Now the matrix element of the square of the
operator on the right of (2.1) will be infinite un-
less the state is carefully chosen. To see this
let us consider the analogous case in particle
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quantum mechanics. We are then interested in the
matrix element

{(a+bx)"%), ‘ (2.3)

where a and b are real numbers, x an operator.
The matrix element will be infinite unless the
wave function for the state vanishes when x = -a/b.
Returning to our non-Abelian gauge theory, we
notice that the first term on the right of (2.2) is
not included in *he zero-order Hamiltonian H,.

The Coulomb-gauge bare vacuum, which is the
eigenstate of H, with the lowest eigenvalue, is thus
not chosen with a view to making the matrix ele-
ment of E;? finite. Hence, if we take the expecta-
tion value of the complete Hamiltonian density for
the Coulomb-gauge bare vacuum, we are likely

to obtain an infinite result.

The foregoing argument shows, not that there
is an inconsistency in the Coulomb gauge, but that
the bare vacuum in this gauge is a bad trial
wave function for the true vacuum. In view of
this fact, and of the complicated nature of the ex-
pression on the right of (2.1), we have not studied
the Coulomb gauge further.

The difficulty discussed here is almost certainly
related to the difficulties in the Coulomb gauge
found by Gribov.*® His conclusion, like ours, is
that the Coulomb gauge in non-Abelian theories
is far from straightforward.

Let us now turn to the other commonly used
physical gauge, the axial gauge. The bare vacuum
in the axial gauge also has infinite energy density,
whether the gauge field is Abelian or non-Abelian.
This feature was first noticed by Schwinger.*

For the Abelian theory it is easy to find a “modi-
fied bare vacuum” with finite energy density,

but an analogous construction does not work for
non-Abelian theories.

In the axial gauge, the canonical variables are
AS,AS;EY,Ey. The gauge condition is

A%=0, (2.4)

and Ej is found from Gauss’s law:

X3
Eg‘(xl,xz,x3)=f ax§ 8%y, %5,%4) , (2.5a)
where
a_ OBy 0E; .
g ox,  ox, +gP. (2.5b)

The Hamiltonian is given by the formula

H=% [dsx [ES (x)]? + positive-definite terms. (2.6)

Furthermore, we may write

[Ea(x)]2= fiik% g(xvxzy kl)eiklx 2,

(2.7a)

where
§(x 1% B)= (2'”)—1/2 fdxse'ik"sg(xv X5 %5).  (2.7b)

We notice from (2.7a) that the expectation value
of the Hamiltonian contains an infrared singu-
larity from the small-% region of the integral.
In fact

{3Q) = unless—,le-if(xl,xz, B)—~0, k-0 (2.8a)
where
(§(x1,x2, k1)§(xu Koy Ro)) = Floy, %5, k1)5 (Fy — k) .
(2.8b)

It is easily verified that the condition (2.8) is not
satisfied in the axial-gauge bare vacuum.

The axial gauge possesses a residual gauge
invariance, namely invariance under those gauge
transformations which are dependent on x, and x,
but independent of x;. The generators of such
gauge transformations are the operators -

G(xl,xz)Ef dx,8(x 1, %5, %3)

=@m)Y%8(x,,%5,0) . (2.9)

It follows from (2.8) that a necessary condition
for finite energy density of the vacuum is

(G, x,0)=0. (2.10)

In other words, the vacuum must be annihilated
by the gauge transformations which are local in
x, and x,, global inx;. Note, however, that (2.10)
is not a sufficient condition for the finiteness of
this particular term in the Hamiltonian. We
require not only the vanishing of {|8(¥)|?) for &
precisely equal to zero, but also a sufficiently
fast decrease as % approaches zero.

We have emphasized that the energy density of
the axial-gauge bare vacuum is infinite in both
the Abelian and the non-Abelian theory, and indeed
the infinity has a simple physical interpretation.
Suppose that one introduces a charge fluctuation
in the vacuum at a point X, but does not change
any of the other canonical variables. Since Gauss’s
law is true as an identity, and since, by hypo-
thesis, we are leaving E, and E, unchanged, it
follows that an infinitely long tube of electric flux
must extend from the point X in the 3-direction.
The infinite term in the energy density is associ-
ated with the infinite length of this flux tube.

The above analysis also indicates how we can
cure the problem in Abelian gauge theories. We
explicitly introduce the Coulomb fields in E, and
E, whenever we have a charge fluctuation; in
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other words, we spread out the flux associated
with the fluctuation. In mathematical terms, we
define a “modified bare vacuum” in the axial
gauge as follows:

lé)MB = exp[z' fdx dx’p(x)
XA, (') 0! —x); %" —xl‘*‘]IO)B . (2.11)

On commuting the operator E;(x’) through the ex-
ponential in (2.11), we obtain an extra term

fdxp(x)(x' -x);lx" —x|"3,

which is precisely the Coulomb term associated
with a charge distribution p(x). It is not difficult
to check explicitly that the state |0),;, unlike the
bare vacuum, does satisfy the condition (2.8) for
finite energy density.

Another way of obtaining the state (2.11) is to
re-express the Coulomb-gauge bare vacuum in
axial gauge.

The foregoing prescription does not work for
non-Abelian gauge theories. The electric field
itself is then charged, so that the factor corres-
ponding to the exponential in (2.11) not only as-
sociates the Coulomb field with original charge p,
but also adds an extra term to the charge density.
One may check explicitly that the state (2.11) in
a non-Abelian theory does not satisfy the con-
dition (2.8).

We now wish to make a few remarks on the im-
plication of the condition (2.10) with regard to
matrix elements. For each value of x, and x,
we have a different O(3) group of residual gauge
transformations. According to (2.10), the vacuum
must be an S state with respect to each of these
O(3) groups. The vacuum-expectation value of
any irreducible-tensor operator, other thana
scalar operator, must therefore be zero. For
instance,

<Fﬁv(§)7 Fgc(;'» =0, unlessx,=y,, X;=Y,,
(2.12)
since the product of the F’s is a vector operator
with respect to the O(3) groups taken at the points
%, 9, and the points x,,y,. To obtain a vacuum-

expectation value which is not zero, we must take
a path between X and ¥ and include the line integral

which converts (2.12) to a gauge-invariant quantity:

(F,R)VEEF () %0, (2.13)
yeB :H {5“7-“1‘-»1
weorBrraabrie ek, ~xblh,  (2.14)

a,Ta, aye=B,

where we have divided the path into a large number
N of infinitesimal segments bounded by x, ., and
x,. The factors in (2.13) are to be ordered along
the path.

We can now see that vacuum-expectation values
involving potentials must be infinite. Suppose
that the coordinates x, and y, of X and ¥ differ
by a very small amount, and take a path between
X% and ¥ which lies along the 3-axis except for a
short portion around a point Z. The vacuum-expec-
tation value (2.12) will be zero, whereas (2.13)
will be finite. The only difference between the
operators lies in the contribution to V“B, Eq.
(2.14), from the short nonvertical portion of the
path near the point Z. It follows that the expecta-
tion value

BV (F,RALE)F),F) (=1 or 2)

must be infinite. We stress that none of the
points X, ¥, and Z coincide; this is an infrared
and not an ultraviolet infinity.

