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Unstable-particle scattering and an analytic quasi-unitary isobar model
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An explicit model is constructed for the scattering of unstable particles such as pm —+pm, K*m. -~K*~,
and pK~pK. It has correct analyticity properties and satisfies quasi-two-body unitarity. The essential

ingredient of the approach is a Chew-Mandelstam function for unstable particles in which the particle-

resoriance branch cuts are located in second Riemann sheets of the three-particle complex energy plane. The
model shall be applied in future studies of final states such as pm, K~+, and pK.

I. INTRODUCTION

High-quality data are accumulating on hadronic
processes in which the final state includes unstable
particles. Examples are the pw, E*~, pZ, and

+E systems produced in diffractive reactions. The
experimental analysis' of such final states is often
based on the isobar model. In previous work, ' we
developed a unitarized Deck model, or a Deck
model corrected with f inal-state interactions to
study the pm and the K*v/pK systems produced in
diffractive, collisions. The treatment of final-state
interactions requires a unitary description of,
e.g. , the pm- pw scattering amplitude. We con-
structed this amplitude based on a E-matrix para-
metrization, treating the resonances (p and K~) as
stable. While appealing in various respects, this
"unitary isobar model. " is seriously deficient in
that finite widths of resonances are ignored. Sharp
threshold effects, including cusps, are manifest
in our theoretical amplitudes, whereas in nature
they are softened and smeared out by the effects
of finite widths.

To avoid the pitfalls of the isobar model, one
may follow one of the many three-body approaches
which have been proposed and exploited. ' ' In
practice, however, all require some approxima-
tions before becoming tractable. Some also suffer
from being heuristic relativistic extensions of the
nonrelativistic Faddeev equation (even though the
physical meaning of this procedure is understood
to some extent). "' More important is the fact that
the three-body approach involves the solution of
complicated integral equations. Results may easily
be obscured by technical difficulties associated
with resolving the equations. For phenomenologi-
cal fits to data, it is also cumbersome to deal with
solutions of integral equations; analytic expres-
sions are more desirable.

We are motivated to consider that, at least to
first approximation„pg scattering is the scatter-
ing of a quasi-two-body system. This is in the
spirit of the quark model in which the p is a qq

bound state which becomes unstable only because
of its coupling to less massive states. Within this
context, we must devise a technique which permits
the inclusion of the finite width of the p, but never-
theless retains tne quasi-two-body (isobar} struc-
ture of the amplitudes.

In this paper we present a simple method for
treating particle-resonance scattering. It com-
bines the simplicity of our previous two-body
coupled-channel approach, together with the proper
analytic structure of the amplitudes: viz. , a right-
hand unitarity cut starting at the stable-particle
threshold [s = 9m, ' not s = (m, + m, )'], and a par-
ticle-resonance branch cut lying in the second
sheet. The desired smearing effect due to finite
resonance widths is obtained. The method consists
essentially of constructing Chew-Mandelstam func-
tions" for unstable-particle scattering.

In Sec. II, we summarize our E-matrix approach
for coupled-channel scattering. In Sec. GI, we
present a derivation of Chew-Mandelstam functions
for unstable-particle systems. The properties of
these functions and their physical meaning are-
discussed in Sec. IV. In Sec. V, we present what
may be termed an analytic quasiunitary isobar
model. Concluding remarks are provided in Sec.
VI. A technical treatment of final-state interac-
tions is included in an Appendix.

H. K-MATRIX PARAMETRIZATION OF

COUPLEDWHANNEL SCATTERING

We shall employ the standard X-matrix formal-
ism to obtain a unitary parametrization of the g x g
partial-wave T matrix for n two-body channels,
with proper analyticity properties, The diagonal
phase-space matrix is denoted by p(s), with ele-
ments

2gg
P)y(s) = 6)~ ~ 8(s —s)) .

,vs
Here s, is the physical threshold for channel i (i
=1, . . ., n}, and q, is the center-of-mass momen-
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Here m and p, are the two masses of channel j. For
historical reasons, we term C,(s) the Chew-Man-
delstam (CM) function.

