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Action-principle quantization of the antisymmetric tensor field
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It is shown that the quantization of the antisymmetric tensor gauge field can readily be effected by
straightforward application of the action principle. In particular, the correct. number of constraint equations
is found for both the massive and massless cases. When a coupling to the Maxwell field is included the two
polarization states of the latter are seen to combine with the one degree of freedom of the antisymmetric
tensor to yield a massive vector field.

I. INTRODUCTION ys t ~ v I/aep'
6 PPQ (2.1)

As a result of its applicability to dual-resonance
models, the antisymmetri. c gauge field ha, s been
the object of considerable study. ' One of the most
elaborate works in this area has been that of Kaul, '
who uses the Dira, c method for its quantization.
Because of the lengthy and seemingly unphysical
calculations required by that treatment, it appears
desirable to offer a more elementary and straight-
forward approach to the problem. In this work
such a simplification of the quantization problem
is presented using the action principle of Schwing-
er. '

In the following section the Lagrangian and field
va, riables a,re introduced for the case of a, massive
antisymmetric tensor field. Although this is not
of direct interest to dual-resonance theory, there
is considerable value in a comparison between the
constraint problems for the massive and massless
cases. Section III presents the corresponding re-
sults for the massless field while Sec. IV goes on
to consider the case in which the coupling term
consists of a linear gauge-invariant interaction
with the Maxwell field. 'The linear equations de-
scribing the latter system are soluble, and by
making use of this, a direct demonstration is
given of the fact that the transverse polarizations
of the Maxwell field and the longitudinal polariz-
ation of the tensor field combine to yield a, vector
field whose mass is the coupling constant between
the two fields.

II. THE MASSIVE CASE

In consequence of this fact, the formulation to be
presented here will deal exclusively with P, with
the reader able via (2.1) to rewrite all results in
terms of I""" . The Lagrangian of such a system
is

f V +

where J" represents a coupling term which may be
either classi. cal or quantized. The equations of
motion which follow from (2.2) are

= se"" 8aA„„+J
qopasg p ~2Aor O

or in second-order form

(2.3)

(2.4)

( Qs+ ~2)AQv (eve APol QPS Alice) ~vPcceg
e g

Although (2.4) immediately allows one to con-
clude that ~~A""= 0 and consequently that

( Qs + +2) AvvgllPRB 8e

the principal concern here is the demonstration of
the existence of the correct number of constraint
equations. To this end, one notes that (2.3) implies
that Q' is given in terms of A» as

&' = -~"t»'t Ass+ J'
or upon defining the vector

1g&=—2go~A

one' has
The antisymmetric tensor field of dual-resonance

models is described by A. "=-&" and the field
E"" which has the property of being totally anti-
symmetric. Thus one makes use of the well-known
result that E"" is equivalent to a single vector,

g'= -& 'a+So

Similarly from (2.4) there follows

A'" = —,(0 xy)„ (2.6)
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which shows that A. ' is a set of dependent vari-
ables. The remaining six equations in (2.3) and
(2.4) contain explicit time derivatives and one
consequently infers that of the ten original vari-
ables (A"" and P ) there remain six independent
components (conveniently taken to be Q; and a, )
appropriate to the description of a spin-one field.

Quantization is now simply carried out by noting
that the generator of variations in the field vari-
ables is

G =-,' 5a- a'6 do.
I

Upon using the fact that

[X,G]=Bi5X

for all field variables g, there thus follows the
only nonvanishing equal-time commutator among
the unconstrained variables Q and a:

[a,(x), P~(x')] =i5„5(x—x').

Together with (2.6) and the relation

so that of the original three components of $ only

one, na,mely the longitudinal pa, rt, can be nonzero.
At this point it is necessary to invoke the gauge

invariance of the theory under the transformation

gPV QP V gif pe gVpg (3.5)

For the case in which p. and v are both spatial
indices, (3.5) implies

a- a+ 0&1,
so that with the usual splitting into transverse and
longitudinal parts one can adopt the gauge

a, =0 (3.6)

by the choice

A~= —,Vxa
V

With this step the original ten variables have been
reduced to five, namely a~ (one), P~ (one), and
A'" (three). However, (3.5) for the field variables
&'~ further allows the selection of A' such that

0 f+ lid

thi's implies that

[s,a, (x), a~(x')] = -i5,.~5(x —x')

gok
L

Finally, one notes that (3.1) yields

f g Ok
AT ~tJk j T +~T

(3.7)

III. THE MASSLESS LIMIT

'The massless version of the Lagrangian equa-

tions i.s

yB I~vvaBs A +gB

&vvnBS y p

(3.1)

(3.2)

From (3.1) there follows immediately the single
constraint

P'=-& 'a+J',
while (3.2) implies

0.xp =p.