In the temporal gauge (A0= 0) it is also true
that expectation values of gauge-dependent quan-
tities are not finite. We now have a residual
gauge invariance under all time-independent local
gauge transformations. Gauss’s law is applied
as an extra condition, which requires physical
states to be annihilated by the generators of all
such gauge transformations. We can invoke argu-
ments similar to those we have used for the axial
gauge and can show that vacuum-expectation val-
ues of gauge-dependent quantities will not be
finite.

Our remarks about matrix elements of gauge-
dependent operators in axial and temporal gauges
apply equally to Abelian and non-Abelian theories.
The difference is that, in Abelian theories, it is
possible to find gauges such as the Coulomb gauge
where one.can define finite potentials. In non-
Abelian theories one must restrict oneself to
gauge-invariant quantities if one wishes to have
finite matrix elements.

We may also mention that the Abelian theory
with electric charges and magnetic monopoles
is similar to the non-Abelian theory in the features
just discussed. It is not evident that one can de-
fine a Coulomb gauge; if one tries to do so in the
most straightforward way one obtains a vacuum
with infinite energy density. The essential dif-
ference between the Abelian theory without mono-
poles on the one hand, and the non-Abelian theory
or the Abelian theory with monopoles on the ‘
other, is that electric charge is quantized in the
latter two theories. One therefore encounters
difficulties if one attempts to spread out electric
flux in a manner which ignores this quantization.
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III. KINEMATICAL DEFINITION OF GAUGE THEORIES

A. Operators in gauge theories

In this section we shall examine the kinematic
definition of a gauge theory, i.e., a definition in
terms of the operators and states of the theory,
without reference to a specific Lagrangian. It
is only from the viewpoint of such a definition
that the theory is symmetric in electric and mag-
netic quantities. i

We begin by reiterating the well-known fact
that local gauge invariance is not a symmetry
in the usual sense of the word. Normally, a
symmetry operation takes states of the physical
Hilbert space into other states of the physical
Hilbert space. One can classify the states of
the physical Hilbert space with respect to the
representations of the symmetry group. No such
classification occurs for physical states with
respect to local gauge invariance.

We should rather define a gauge theory in terms
of its operator structure. A gauge theory is local
in the sense that its S matrix has the usual analy-
tic properties, but it cannot be defined in terms
of local, physical operators. One may introduce
unphysical local operators such as the potentials
or charge-creation operators, but only gauge-
invariant operators constructed from them have
physical significance. Alternatively one could
define the theory entirely in terms of physical,
gauge-invariant operators, but local operators
such as the product Fy,(x)F;,(x) would not be
sufficient. We would also require nonlocal op-
erators such as the Wilson loop operator, or
the path-dependent product of two spatially
separated operators with color indices.

B. Wilson loops and potentials

For a pure gauge theory, the Wilson loops taken
at one particular value of the time provide a com-

plete set of commuting, gauge-invariant operators.

Later we shall make a remark on the conjugate
variables.

The loop operators must satisfy two fundamental
relations. The first is that, if a portion of a loop
turns back upon itself, one may omit it without
changing the value of the operator. Thus, the op-
erator corresponding to the loop in Fig. 1(a) is the
same as that in Fig. 1(b).

The second fundamental property of the Wilson
loop is that which distinguishes theories with
different gauge groups. Let us consider the O(3)
Wilson loop

N .
| § (LA AP VAT ZS (3.1)
Ay+1 =0, dx) =xb,, -xt.

The fact that the subscripts a take only two values

(a) (b)
FIG. 1. Two equivalent Wilson loops.

enable us to obtain relations between loops whose
perimeters are constructed out of common lines.
These relations follow from the identity

6abac:déef + 6ad6c/63b + 6a‘fﬁedécb
= 04500404 — 8:40470ep = 0440:504¢ = 0
@,b,¢,d,e,f=1,2). (3.2)

Applying (3.2) to the loopé in Fig.-2(a), we may
write

AW, + W+ Wy = 2W, = 2W, - 2W,=0. (3.32)

This relation may be contrasted with the simpler
relation of the Abelian theory [Fig. 2(b)],""

w.,=W,. (3.4)
We also have the unimodularity condition
2WE_w®@=1, ~ (3.3b)

where W'® is the loop obtained by going twice
around W,. If we had operators which satisfied
(3.3a) but not (8.3b), it is not too difficult to show
that we could obtain operators satisfying both equa-
tions by dividing by (W2 - W ®)1/2, ,

One may also consider loop integrals with L
matrices inserted at one point. Such operators
are not gauge-invariant and only have nieaning
as auxiliary quantities. For instance, let W¢,
WZB, and W] represent the auxiliary operators
obtained by inserting matrices 2L%, 2L %, and

FIG. 2. The loops referred to in Egs. (3.3) and (3.4).
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“% @
4
S 6
FIG. 3. The loops in the definitions (3.6).
2L7 at the point x in the loops 1,2, 3 of Fig. 3.
Let W,,W,,W, be the corresponding loop operators
without the insertions, and let W,, W, and W

be the operators associated with the remaining
loops of Fig. 3. Then )

WoWS=W,-W,W,, (3.52)
BYWSW SWY =i(W-W). (3.5b)

These relations follow if the W’s are defined in
terms of potentials in the usual way but, from our
point of view, the operators W¢ have no significance
except when inserted into the left-hand side of
equations such as (3.5).

Our notation for the auxiliary quantities implies
that we are allowed to manipulate them as if the
operator W% could be defined separately, with the
superscript o taking three values. As an example,
we might have eight loops coming to a point as
in Fig. 3. We could then write down the relation

D (= 1)Po% 6 B ST O WIW EW W WEWEW WS = 0.
: (3.6)

where the indices €’,¢’,7’, 6" represent a rear-
rangement of €,£,7,0, and P is the number of
permutations required to effect the rearrange-
ment. Similarly, if we have six loops coming to
a point, we can write the relation

(€a67€6e ¢ _ Z (- l)Péaﬁ'GBe'a'y ;’)
XWSWEWYWSWEWE =0,  (3.7)

Equations (3.6) and (3.7), and other such consis-
tency relations, follow from the definitions (3.5),
together with the fundamental relation (3.3) applied
to any combination of loops.

One can obtain relations similar to (3.5) where
the terms carry a net vector index. Thus (Fig. 3)

€ BYWEWY + WOW ,+ W WS =W, (3.8)

where W¢ is defined with the insertion on the
right-hand side of the loop 4. As with (3.5), this
equation can be obtained by defining the W’s in

/—-dx""

X3 =0

FIG. 4. Wilson loop used to define the axial-gauge
potentials.

terms of potentials but, from our point of view,
they are justified by their consistency with Egs.
(3.5).

Once we have defined the loop integral, we can
obtain more general matrix elements. For in-
stance, we may write

A F;; )Wo' = W{P +5,P} - W{P}, 3.9)

where the expression W{P +5,P} denotes the loop
with the addition of an infinitesimal area ¢ at the
point x. In terms of potentials, the operator
{F;;(x)W} denotes the integral (3.1), together with
an insertion L*F{;(x) at the point x. We can de-
fine a loop with more than one insertion in the
same way. If we take a loop with two insertions,
and the loop goes back upon itself between the
insertions, we obtain the operator in the matrix
element on the left of (2.13).