Introducing a matrix K(s) which is meromorphic
in s, we construct a unitary analytic partial-wave
T(s} matrix as follows:

T(s) = [1 -K(s)C(s)] 'K(s).

The 5 matrix is

1+ 2~p&/2'&/2

and the operator S which appears in the Hilbert
problem of final-state interactions, or the uni-
tarity relation, " is

S= (1 -XC') '(1 -AC ),

(4)

where C' and C are the values of C(s) above and
below its cut. The unitarity relation is

T'= ST .

III. CHEW-MANDELSTAM FUNCTION FOR
PARTICLE-RESONANCE SCATTERING

In many instances it is of practical interest to
investigate the scattering of unstable particles,
such as pm-pg, K*~-K*m, and pK- pK. This is
done, for example, in the isobar model used in
the analysis of multiparticle final states. If the
resonances are treated as stable particles, and
the formalism of Sec. II is employed, the unitarity
discontinuities begin on the real axis. Consequent-
ly, threshold effects are more abrupt (e.g. , sharp
eusps at the opening of inelastic channels) than in
the true physical situation where the finite width
of the resonance softens the singularity.

In a genuine three-body (or multibody) ap-
proach, ' ' these difficulties do not arise. How-

turn in channel f. A diagonal matrix C(s) is intro-
duced whose elements are analytic in s except for
right-hand (elastic) branch cuts across which the
discontinuities are provided by

ImC(s) = p(s) . (2)

For convenience, we choose to define C(s) with a
subtraction at s= 0: C(0) = 0. The elements of C(s)
have the form C,&

= C,(s) 5&&, with

C,(s) -=C(s;m, p)

= —— ——[(m+ p)' —s]'~'[(m —p)' —s]""
S

I [(m+ p)' —s]'~'+ [(m —p}' —s]'~'
2(my)'~'

m'- p' m m'+p' m 1
2s p, 2(m' —p') p, 2

FIG. 1. Feynman graph representing the Chew-Man-
delstam function for the scattering of stable particles
with masses m and p, .

ever, whether approximate or rigorous, the three-
body approach requires solving integral equations,
a technically complicated and time-consuming
taSk, especially when one is attempting to vary
parameters to obtain a fit to data.

To circumvent both of these difficulties, and to
retain the concept that particle-resonance scatter-
ing is approximately a quasi-two-body process,
but with the two-body discontinuity beginning in
the second Riemann sheet of the three-body com-
plex energy plane, we introduce new Chew-Man-
delstam functions for unstable particles.

The standard CM functions may be represented
by the Feynman loop graph of Fig. 1, where I' is
a momentum flow (I"=s). Assuming that there is
no momentum dependence in the vertices and mak-
ing a subtraction at s = 0, we derive (up to factors
of m)

d4u 1 1
k2 2 (~ k)2 2 k2 2

(8)

If one of the particles is unstable, we may follow
the example of the 0 model, "and replace the stable
(or "bare") propagator for this particle by the
dressed propagator

1 1 1
k' m' k' —m'+ f'Z(k') d(k')

Here f denotes a coupling strength, and Z(k') is
the mass operator. We assume that m' a,nd f'
are such that Eg. (9}has a pole in the complex
plane (not on the real axiS) at the resonance posi-
tion m*= mz-il /2. The function Z(k') has a
right-hand cut starting at k'= (m, + m, )', where m,
and m, are the masses of the particles into which
the resonance decays. We therefore define an un-
stable-particle Chew-Mandelstam function

d'k
k f Z(k )

This function is represented in Fig. 2. Equation
(10) may be transformed readily into a one-dimen-
siona1. integral if we use a dispersion relation for
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pÃ*), it is easy to generalize Ell. (12), and a
double integral results.

FIG. 2. Feynman graph representing the Chew-Man-
delstam function for the scattering of a stable particle
with mass p from a resonance system of mass m*.

d '(k')

1 1 " f' ImZ(s')
k' —m'+ f'Z(k') v &&,„&2 I

s' —m'+ f'Z(s') I'

ds'
y2 I '

We obtain

1 ",f'ImZ(s')
C(s;m. , (x,)=- J

ds'
[d( f)

1 2

x C(s; v s', ll,) .
Note that C(s) is a superposition of "stable-par-
ticle" CM functions C(s; m, p, ) with weights (f '/
v) ImZ(m )/~d(m') ~'. A similar idea is suggested
in Ref. 5 in a somewhat more sophisticated con-
text.