(3.3).

(3.4)

Upon making the decomposition into transverse
and longitudinal parts

0 =$r+4i,
one sees that (3.4) implies

for the case that Z, (x) commutes with a&(x). One
thus recognizes that the present formulation is
equivalent to a massive vector meson whose
quantization has been carried out here as a trivial
application of the action principle. In the following
section the somewhat more subtle case of the
massless field is examined.

or

ABrB= —,(0x J)„. (3.8)

The specification of A'~ in terms of J by means
of Eqs. (3.7) and (3.8) completes the task of re-
ducing the ten variables A"" and QB to the two

($~ and a~) necessary to describe a, scalar parti-
cle. The generator C consequently becomes

C —g L 5aL —aL 5 L do'

from which there follows the structure of the non-

vanishing commutator

[a&(x), QJ(x')] =i ', ~ 5(x —x') .

Thus one has precisely the reverse of the usual
vector field situation in which the limit of vanish-
ing mass leaves nontrivial transverse polariza-
tions rather than the longitudinal mode which
survives in the present case.

IV. COUPLING TO THE MAXWELL FIELD

An interesting example of a possible coupling of
the antisymmetric tensor gauge field is obtained
by the inclusion of a linear interaction with the
electromagnetic field. ' As the coupling to the
latter must be by means of a conserved current,
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one finds that the appropriate Lagrangian is constraint

&E»»E 2E-""(a+A„—s„A+)

(4.1)

which expresses A' nonlocally in terms of F~~.
The gauge function A' again allows the choice

From (4.1) there follow the equations

$[] Lg (& v()&8 s
cg gv 9

8 ((t)„+gA„)—s„g)„+gA„) =0,
(4 2)

(4.3)

while (4.2) implies

&'r = & va'8'r'

or
E""= & Av 8"A

[t+&&v

(4.4)

(4.5)

V a

while (4.3) yields

Ox (y+gg) =0

(4.6)

which will be used to reduce the 20 components
A; P ", E"", and A'" to the six appropriate to a
massive vector field.

As before one infers from (4.2) that

Aor~ = —,g(0 x g r)„.g2
One thus has a complete set of 14 constraints
which reduce the original twenty field components
to the six az„(T)~, Ar, and E'„". The generator of
variations in the field variables is seen by in-
spection to be

["= a Jt (A'r 6E'r'-E'r'6A'r+ 0r, '~ai —ai '6%i)«&

so that the only nonvanishing commutators among
the six remaining dynamically independent vari-
ables are

or

(4.7) [ &(),&A' (x')]=((&„—', ')&(x-x'),

and

AQv APv 8Q Pv gv ~yP

one is able to select A and l&~ such that

AL, —-0
and

(4.8)

where again use has been made of a decomposition
into (three-dimensional) transverse and longitudi-
nal parts. The three constraints (4.6) and (4.7)
are immediately increased to seven by inclusion
!of the My@well field constraints

.eOl J»- ( ' )~

and
s Eok ggo

which eliminate +,&
and F~~ as independent vari-

ables.
Since the Lagrangian (4. 1) is invariant under

both

A" Au+

[a,(x), Q (x')]=i ', '6(x —x').

Finally one notes that Eqs. (4.2)-(4.6) can be
manipulated by elementary means to give the
equations of motion

(-s'+g')Ar ——0,
(-s'+g')~ 'a =0,

thereby completing the task of displaying the
physical content of the theory in terms of its
equivalence to a vector field of mass g. 'There is,
of course, the interesting parallel here to the
familiar example in gauge theories in which a
massless vector field mixes with a scalar field to
give a massive vector meson. Precisely the same
phenomenon has occurred in the case of the anti-
symmetric tensor gauge field, which is merely
a more complex formulation of a spin-zero field
which happens to possess the possibly useful fea-
ture of gauge invariance.

a~=0.

Using (4.8) there follows immediately the eleventh
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