We may define a loop with an electric field
insertion by its commutation relations:

B )W}, W] = f dx} 80 —x)WSWE . (3.10)

The potentials, like other gauge-dependent op-
erators, are regarded as auxiliary quantities
which have no significance except when inserted
into gauge-independent expressions. We may ob-
tain the axial-gauge potential A (x) from the loops
by using the formula

A (x)dxt = - 25W (3.11)

where W¢ corresponds to the loop shown in Fig.
4; the two long sides extend along the x; axis
to the point x,= -, and the short side is an
element dx’ at the point x. The a insertion is
at the point x;=~.

From the potentials we can reconstruct the
Wilson integral for a loop of arbitrary shape.
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This may be done by repeated application of the
formula

o + ZW?Lgb)(Wzébc + ZWZBLIE;) =Wy + 2WILY, ,

(3.12)

where 1 and 2 refer to the individual loops, and
3 the entire loop, in Fig. 5. Equation (3.12)
follows from (3.5) and (3.8). The formula for a
loop in terms of potentials is of course the same
as Wilson’s original formula.

We have thus found that the potentials and the
loop integrals form equally good starting points
for defining the operators of gauge theories, and
it is possible to go from one to the other. The
only physically significant operators are those
which are gauge invariant. Loop operators with
L insertions, or operators corresponding to loops
which extend to infinity in the z direction, do not
themselves have any real meaning. Matrix ele-
ments of such operators between physical (finite-
energy) states are not finite.

C. Color vibrations in electric vortices

In a system with electric confinement, where
there exist particles or resonances associated
with the Wilson flux loops, Eqs. (3.3) or (3.4)
correspond to an important property of the loops,
namely the types of (color) spin waves which they
can support. We are interested in those color
excitations whose energy tends to zero with in-
creasing size of the loop; they could in principle
be observed by analyzing the spectrum of high-
angular-momentum resonances.

Let us consider the operator we obtain by in-
serting the factor

1+ieL%®%(x) (3.13)

at any point x in the loop (3.1), where ¢ is any
operator of unit color spin. For &% we might

FIG. 5. Reconstruction of the Wilson loop from the
potentials.

take a local operator such as F,(x) or, more
generally, a smeared-out operator such as

[V, xS0, (314

V being defined over any path joining x and x’.

If this modified loop operator is applied to the
vacuum, the extra energy due to insertion (3.13)
will remain finite as the length of the loop in-
creases. On the other hand, it is easily seen by
making a perturbation expansion that the change
of the state vector increases with the length of
the loop and, moreover, that the change is nota
simple multiplication of the state vector by a
constant. We can conclude that the loop does have
excitations whose energy decreases as the length
of the loop increases. Such excitations have no
analog in the Abelian theory.

To see a direct connection between these ex-
citations and the form of the relation (3.3) or
(3.4), we may modify the loop as shown in Fig. 6.
For the Abelian case, Eq. (3.4) shows that the
addition to the loop operator is simply the product
of the operators associated with the individual
loops, and the modification will not correspond
to any kind of vibrational excitations. For the
non-Abelian case the relation is more complicated,
and does not lead to any such negative conclusion.
It can be seen from (3.5) that the addition to the
operator consists of two parts; one is the product
of the operators associated with the individual
loops, and the other has the form of the second
term of (3.13), with ®*=Wg. We cannot conclude
directly from Eqgs. (3.5) that color oscillations
are associated with this type of modification. We
can, however, use such equations to reformulate
the theory in terms of potentials, following which
we can repeat the reasoning just given.

D. Gauge field in interaction with charged field

For simplicity we have restricted our analysis
in this section to a pure gauge field. We could
easily extend our considerations to a gauge field
in interaction with other charged fields. If we
have a charged field with unit color spin, the
fundamental gauge-invariant quantities would be
Wilson loops, . together with the operators

{® ()W} (3.15)

FIG. 6. Modification of a loop with which color vibra-
tions may be associated.
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which are defined by making an insertion ®(x)L“
at the point x in the loop. If we make two such
insertions and let the loop go back upon itself
between the two point, we obtain the operator

% (x)V*PaB(y), (3.16)

where V°® is the line integral (2.14). We can then
define auxiliary quantities ®*(x)V*®(x,y). By
extending the path along the x, axis from the
point x ,x,,x, to the point x,,x,, —~, we obtain
the axial-gauge ®’s.

It is important to realize that, if we are simply
asking for a set of operators in terms of which
all others can be constructed, rather than a set
in terms of which the Lagrangian assumes a
simple form, the set is by no means uniquely
defined. We could add to the potential any gauge-
covariant quantity which is a vector in ordinary
and color space. In this respect a gauge theory
is no different from any other field theory; the
set of operators used to define the theory only
assumes a certain degree of uniqueness if we
demand that the Lagrangian assume a simple form
when expressed in terms of those operators.

E. Abelian loop integrals

Besides the non-Abelian loop integral, one can
also define Abelian loop integrals in a non-Abelian
theory. They are the loop integrals relevant to
the Abelian gauge group which remains after a
partial Higgs breaking of the original group. By
an Abelian loop integral. we mean a loop integral
with the simple composition law (3.4) instead
of the law (3.3).

An Abelian loop must be defined with respect
to an isotopic vector operator ®*(x). For sim-
plicity we assume that ®* commutes with A2 In
the Higgs model such an operator corresponds
to an elementary field, but we make no such
restriction in our present, general arguments.
Indeed, & may be a spatially smeared operator
or a product of such operators, always multiplied
by line integrals such as V*8(x,x’) so that it trans-
forms according to the gauge group at x. The loop
integral would then be quasilocal instead of local;
it would fail to commute with other gauge-in-
variant operators whose field points were within
a certain finite distance from the loop itself.!®

We now define the operator @ which rotates 3
into the isotopic 3 direction:

$-L=0L%" @ =0%/|3]).

Q is undefined to within a factor exp[ign(x)L,] on
the right. Under a gauge transformation © be-
haves as follows:

Q= (1=-igL-x).

(3.17)

(3.18)

_Following the usual procedure in the Higgs model,
we define an Abelian potential by the equation

A“ —@“Au+2—g—Tr5}—p—L3§Z .

(3.19)
The Abelian potential remains unchanged if &, A,
and @ are subjected to non-Abelian gauge trans-
formations. On the other hand, if we multiply
by a factor exp[ign(x)L3] on the right, A'® under-
goes a new, Abelian gauge transformation:

s p0, 0N
AP= AL+ o, (3.20)
The Abelian loop operator is defined by the
equation : ‘ :
W2=exp (- ig fdx"A;”(x)) , (3.21)

and it is independent of the function 7.
We observe that the curl of the Abelian potential
is just the ’t Hooft tensor?:

0A7 8A% _ - 1 S apy o a
o =g =¥ Fu €200, 8)0,487)

=Fp, . (3.22)

In the spirit of our present approach we should
really define the space components of F? by (3.22),
and the components F& by their commutation re-
lations with F{%. In the case where ® commutes |
with all components Fﬁ‘,,, i.e., where it is a sepa-

rate field, we would have the simple equation

E2=%-E;. (3.23)

An alternative way of defining the Abelian loop
is to insert projection operators between all ele-
ments of a non-Abelian loop:

we=1 Trn 1[1+2L%%(x,)]
r
X [1 —igL®Af (x,)dx} ,.,], (3.24)

where x, are a set of points infinitesimally spaced
along the loop, and

Xy i 1= Xpa ) =%y o

The easiest way of proving the equivalence of
(3.24) and (3.21) is to transform to a gauge where
® is in a fixed direction in isospace. With a cer-
tain amount of algebra we can also prove directly
that the two definitions are equivalent.