We conclude this section with three comments:
(i) In the limit of a very narrow resonance, i.e. ,

F/m «1, or f'-0, the weight

(12)

f' ImZ(s') 5(, ,
)

11' Id(S') I

{s

{m(+m~& p, )

l

{m~+p, )

and the usual- stable-particle CM formula is recov-
ered from Eq. (12).

(ii) Pinching arguments may be used to show that
C(s; m~, tl) is analytic in the complex s plane ex-
cept for a three-body discontinuity from s = (m,
+m, + tx)' to infinity. There is also a particle res-
onance cut on the second-sheet, from s=(ms-iI'/
2+ p,)' to ~. This structure is depicted in Fig. 3.
For unstable-particle. scattering, the function C
is therefore a simple and appealing alternative to
the stable-particle CM function. It has the desired
analyticity properties.

(iii) When both particles are unstable (e.g. , pro,

IV. EXPLICIT C FUNCTIONS INVOLVING

THE p AND THEE*

We provide parametrizations for the propagators
d '(s) for the p and the Z* in order to give a prac-
tical illustration of the above formalism and be-
cause we shall use the resulting C functions in sub-
sequent papers.

We work in the elastic approximation. A good
parametrization for the p propagator is

(14)dp(S) = S —m, '+ f1'(S —4m, ') C(S;m„xxx,),
with m, '= 0.575 GeV' and f, '= 0.196. These pro-
vide a resonance pole at m, = 0.77 GeV, with I",
= 0.14 GeV. Similarly, we write

d„~(s) = s —m, '+f,'[s —(m»+ m,)'] C(s; m», m, ),
(15)

with m, '= 0.817 GeV' and f,'= 0.181. These pro-
vide a pole at m~~=0. 89 GeV, with 1~~=0.05 GeV.

Owing to the centrifugal barrier threshold fac-
tors (s —4m, ') and [s -(m»+m, )'] in Eqs. (14}and

(15}, the term ImZ(s') in Exl. (12) grows linearly
with s' at infinity. This causes no problem since
the function C(s;m, p, ) behaves as m ' for fixed s
and p, as m-~; the integral in Ell. (12) is conver-
gent. For higher partial waves (I ~ 2), however,
form factors of the type [(s —s,~)/(s+ s,)]' must
be introduced; these act as natural cutoffs and
provide extra parameters enabling one to repre-
sent the phase shifts more accurately over a larger
energy interval. For our P wave situatio-ns (p,
Z*), adding a cutoff does not change any results
appreciably,

In constructing the above "propagators" for the

p and K*, we have relied on the fact that ihe P
wave I = 1 vv and I = 1/2 Kv amplitudes are fitted
to very good accuracy by simple one-pole formu-
las such as'

tXslal(S} f1 ( (16)
d,(s)

The fact that a propagator d, '(s) can be construc-
ted which has precisely the I = /= 1 phase is nec-
essary for the consistency and unitarity properties
of the isobar model. In this respect it is impor-
tant that many hadron-hadron amplitudes at low

energy (except, perhaps S waves) are dominated
by a small number of relatively narrow reso-
nances. We remark that our propagators should
be regarded as practical approximations to the
Qmnes function. " For example,

H:G. 3. Singularity structo. re of C (s;m*, p).
-s ~ ~ 5x la(s~)ds

d,(s) = X exp:
V i4 2 S(S —S

mg

(17)
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same procedure used in Sec. II for the stable-par-
ticle situation. We introduce a matrix L(s) anal-
ogous to C(s) of Eqs. (2) and (3), except that we
replace the usual CM function by its generaliza-
tion, Eq. (12), whenever channel involves an un-
stable particle U. sing a meromorphic matrix K(s),
we again form an amplitude

T(s)= [1 -K(s)C(s)] 'K(s). (19)

The matrix T(s) depends only on the total invari-
ant energy variable s; it does not depend on the
subenergies. It expresses the entire s behavior
of the final amplitude.

We now construct the full amplitude for specific
stable decay products of the isobars. It is ob-
tained upon multiplying the appropriate element of
T by the corresponding isobar propagators and
their couplings to the decay particles. We use a
to label the initial-state isobar in channel i, and

P for the final-state isobar in channel j. Their
propagators are d„'(s„) and dz '(s,',), and their
couplings are f, and f&. We obtain

f (s~2) - f (s,'2)
T)g(s» sg2~ san}= d ( )

T)~(s) d ( I )
. (2o)

O Sge p S~2

FIG. 4. The function C~ (g) (solid line) is compared
with the stable particle Chew-Mandelstam function
(dashed line): (a) real parts, (b) imaginary parts.

where A. is a normalization constant such that Eq.
(13}holds in the limit of a narrow resonance. The
normalization condition fixing X can be written
more generally as

1 '" -Imd(s')
(16)

v ., 2 Id,(s') I'

In order to illustrate the softening or smearing
effect of our procedure, we compare the function
C„(s) from Eq. (12) with the Chew-Mandelstam
function obtained if the p is treated as stable. This
comparison is presented in Fig. 4; the smearing
effect is obvious. The imaginary part ImC(s} rep-
resents the "smeared" phase-space factor 2q/v s
which enters in the specification of unstable-parti-
cle cross sections. We may make restricted se-
lections ("cuts") in the vv or Kv mass and evaluate
the phase-space factor which results from an in-
tegral of ImC over a limited s' region in Eq. (12}
about the resonance peak. This is analogous to the
procedure followed experimentally.

V. ANALYTIC, QUASIUNITARY ISOBAR MODEL

A. Skeleton amplitudes and full amplitudes

An isobar or skeleton amplitude for particle
resonance scattering may be constructed by the

The scattering process is sketched in Fig. 5. We
have assumed for simplicity that we are dealing
with nonidentical particles, and only with orbital
S-wave states in the system s.

In Eq. (20), we separate completely the depen-
dence on subenergies from the dependence on the
total energy. Since the propagators d '(s) have
the correct analytic structure and proper phase
of the corresponding decay amplitude, Eq. (20) en-
sures that T,&satisfies the. correct discontinuity
relation in the subenergies sg, and s,',.

B. Unitarity and analyticity properties

= 2i TdQT~, (21)

where J dQ represents the integration over all
intermediate variables. However, owing to the
definition of our functions C(s; m*, p, ) of Sec. III,
it is apparent that all the quasi-two-body unitarity
contributions represented in Fig. 6(a) are included.
Omitted are the rearrangement contributions of
Fig. 6(b}. In this sense, our full amplitude satis-
fies only quasi-two-body unitarity in the spirit of

As constructed, our matrix T(s) possesses prop-
er analytic structure in the complex s plane, in
the sense that the particle-resonance scattering
cuts lie in second sheets. Our full amplitude
T(s, s„,s~), Eq. (20), does not exactly satisfy the
full three-body (or n-body} unitarity relation

kT = T(s+iv. , s~, s~) —T(s ls, s~, sg)—



19 UNSTABLE-PARTICLE SCATTERING AND AN ANALYTIC. . .
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FIG. 7. Particle-resonance (7t-p) rescattering series.

FIG. 5. Diagram representing our full isobar ampli-
tude.

the isobar model.
Various arguments suggest that the missing uni-

tarity contributions of Fig. 6(b) play a minor role
and can safely be neglected. First, it is borne
out in many calculations"'&' that, provided the
resonances are not dynamical effects, but, rather,
are "elementary" objects (as in the quark model)
which are unstable because of their coupling to
less massive states, the rearrangement effect of
Fig. 6(b) or, equivalently, the rescattering series
of Fig. 7 contributes only in a negligible way to
the ful. l three-body amplitude. Second, we are
aware that the analytic structure in s of our full
amplitude is incomplete in that, for example, the
Peierls singularities" are absent. These singu-
larities are present in the series of Fig. 7, or al-
ternatively, in diagrams of the type represented
in Fig. 8, and are found at positive values of Res.
However, they lie on Riemann sheets which are
distant from the physical region. '&" While they
have an influence on the structure of Dalitz plots, "
these singularities contribute smoothly, if at all
significantly, to the behavior of the full amplitude
as a function of s. Finally, insofar as s behavior
is concerned, which is our main point of interest,

we can simulate the effect of these various smooth
contributions by the appropriate use of parameters
in the K matrix.