IV. MAGNETIC LOOP OPERATORS

We now wish to define operators which create
a loop of magnetic instead of electric flux. The
operators must be gauge invariant, since only
such operators are physically meaningful. We
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start with the Abelian magnetic loop, and then
proceed to the definition of the non-Abelian loop.

As ’t Hooft pointed out, what is required is an
operator which is a gauge rotation except on the
loop itself. On going once round the loop, the
total gauge rotation must be 27 (or an odd multiple
thereof).

A. Magnetic loop in an Abelian gauge theory

Before dealing with a non-Abelian theory, it
will be useful to rewrite, in axial gauge, the
fairly standard formula for the construction of
a magnetic flux tube in an Abelian theory. We
shall make the simplification of taking the tube
to be a cylinder whose axis is a straight line in
the x, direction. The radius of the cylinder can

A AR RTTe | 4 e s tae
(4.1)
where
= (2, = Xp0)* + (X5 = % 4)%, (4.2a)
flp)=1, p=0,
flp)=0, p>a. (4.2b)

We can now subtract out the unwanted singularity

~ at the line x,=x,,,x,=x,, by adding a 6-function

contribution to A over a half-plane ending at this
line, the direction of A being perpendicular to
the plane. If we take the x, —x, plane, we obtain

be made arbitrarily small at the end of the cal- A,= lf(p) s -2x 2r S(x, —2x,0)0(x, = %,) ,
culation.® g p g

The following classicalpotentialdistribution gives (4.32)
us the magnetic field we require, together with X —x
an unwanted d-function contribution at the center Ag=—= f( ) —2—20 (4.3b)
of the cylinder which reduces the total flux to o
zero: The operator which creates this potential is

]
Xy _x X, =X,
exp[——fd3 <E (x) f(p) =232 — 27E ,(x)6(x, - x,, )9(x — %) —E (x)f(p)——E————)]. (4.4)

Expression (4.4) is gauge invariant. In the axial gauge we may get rid of the apparent singularity at x,=x,,
by using the formula (2.5). The expression (4.4) then becomes

exp [—— fd“x(E (x)f(p) 0 _ 27E,(x)0(x, — x,,)0(x, —x30)+9(x)h(x))] (4.5a)
where
Ay | _fdxmp"%‘#, P72 = (0, = 20 4 (65 = 350" | (4.5b)

Owing to the singularity of the integrand in (4.5b) at p’ =0, the function % changes its value from —= to 7
as the variable x, —x,, changes sign. Referring to the expression (2.5b) for §, we observe that the third
term has intégral eigenvalues and, as far as this term is concerned, a change of 27 in the function 2
causes no change in (4.5a). On the other hand, the second term in (2.5b), together with the step-function
contribution to %, gives a 6-function contribution to E, from the last term in the exponent of (4.5a). This
contribution just cancels the explicit d-function contribution. .

There remains a singularity in (4.5a) along the line x, =%,5, %, = %,, Since the operator rotates the phase of
charged operators by 27 as we go around this line. This singularity is unimportant for our purposes, since
it causes no ambiguity and the whole operator in any case becomes singular in the limit a - 0. If we wish
we can remove it by applying (4.5a), not to the actual vacuum, but to the vacuum in the presence of the
external potential (4.1).

B. Abelian magnetic loop in a non-Abelian theory

It is now not difficult to generalize this construction to the Abelian loop in the non-Abelian model. The
directions in color space of the operators E have to be specified. As this must be done in a gauge-invariant
manner, we select an operator ® which serves as our reference. The remarks concerning & which we
made when treating the Abelian electric loop apply here too.

We define the gauge-invariant operator
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(4.6)

V being the operator (2.14), taken along the straight-line path linking the points x ,%,, %, and %, ¥,0, ¥ 5.

The expression (4.4) becomes replaced by

M°=exp[—— f d* (E“’(x)f(p)

X4 —x

— 2MER(x)0(x, — x,0)0(x, — x30) — ES(x)f(p) 2 ;2"20)]. 4.7)

Again we can rewrite the expression in the axial-gauge form analogous to (4.5), but the details are slightly
more complicated. We require the operator §%(x ,x,,x,,%}), defined

§ (xv 29 X33 X3) =G (X 5 X5, X ) VEB(X 15 %5y X538 5 X 50 ¥ 30)PE(X 1, X305 X 50 (4.8)

where V is the line integral (2.14), taken along the straight-line path between its arguments. The operator
(4.8) is invariant with respect to transformations in the residual gauge group. We can then replace (4.7)

by the expression

M®=exp [—-2 [ ax (E‘:(x)f(p) %

= 21ES (x)8(x, — %,0)0 (X, — % 55)

_f_:3dx§9°(xl,x2,x3, S)f(p')x — %> )] . (4.9)

As in the Abelian case, we can now show that there is in fact no singular contribution to (4.9) when
%X,=%,,. For this value of x, the dependence on x/ of ¢?® disappears, since the factor V6 in (4.8) becomes
equal to unity. The last term in the exponent of (4.9) thus adopts a form similar to that of the Abelian

case:

i i ~
—E-f d3x9"’(x)h(x2,x3)=—:g— fdsxéa(xl,xzo, 30)<

Again the function 2 changes its value from -7
to m as x,—x,, changes sign, so that the second
term in the large parentheses of (4.10) has a 5-
function contribution which cancels the second
term in the exponent of (4.9).

In the present case, the first term in the large
parentheses of (4.10) gives a nonzero contribution
if oo depends on x,. This contribution appears’
to be multiplied by a step function of x, —x,,; if it
were the operator (4.9) would increase A, by a
step function (v, - x,,), and would thus be singular
at x,=x,,. The step-function contribution is,
however, illusory, as may be seen by writing

1
exp[i(A +B)] =exp <zf dnei”BAe"”B> exp(iB),
0
(4.11)
with

at fau( 2

B=- fdax S (x)h(x,,x,) .

e (% 20:xso>ET(x)h(xz, 3

When % changes from 7 to —7 the effect of the
change of the factors e*'"B in (4. 11) is to rotate
the factor EY in A by 7 about the &~ axis. Since
$eda=1, $*8d2/ox,=0, the effect of this rotation
is to change the sign ofA and thus to compensate
the sign change caused by the factor % itself in

dE¢ dES
axi - —a—é.ygp(x))h(xz,xs). (4.10)
-

A.? We thus conclude that the expression on the
right of (4.9) has no singularity when x,=x,.

As in the Abelian case, we can now conclude
from (4.7) that, apart from a possible singular
contribution when x,=x,,, the operator M® effects
no physical change outside the region f(p) #+0, and
that it is independent of the direction chosen for
the x, axis in the axial gauge. The expression
(4.9) shows that the possible singular contribution
at x,=x,, is in fact absent. V

Thus far we have been considering “loops” which
are straight lines along the x, axis. In the general
case, one can again define the loop operator by
(4.7), but taken with respect to a curvilinear co-
ordinate system. The distance x, is marked off
along the loop, planes of fixed x, are taken per-
pendicular to the loop, and, in each plane, a
rectangular x, —x, coordinate system is taken.
For future reference it is convenient to define
the x, —x, integral in the exponent of (4.7) by the
symbol —(i/g)®%(x,), so that

M"’:exp(--f;fdxloa“(xl)}. (4.12)

We should emphasize that the expression on the
right of (4.12) makes sense only if we integrate x,
over a closed loop (or an infinitely long line).