VI. CONCLUSIONS

By introducing and employing our unstable-par-
ticle Chew-Mandelstam functions C(s; m*, p,), we
have simplified the problem of constructing a uni-
tary, analytic isobar model. . One price is our
simplification of the subenergy dependence of the
amplitude, although ours is reasonable. Since
most two-body amplitudes (except for S waves)
are dominated by relatively narrow resonances
(poles), we treat a genuine three-body problem in

a way which is perhaps no more approximate than
many integral-equation appr oacbes.

While our method is appealing for treatment of
the scattering of relatively narrow resonances,
we do not have a prescription for broad two-body
S-wave states, such as the e (vv) or ~ (Kv), which
cannot be treated as pole dominated. An idea
which comes to mind is the use of Omnes functions
such as Eq. (1V) for the propagators. The method
of Secs. III, IV, and V could be foll.owed. Unfor-
tunately, the "couplings" f (s») of Eq. (2Q) do not
then have a clear meaning. The problem of broad
states requires more careful investigation.

The three-body problem may be considered as
a coupled-channel problem involving a continuous
infinity of channels. In comparisons with the
three-body N/D equations of Mandelstam, ' our
method consists of truncating the set of interme-
diate states in the full unitarity relation, and

thereby simplifying the phase-space integrations.
It is possible that a scheme similar to ours could
be set up with coupled N/D equations. '"' Although

.we have not done this, we believe the N/D method
involves more integrals than the K-matrix ap-
proach and, therefore, would be more complicated
technically for fits to data.

The principal domain of application of the present
technique will be our continuing study' of the pro-
duction and decay systematics of axial-vector me-

(b)

FIG. 6. (a) The unitarity contributions included in our
full isobar amplitude. (b) Unitarity contributions which
are missing.

FIG. 8. Feynman graph similar to that in Fig. 2 but
which contains Peierls singularities.
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sons (A„Q, . . .), and of other systems produced in
"diffractive" processes. The smearing effect and
correct analyticity structure of the C(s; m~, y)
functions is of critical practical importance in the
Q-meson system, where the pK threshold occurs
in the center of the large enhancement in the K*g
mass distr ibution.
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trix h for the poles

S, = 5, l(s, —s).
The matrix Z is therefore expressed as

z= gag~,

where g' is the transpose of g. Setting

and defining

D(s) =(1-ZC) 'gh,

(A2)

(AS)

(A4)

APPENDIX: FINAL-STATE INTERACTIONS

Our treatment of final. -state interactions is pre-
sented in detail elsewhere. "" In. this Appendix we
elaborate on some technical aspects which are of
practical interest and which will be used in future
work. "

The matrix D(s), which is the basic tool in the
final-state interaction problem, is constructed
as"

we may show that the determinant of D(s) has no
zeros at s= s,. The columns of D(s) behave as s '
as s-~. Therefore, if the Muskhelishvili indices
are all equal. to 1, Eg. (A5) is the proper D ma-
trix. For completeness, we should search for
zeros and/or poles of Det(D) for negative s (left-
hand singularities), but even if present they will
not affect results significantly if they are suffi-
ciently distant.

Under these conditions,

D(s) =(1-ZC)-'ft, (Al) (A8)

where E and C are the functions defined in Sec. II,
and A is a meromorphic matrix chosen so that
Det[D(s)] has neither poles nor zeros on the en-
tire first sheet of the complex s plane. In dealing
with unstable particles, we replace C by C, de-
fined in Sec. III. In Ref. 11 a general method was
presented for constructing A. Here we provide
an explicit algebraic procedure which, although
not general, turns out to be useful in practical nu-
merical work.

We consider n coupled channels and a K matrix
with g poles. We introduce a matrix g of the cou-
pling constants g,.&, of rank n, and a diagonal ma-

and

r~-'= -g'ImC. (A7)

If we choose to add a regular contribution to the E
matrix (a constant background, for example),

a=gag '+ e, (A8)

lmD-' = -(g '+ ~"g-'e) rmc. (A10)

then B retains the same form, and we obtain

D= [a 'g'-(g'+a 'g'8)C] ' (A9)
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*Permanent address: Laboratoire de Physique Theor-
ique et Hautes Energies, Universite Pierre et Marie
Curie, Tour 16, 1 etage, 4 Place Jussieu 75230 Paris,
France; Laboratoire associe au CNRS.

~Yu. M. Antipov et al. , Nucl. Phys. B63, 141 (1973); ibid.
B63, 153 (1973); G. Ascoli et al. , Phys. Hev. Lett. 33,
610 (1974); G. W. Brandenburg et al, , ibid. 36, 703
(1976); further references in all of these papers.

~J. L. Basdevant and E. L. Berger, Phys. Bev. Lett. 37,
977 (1976); Phys. Rev. D 16, 657 (1977); Phys. Bev.
Lett. 40, 994 {1978).

3I. J. R. Aitchison, J. Phys. G 3, 121 (1977);I.J. R.
Aitchison and R. J. A. Golding, ibid. 4, 43 (1978); Phys.
Lett. 59B, 288 (1975), and further references therein.

4H. S. Longacre and H. Aaron, Phys. Rev. .Lett. 38, 1509
(1977), and further references therein,

~D. D. Brayshaw, Phys. Hev. D 18, 2638 (1978), and fur-
ther references therein.

6V. A. Alessandrini and R. L. Omnes, Phys. Rev. 139,

B167 (1965); R. Blankenbecler and R. Sugar, ibid. 142,
1051 (1966); D. Z. Freedman, C. Lovelace, and J. M.
Namyslowski, Nuovo Cimento 43, 258 (1966).

7S. Mandelstam, Phys. Hev. 140, B375 (1965).
G. Mennessier, J. -Y. Pasquier, and B,. Pasquier, Phys.
Bev. D 6, 1351 (1972).

9J. -L. Basdevant and B. L. Omes, Phys. Bev. Lett. 17,
775 (1966).
G. F. Chew and S. Mandelstam, Phys. Bev. 119, 467
(1960); B.W. Lee, ibid. 120, 325 (1960).

~~O. Babelon et a/. , Nucl. Phys. B113, 445 (1976); B114,
252 {1976).
M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705
(1960); B.W. Lee, Nucl. Phys. B9, 649 (196+9; J. -L.
Basdevant and B.W. Lee, Phys. Bev. D 2, 1680 {1970);

~3J. L. Basdevant, C. D. Froggatt, and J. L. Petersen,
Nucl. Phys. B72, 413 (1974); J. L. Basdevant, P. Cha-
pelle, C. Lopez, and M. Sigelle, ibid. B98, 285 (1975).
B.Omes, Nuovo Cimento 8, 316 (1958); and in High



UNSTABLE-PARTICLE SCATTERING AND AN A, NALYTIC. . .

Energy Physics, 1965 Les Houches Lectures, edited by
C. DeWitt and M. Jacob (Gordon and Breach, New York,
1965), p. 89.

~~R. E. Peierls, Phys. Rev. Lett. 6, 641 (1961); 12, 50
(1964).

~ B. Hwa, Phys. Bev. 130, 2580 (1963); C. .Goebel, Phys.
Rev. Lett. 13, 143 (1964); G. Wanders, Helv. Phys.

Acta 38, 142 (1965).
VC. Schmid, Phys. Rev. 154, 1363 (1967).
J.B301ken, Phys. Rev. 'Lett. 4, 473 (1960); J.D. B3or-
ken and M. Nauenberg, Phys. Rev. 121, 1250 (1961).

~~J. -L. Basdevant and E. L. Berger, following paper,
Phys. H,ev. D 19, 246 (1979).