The arguments following (4.5) or (4.10) could
not be carried through if the x, integral were
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to terminate; an extra singularity would be in-
troduced at the terminating value of x, and all
values of x,. We could have anticipated this re-
striction, since a magnetic flux line of unit strength
can only terminate on a Dirac monopole.

C. Non-Abelian magnetic loop

Though the Abelian magnetic loop operators
do have the properties required by ’t Hooft, they
are not sufficient to construct all operators of the
system. They are equivalent to one rather than
three sets of potentials A, per point. Further-
more, it is known that physical magnetic vor-
tices in non-Abelian theories require two oper-
ators to specify their direction in color space.
The magnetic flux can have any direction rela-
tive to these two operators, and the loop can sup-
port color oscillations. The Abelian magnetic
loops cannot support such oscillations. They are
analogous to the Abelian electric loop operators
discussed in the previous section; what we require
is a magnetic operator analogous to the non-
Abelian Wilson loop operator.

We may express the Wilson operator as a sum
of contributions as follows:

A% i
W= Z H “r'ar+1+ gLar,aNl i (xr)dxr, r+1] .
Qpes esly T

-(4.13)

The coordinates x, and the differentials have the
same meaning as in (3.1). The color spinor in-
dices a, take the values 1,2. Equation (4.13) may
be reexpressed in the form

w= 3. IIw.,.. (4.14a)
1.. .. ,GN r
where
Wab(xr) = %( ap+ 1) exp(ZgLabA § dxr r+1)
+3(8,, - 1) exp(~igLSA%dx} ). (4.14D)
Even before we pass to the limit dx, ,a— 0, each

element W, creates half a unit of flux along the
direction dx, rep- Only in the limit dx, ,op does it
behave correctly under gauge transformations.
We can now construct the magnetic non-Abelian
loop in a similar way. In order to obtain a gauge-
invariant operator, we shall define our coordinate
system internally. We take three operators
<1;‘1", <I;§‘, <I;‘3" of unit color spin; the operators are
normalized and mutually orthogonal in color
space. We then define components g , with respect
to these cases:

B, =®%. (4.15)
Analogously to (4.14), we define

v=3 Ilm,.. &), (4.16)

peecrdy 7

where

i
Mab(xr) = %(aab + L:‘b)exP(E &a, i dxi,r-vl)

idxr.rd) ¢

+%(6ab -L%) exp(— g
' (4.17)

For each combination of subscripts a,,...,a,,

we have a magnetic loop of the form (4.7). At
those junctions of elements dx, ».1 Where the color
direction of the vector E* changes suddenly,

it is implied that this change is smoothed out over
a distance small compared to dx} ...

The expression (4.17) does not satisfy (3.3b)
but, as we have explained, we can now modify the
definition so that it does.

It is certainly not evident that our formulas tend
to a definite limit as the loop becomes infinitely
thin or the segments in (4.17) become infinitely
short (J. Polchinski, private communication). To
obviate this difficulty, we construct our magnetic
variables on a lattice; the thickness of the loops
is of the order of the lattice dimensions. As the
lattice may be made arbitrarily fine and as we
are not attempting to answer dynamical questions,
this is adequate for our purpose.

The expression (4.16) is unaltered if the L%’s
in (4.17) are subjected to an O(3) rotation. In this
way, we obtain a magnetic gauge group, which
must be distinguished from the electric gauge
group. '

We can modify the above definitions slightly
so that two-loop operators (taken at a particular
time) always commute. The product of any num-
ber of loop operators, applied to the vacuum, is
defined with the product of the exponentials in
(4.17) replaced by the exponential of the sum of the
exponents. Having defined such a product, we can
define inductively the state M |n), where |n)
denotes a product of n-loop operators applied to
the vacuum. Two-loop operators so constructed
will obviously commute.

D. Magnetic variables

From our method of constructing the non-
Abelian magnetic loop, it is clear that the re-
lation (3.3) will be satisfied. We can therefore
construct magnetic vector potentials in the same
way as we constructed the electric vector po-
tentials. The loops, or other gauge-invariant
operators, can be constructed from them using
the standard formulas, and the totality of these



operators comprises all the operators of the
theory. However, to write the Hamiltonian in
terms of the magnetic vector potentials would in
practice be very complicated.

It is important to realize that the electric and
magnetic variables are not related by any simple

equation of the form
Forwv_guwop (4.18)

The color indices on the two types of operators
do not correspond. It is true that

1?\0, uv(x)NaE(x’y)i‘B, uv(y)
ziuwaiuv).-ngzo (x)V"‘B(x,y)F,‘}T(y) s

a, po *

(x —y)2~0; no summation over p and v,

where V is defined by (2.14), and N is its mag-
netic counterpart. Unfortunately, we cannot
conclude from (4.19) that the Hamiltonian in the
electric and magnetic variables are the same,
since the Hamiltonian really depends on the terms
of the expressions in (4.8) which are linear in
& -9).

Given any electric operator, one can construct
a corresponding magnetic operator. Analogously
to (3.15), one can define

{\1’ M(x)M}

as the insertion of a factor ‘

(4.20)

\b“(x)fi;"L’
at a point x in the formula (4.16). According to
this prescription, the operator

{8, ,(0), M}, (4.21)

where :f'y is one of the operators used to specify
the internal coordinate system, is defined by
simply inserting a factor L” at the point x.

In our construction of the magnetic loop operator
from electric variables, we began with the Abelian
loop and then proceeded to the non-Abelian loop.
Now that we have defined our magnetic variables,
we should be able to use the analogs of the electric
formulas to reconstruct the magnetic Abelian
loop. Let us construct the Abelian loop associated
with one of the operators 53‘ which we used to
specify our coordinate system. It is easiest to use
the analog of the formula (3.2) and, according to
the prescription just given, the factor 1 v
+2L°‘<f>°‘(x") simply becomes 1+2L”. An insertion
of this factor between each factor of (4.16) leads
us back to our original Abelian loop with & =&, ;
this may most easily be seen by taking y=3, in
which case the factor 1+2L” restricts all sub-
scripts a, to the value 1. According to (4.17),

(4.19)
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i .
Mu(xn) =exp (‘ E_ &3, i dx:r, n+1>

Eexp(—é— &°3dxf,,m). (4.22)
The result then follows from (4.12).

We have seen that the ’t Hooft tensor in the elec-
tric representation can be obtained by taking a
small Abelian electric loop. We could similary
define the space components of a magnetic ’t Hooft
tensor by taking a small magnetic loop. It is
simplest to take the loop in a plane containing the
%, axis. From (4.7), we observe that the only
term in the exponent which survives in the limit
f(p)=0, p+0, is the 6-function term. The mag-
netic ’t Hooft tensor is thus simply

Fip¥=c*$2Eg. (4.23)

Equation (4.22) is only true as it stands if ®¢

is a separate field which commutes with all com-
ponents Fg, since, in the more general case,

Eq. (4.7) itself must be modified. When &¢

is a separate field, we note from (3.2) and (4.22)
that

F?ijM=€ika:3- (4.24)

Hence, while the lack of correspondence between
color indices prevented us from writing down an
equality such as (4.18), we observe that a similar
equality ¢s true for the ’t Hooft tensor. In the
more general case, the two sides of (4.24) may
differ by terms involving the commutator of &
with the gauge fields.

V. PHASES OF NON-ABELIAN GAUGE THEORIES

In this section we wish to use the foregoing anal-
ysis to make certain remarks about the phases of
non-Abelian gauge theories. Four phases may be
distinguished [in the O(3) theory]:

(i) The phase with real massless gluons.

(ii) The phase with partial Higgs symmetry
breaking and a remaining U(1) invariance group.

(iii) The phase with complete Higgs symmetry
breaking.

(iv) The confinement phase.

“To our knowledge it has never been proved that
we cannot have complete Higgs symmetry break-
ing and confinement; we feel that such a phase is
most unlikely and we shall not discuss it further.

We begin by remarking that phases (ii), (iii),
and (iv) cannot be distinguished from phase (i) by
the breaking of a symmetry in the strict sense of
the word. In Abelian or non-Abelian theories we
should not consider local gauge invariance as a
genuine symmetry; in non-Abelian gauge theories
even global gauge invariance should not be so con-
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sidered. The generators G of these transform-
ations [G® = [ dx,dx,G*(x,,x,)], or the quantities
GoGe , are not invariant with respect to gauge
transformations local in x and y, global in z. They
therefore do not correspond to physically observ-
able quantities; their matrix elements between
physical states are not finite. One cannot use the
generators to define quantum numbers. One might
attempt to define color quantum numbers by the
electric flux at large distances from the object in
question, but this quantity, too, is not gauge in-
variant. Non-Abelian theories hereby differ from
Abelian theories, where charge and electric flux
are gauge-invariant operators.

We can also infer in a less formal manner that
global non-Abelian gauge invariance does not con-
stitute a symmetry in the usual sense, since there
exists no phase in which one expects to observe
definite multiplets. In particular, in phase (i), an
arbitrary small disturbance causes the emission
of an infinite number of soft colored gluons, and it
would seem to be impossible to determine the
color of a given object.

Witten? has stressed that we also cannot dis-
tinguish between phases by the nonvanishing of a
vacuum-expectation value. The operator ¢ is
not gauge invariant, and we therefore have to con-
sider an operator such as

B (x)V*E(x, —) , (5.1)

where V is the line integral (2.14), taken along any
path between x and —«. The vacuum-expectation
value of (5.1) is zero even in the Higgs phase,
since the factor V provides a contribution of the
form e-%, with L infinite. In fact, the vanishing

of expection values of axial-gauge ®’s is a parti-
cular case of this effect; the path is then taken to
- along the x, axis.

In Abelian theories without monopoles we can
characterize the Higgs phase by the nonvanishing
of the vacuum-expectation value of the Coulomb-
gauge ®, i.e., of the gauge-invariant operator

<I>(x.)exp<ief d”x'(—x-ﬂé—i(ﬂ) . (5.2)

2" —xI®

In non-Abelian theories the Coulomb-gauge oper-
ators probably have no meaning, and we cannot
construct a gauge-invariant operator from a form-
ula similar to (5.2). In Abelian theories with
monopoles, too, the operator (5.2) has no phys-
ical significance, since one may easily verify that
the total energy which it creates diverges at large
distances. In fact, the Higgs procedure, as mod-
ified by Bardakci and Samuel,? enables us to re-
formulate a non-Abelian theory as an Abelian the-
ory with monopoles; in either case one cannot

distinguish between the phases by the vanishing
or otherwise of vacuum-expectation values.

A. Phase with real massless gluons

Let us now examine the four phases in turn.
Whether phase (i) can exist in a non-Abelian the-
ory and, if so, whether it can be interpreted phys-
ically, are unanswered questions. We suspect
that the answers to both are negative, but the com-
plicated nature of the phase in question has pre-
vented us from obtaining a proof. We know that
Nature does not choose this particular phase; any
theory which may have (i) as the phase of lowest
energy can immediately be rejected on experi-
mental grounds. At the present time it is certain-
ly not known how to construct a trial vacuum state
corresponding to the phase (i) in a non-Abelian
theory whereas, in an Abelian theory, one can
simply take the Coulomb-gauge bare vacuum. One
might remove the infinite energy density order by
order in perturbation theory and hope that the pro-
cedure makes sense in the limit of infinite order,
even if the perturbation series itself diverges. It

. is highly unlikely that this hope would be realized

in an infra-red unstable theory.

We should stress that the above remarks are
meant to apply to the zero-temperature vacuum.
Polyakov and Susskind have suggested that a phase
analogous to (i) may be realized at high temper-
atures. Our arguments have no bearing on the pos-
sible existence of such a phase, whose properties
would be completely different from those of the
zero-temperature phase;

With zero-mass gluons we could construct states
of arbitrary low mass with any color quantum num-
ber, in so far as such a quantum number can be
defined.- We could also construct states of arbit-
rary low mass containing Yang-Wu monopoles in
any combination. Phase (i), if it can exist, thus
appears to be symmetric in charges and mono-
poles though, owing to our lack of understanding
of this phase, we hesitate to make such a state-
ment with certainty.

B. Phase with unbroken U(1) invariance group

Phase (ii) is characterized by the presence of
Abelian massless vector particles, and therefore
by a gauge-invariant conserved charge. The
divergenceless current may be defined as follows:

-

T a ad
jB=Poion
7 jrn 4 o

o

Forwr, (5.3)

where j** is the non-gauge-~invariant color cur-
rent. The total charge associated with this cur-
rent will be



et [ ao,,boFg,, (5.4)

the integral to be taken over a fixed-time closed
surface at large distances from the system in
question. In phase (ii), the vacuum is an eigen-
state of this charge. '

Phase (ii) also has a conserved quantum number
associated with ’t Hooft-Polyakov monopoles. Ara-
fune, Freund, and Goebel?® have shown that this is
simply the number of zeroes in &, a zero at X,
being taken positive or negative according as,
after a continuous transformation, ®*+¥(x)
=31€*¥(x - x,). The number of monopoles is equal
to the integral, over a distant fixed-time surface,
of the magnétic flux associated with the ’t Hooft
tensor

fdc”F,?, , (5.5)

where F® is defined in (3.22).

Though the charge-current density (5.3), and the
positions of the zeroes in ®, are dependent on the
actual choice of &, the total electric charge (5.4)
and magnetic charge (5.5) are independent of this
choice, except for an overall normalization con-
stant. In the absence of any massless particles,
the integrals of any vector or axial-vector field
operator, taken over surfaces distant from any
matter, will vanish. - If there exists a single mass-
less vector particle, as is the case with phase (ii),
the integrals will be proportional to the conserved
(electric or magnetic) charge with which the vec-
tor particle interacts. Apart from the proportion-
ality constant, they will be independent of the pre-
cise vector or axial-vector field operator chosen.
It may, of course, happen that the constant of pro-
portionality is zero.

We have already noted that passage from the
electric to the magnetic variables interchanges
the components FJ} and €/*E? of the ’t Hooft tensor
in the special case where & commutes with all the
fields F§,. In the general case the relation be-
tween the ’t Hooft tensors in the two representa-
tions is more complicated, but it is unlikely that
the constant of proportionality between the fluxes
F{¥ or E{*¥ and the electric or magnetic charges
would be reduced to zero. Hence, when we change
from electric to magnetic variables, the electric
and magnetic charges become interchanged, and
the phase as a whole is symmetric in electric and
magnetic variables.

C. Phases with magnetic or electric confinement

We now turn to the discussion of phases (iii) and
(iv). ’t Hooft'° has shown that, in the absence of
massless particles either the electric loop W or

19 CHARGE-MONOPOLE DUALITY AND THE PHASES OF... 2405

the magnetic loop M must behave like the expon-
ential of the area if the loop becomes large, so
that the phases enumerated above are the only
ones possible (provided we exclude simultaneous
electric and magnetic confinement). We shall ex-
amine phase (iv); owing to the symmetry between
electric and magnetic quantities a precisely anal-
ogous discussion could be made for phase (iii).
We remind the reader that our whole treatment
refers to the case where no actual quark fields

_are present.

The definition of confinement as the absence of
color nonsinglets, while extremely useful intuit-
ively, can certainly not be made precise, since
we cannot make a gauge-invariant definition of a
color singlet. In no phase would we expect to see
color multiplets. We also pointed out that we could
not distinguish between phases by the vanishing or
nonvanishing of vacuum-expectation values. Most
recent work on confinement defines the phase by
one of the three properties:

(a) Ww~e 4 for a large loop,

(b) If two external quark (i.e., color spinor)
sources are introduced, the energy increases lin-
early with their separation, '

(c) The system can support quasistable color
vortices with half a unit of flux [for O(3)]. These
vortices can shrink to a point and then disinte-
grate, or they can form a figure-of-eight and split
into two, but they cannot dissipate their energy by
diffusion.

’t Hooft!° proposed using definitions similar to
(a) or (c) for phase (iii). It was already known
from the work of Nielsen and Olesen that the phase
with complete Higgs symmetry breaking could
support quasistable magnetic vortices with half a
unit of flux,

Our treatment of definition (a) differs slightly
from that of Wilson in that we are examining loops
at a fixed time. Within this framework we wish to
make it plausible that definitions (a) and (b) are
equivalent. Our analysis will indicate how we
might apply the Wilson condition to construct trial
state vectors for confined hadronic states. A very
similar argument could be made for the equiv-
alence of the definitions (a) and (c), the only dif-
ference being that we take a closed loop of flux
instead of a tube stretched between the two quark
sources.

The question to be answered is whether the half
unit of electric flux between the two sources can
lose energy by spreading out. A gauge-invariant
state with the two quark sources could be defined
in the usual way as

Qa Wab{i(xs)}Qb|0>7 (5.6)

where W is the spinor line-integral operator (sim-
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ilar to the Wilson loop before taking the trace),
and X(x;) [=x,(x,), %,(x,)] represents a path between
the two quarks whose coordinates will be taken to
be 0,0,+L.

The state (5.6) has an infinite energy, since the
flux tube stretching between the two quarks has
zero thickness. It is a nontrivial problem to
spread out flux in a non-Abelian gauge theory (or
in an Abelian theory with monopoles). One way
would be to take a functional integration over dif-
ferent paths between the quarks:

J o)} ) @, Walfw)}Q, 10, (5.72)
where
[ agrfe))=1, ~L<x<L, (5.7b)

J

Jasx” [ DR(x,) DR ()1 R () 1/ R () QY W, AR (0,) QM EF (¢ ) PQ W {R(x,) 1@ )

f{R()} - 0%(X), x,—:L. (5.7¢)

Actually, we have simplified the notation in writ-
ing down (5.7), since we should allow paths which
go backwards in the x, direction for part of their
length. We must also allow closed loops of flux
in the integration, without which it would not be
possible to get rid of the divergence in question.
We shall assume that it is possible to define a
state of the form (5.7) with finite energy density
(apart from the vacuum energy density) away from
the quarks themselves.

Now let us investigate the behavior of the energy
as the distance between the quarks is increased.
We are interested in the value of the quantity

(5.8)

J o) IR ()} R Cx,) 1/ ()} Q) W fR7 (1)} Q1 Q. W0 1R(3:)1Q0)

The functional integrand in the denominator of (5.8)
consists of a closed connected or disconnected
Wilson loop, together with insertions @1Q,,Q,Q}
at the quark positions. The numerator also con-
sists of such loops, together with an extra factor
[E¢(x”)E. As the flux is spread out, the behavior
of the function integral will thus depend entirely
on that of large Wilson loops; the extra quark in-
sertions or E? factors will not effect the depend-
ence of such loops on the length or the area.

First, let us suppose that we are in a phase
other than (iv), so that

(Wy=e-t/t, (5.9)

L being the length of the loop and [ its thickness

(after spreading out the flux). If we omit a region
surrounding the quarks in the x” integral and then
scale all dimensions (including the omitted region)

r

in the expression (5.8) by a given factor, the value
of the expression does not change. Hence, by
spreading out the flux as we separate the quarks,
we can prevent the energy from increasing inde-
finitely, and we have no' confinement.
Now let us suppose that

(Wyme-24, (5.10)
As a first orientation, we shall evaluate (5.8) in
lowest-order perturbation theory in the E,’s, but
exactly in the Wilson loop operators. In other )
words, we consider disconnected diagrams in
which each factor E; is paired with one factor A,
from the loops. Furthermore, let us suppose that
one of the A, factors is from the bra, one from
the ket. The contribution of this term to the nu-
merator of (5.8) is as follows:

s [ aser [ o) DR e R AR e - K- e (14 2D PR )

X @} Wt i'(xs)}QIQa W:b{.i(xs)} Q-

The superscript @ on the W’s denote L® insertions
at the point xJ. :

At a particular value xJ; of xJ, the & functions in
(5.11) restrict the Wilson loops to those where
X(xg,) =%'(x4). There is no such restriction in the
denominator of (5.8). In the nonconfinement case
where (5.9) holds, the values of the loop integrals
do not fall off appreciably as X(x2) and X(x}) are

axy oxy

(5.11)

—

separated. The range of integration of X(x7) and
X'(x}), for values of x near xJ,, becomes much
larger in the denominator than in the numerator
as the flux is spread out [f{x}+0 for a large range
of values of x]. The energy per unit length of x,
thus decreases.

If, on the other hand, (W)~e 4, the denominator
receives no appreciable contribution from values



of X(x}) and X'(x}) which are well separated, since
a separation of X(x/) and X’(x”) will increases the
area of the loop. The important range of integra-
tion of X(xJ;) — X’(x2,) in the denominator remains
finite as the flux is spread out, the energy per

- unit length between the quarks does not decrease,
and we have confinement.

In the foregoing argument we have concentrated
on a particular term in the perturbation series.
In general, the x” integrand in (5.8) would differ
appreciably from the vacuum-expectation value
J@3x”({E¢(x”)}?) only if the point x” is near one
or more points X’(x,), x, or X”(x,), x, in the loop.
For large loops, one may distinguish contributions
where the point x” is near at least one point
%'(x;), x5 from the bra and one point X(x,),x, from
the ket, and contributions where x” is near points
from the bra or the ket alone. The argument given
above can be extended to general contributions of
the former type.

If the cluster involving the E’s contains points
exclusively within the bra or the ket, it would ap-
pear that we had confinement independently of the
behavior of (W). According to our scaling argu-
ment, this would mean that we could not remove
the divergence in (5.6) by spreading out the flux
in the manner described. As we have pointed out
above, we may well be able to overcome the dif-
ficulty by extending our functional integral to in-
clude closed loops of flux. Let us assume that we
can do so. If we then scaled all dimensions up-
ward, the Wilson criterion would decrease the ef-
fect of the closed loops, and the energy per unit
length of x, would eventually cease to decrease.
Again, therefore, we would have confinement.

Basically, the closed loops of flux, either in the
ket or bra themselves or in the overlap integral,
prevent a thick flux tube from being a simple clas-
sical superposition of thinner tubes. As long as
the large loops are ineffective we cannot decrease
the energy by spreading out the flux.

If a tube of flux between two distant quarks can-
not lose its energy by spreading out, it follows
that a large closed tube cannot lose its energy by
diffusion. A system in phase (iv) can thus support
closed “strings” of flux, We have already pointed
out that the types of color oscillation modes of the
strings will distinguish between theories with dif-
ferent gauge groups. The situation is precisely
analogous to that of the quasistable closed Nielsen-
Olesen vortices which can be supported by a sys-
tem in phase (iii).

In our entire discussion, we have assumed that
the only way of spreading out flux in a gauge-in-
variant manner is to integrate functionally over
flux lines of different shape. We know of no other
way of spreading out flux in a system where flux

19 CHARGE-MONOPOLE DUALITY AND THE PHASES OF... 2407

is quantized, i.e., a system where we cannot sim-
ply create a flux line of arbitrary strength. In
continuum QED without monopoles, on the other
hand, one can easily spread out flux by integrating
within the exponential,? to obtain a state of the
form

f de*exp(—ief dx"A,.(x))QIO), (5.12)

where 1 is a parameter defining the path P.
Spreading out the flux within the exponential de-
creases the energy independently of the Wilson
criterion. It thus appears that we cannot have con-
finement in continuum QED without monopoles.
This result appears to be in contradiction with
Wilson’s original argument, which indicates that
his criterion would lead to confinement in Abelian
or non-Abelian gauge theories. The only possible
resolution between the contradictory results ap-
pears to be the hypothesis that the Wilson criter-
ion cannot be satisfied in continuum QED without
monopoles.

One might ask which phase the Weinberg-Salam
model chooses. Neither monopoles nor Nielsen-
Olesen vortices are present, and the criteria sug-
gested above would not identify either phases (ii)
or (iii). In fact, there appears to be no obvious
way in which a strongly coupled Weinberg-Salam
model would differ from an ordinary Abelian gauge
theory. )

We should like to suggest that an effect occurs
similar to that in the (2 +1)-dimensional Georgi-
Glashow model, which has been studied by Poly-
akov.?®> Both models possess instantons centered
around a zero in the Higgs field; the classical
Weinberg-Salam instantons are zero-size, finite-
energy objects, but ’t Hooft?® has shown that quan-
tum effects would give them a finite size. In the
Georgi-Glashow model the instantons change the
Higgs phase into a confined phase. In the Wein-
berg-Salam model, too, we would expect the in-
stantons to remove the Higgs effect; as they are
unlikely to bring back the massless gluons, the
only possibility is, again, a confined phase. [In
the actual weak-coupled Weinberg-Salam model
such instanton effects, dependent on exp(-1/g2),
would give a confinement distance several orders
of magnitude greater than the radius of the univ-
erse.] The Weinberg-Salam model possesses
quark fields, and the confined phase thereof falls
outside the scope of the present paper; as Suss-
kind?” and others have emphasized, we should rot
expect the Wilson criterion to hold.

We may note that Fradkin and Shenker,?® working
from a result of Seiler and Osterwalder,?® have
suggested on entirely different grounds that a



2408 S. MANDELSTAM ' 19

Weinberg-Salam lattice model may confine for
certain ranges of the parameters.

We conclude with a brief note on the possible
construction of a vacuum in phase (iv) from a vac-
uum in another phase. An ordinary superconduct-
ing vacuum is distinguished from a normal vacuum
by the property

($)+0 (superconducting), (5.13a)

(5.13Db)

A superconducting vacuum can then be constructed
from a normal vacuum by forming a coherent
plasma of charged objects. ’t Hooft has emphas-
ized the analogy between (5.13) and the properties

(M)=~e-t (phase iv) (5.14a)
(M)=e ™ (phase iii). (5.14b)

For large loops, the behavior e-Z would be expec-
ted if there were no special properties which
caused the expectation value to vanish. ’t Hooft'°
therefore suggested that e"X and e4 in (5.14)
should be associated with a nonvanishing or a van-
ishing expectation value, respectively, in (5.13).
It would then follow that, if we were given a vac-
uum in phase (iv), we could construct a confine-
ment vacuum by forming a coherent phasma of
Nielsen-Olesen vortices.

The problem which actually faces us in non-Ab-
elian gauge theories is to construct a confinement
vacuum from a vacuum in phase (i). More pre-
cisely, we wish to construct a vacuum with finite
energy density (apart from ultraviolet divergences)
and to prove that it is in phase (iv). Since the
vacuum from which we start already satisfies the
condition (5.14a), we would not expect to obtain a
confinement vacuum by forming a plasma of Niel-
sen-Olesen vortices.

Our initial vacuum does not satisfy the condition
(2.10); in fact, our whole problem is to construct
a vacuum which does satisfy this criterion, or,
more precisely, the stronger criterion (2.8). We
have emphasized throughout this paper that the
condition (2.10) implies that physical quantities
must be invariant under the residual gauge group.
Until we have a vacuum which satisfies this criter-

(»)=0 (normal).

ion it will be necessary to introduce non-gauge-
invariant quantities, such as creation operators

Q for Wu-Yang monopoles. We should then expect
that

(©)+#0 (phase iv),
@)=0 (phase i),

(5.15a)
(5.15b)

though we emphasize again that (5.15) cannot be
regarded as a precise statement, © not being
gauge invariant. For non-Abelian gauge theories,
(5.13) is a similar imprecise statement; neverthe-
less, we can construct a superconducting vacuum
by forming a plasma of charged objects. It may
therefore be possible to construct a confinement
vacuum by taking a plasma of Wu-Yang monopoles.
In a later paper we hope to show that the finite-
energy criterion (2.8) can be satisfied in such a
vacuum,

In the interior of the Nielsen-Olesen vortices
the vacuum-expectation value of ¢, and therefore
the density of the coherent plasma of charged ob-
jects, falls to zero. As Nielsen and Olesen
stressed, their vortices were the analog of Lan-
dau-Ginsburg vortices in type-II superconductors,
namely a normal (non-Higgs) phase within the vor-
tex and a superconducting (Higgs) phase outside.
By the electric-magnetic analogy, the vortices
of electric flux may be viewed as a region of non-
confining phase where the density of Wu-Yang
monopoles falls to zero. Depending on whether
we have a flux tube between quarks or a closed
vortex, the nonconfining region will or will not
contain quarks. If the angular momentum of the

vortex is high, the contrifugal force will cause

the length of the vortex to be much greater than
its thickness but, for low-angular-momentum
states, the vortex structure may be lost, and we
may have an object more like the MIT bag.
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