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Quantizing space-time
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We outline a theory of space-time based on quantum mechanics and general covariance. The universe is
assumed to be constructed from a non-aAinely-connected differentiable manifold and acts as the arena for the
dynamical forms which can be supported by it. There are only a restricted set of such forms, corresponding
to particles of spin up to 2, and only a restricted set of particle symmetries [octon&ons combined with de
Sitter symmetry broken to O{4)]. Quantum mechanics is fomuiated covariantly by the functional integral
method, and space and time as usually experienced is reconstructed 'by the classical limit of h ~0. The
conclusion is drawn that neither space nor time themselves can be regarded as fundamental.

I. QUANTUM MECHANICS VERSUS GRAVITY

One of the outstanding questions for present
theoretical physics is to obtain a physically sensi-
ble combination of quantum mechanics and gravity.
The problem of quantizing gravity has received a
great deal of attention in the last decade~ though
without any resolution of various difficulties that
have become apparent in the attempt. The most
extreme difficulty has been that caused by the
ultraviolet divergences which arise when the stan-
dard techniques of quantum field theory are ap-
plied to Einstein's gravitational theory. 2 It is
possible that these problems are only symptoms
of deeper diseases caused by the very attempt to
quantize gravity. It is that question we wish to
consider in this paper, though we will not consi-
der if our analysis of the situation can neces-
sarily alleviate the ultraviolet nonrenormaliza-
bility.

If we wish to quantize gravity then not only do
we have to take gravity seriously by choosing,
for example, a specific description of gravity,
but also we have to do the same for quantum
mechanics. We will here assume that gEl mater-
ial phenomena are to be described in a quantum-
mechanical framework, with its usual parapher-
nalia of state vectors, operators, and associated
probability interpretation. This latter has well-
known interpretational difficulties for closed cos-
mologies, ' but we will find that there are even
deeper questions to resolve when we try to con-
struct a theory of gravity in such a framework.

Our first basic assumption, that (I) quantum
mechanics is all embracing, may be false. We
may find that it presents such insuperable diffi-
culties to constructing- a reasonable theory of
gravity that we are forced to admit classical con-
cepts at the start of such a program. However,
we will attempt to discover how far we can go
towards constructing a world in which 5 is su-
preme. We should approach such a task with the

attitude of one who has only been taught quantum
mechanics. At worst our ideal investigator
should believe that classical mechanics is merely
a useful approximation scheme to quantum mech-
anics valid only in certain situations.

If classical concepts kre only approximations
of quantum ones then no classical fields of any
sort can exist ab initi0. Classical fields. can thus
only be regarded as useful approximations to
certain quantum fields, being obtained as expec-
tation values of their quantized brethren in suit-
able states. As for ordinary quantum mechanics,
Ehrenfest's theorem would apply to indicate under
which conditions the classical fields would des-
cribe important dynamical features of a mechani-
cal situation. But the classical fields could not
be used to give a fundamental dynamical descrip-
tion of the system.

We meet here the basic difficulty of combining
quantum mechanics with gravity. For the latter
is presently regarded, with overwhelming experi-
mental support, as a metric theory of space-time,
in which the invariant length ds of an infinitesimal
line element between the four-vectors x and x
+dx is expressed in terms of the gravitational
potentials gs„(x) as

ds2=g „dx~dx". (1)

It is not possible to interpret (1) in any sensible
manner if g „ is a quantized field, since if the
left-hand side is defined as an expectation value
of the right-hand side there is no specification of
the state by which the expectation value is to be
defined.

One can avoid this difficulty by considering the
dynamical development of the quantized gravita-
tional field as consisting of fluctuations about some
classical gravitational field. Equation (1) is thus
regarded as the average result when this latter
field is used for g „. But such an approach is
unsatisfactory for a quantized metric theory of
gravity since in any such theory the metric (1)
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cannot play a fundamental role, as we have re-
marked above. Ig. other words the notion of
space-time as a Riemannian manifold can only be
a classical approximation to an underlying quan-
tum reality. Thus, the vast superstructure of
Riemannian geometry does not appear necessarily
relevant to quantum gravity. It is certainly possi-
ble to make the simple extrapolation of Riemann-
ian geometry from the classical to the quantum-
field- theoretic context.

Such a simple extension of classical to quantal
is the one mhich has been used over and over
again since the earliest days of quantum mech-
anics. The successes achieved thereby lead one
to expect that such an extension will also work in
the gravitational case. But here one is also deal-
ing with the structure of space-time. If g~„ is a
quantized field then, as was remarked, g Priori
there is no .Riemannian structure for space-time.
There appears to be no way of defining such a
structure except by singling out some classical
metric field, which possibility was excluded by
postulate (I), as was remarked above.

In such a context it is not even clear that space-
time is a differentiable manifold. But then how
can the concepts of quantum field theory, such
as an action principle, be defined in such a gen-
eral setting/ A Priori there would appear to be
no definition, for example, of an invariant space-
time volume in terms of d g, since this latter
would only be definable for space-time a differ-
entiable manifold, but not an arbitrary topological
space.

The usual approach to quantum gravity does not
discuss this question. If no background field is
assumed explicitly, then it is usually introduced
implicitly by the magical formula

(2)

This brings in the background Minkowski metric,
for which there is no problem of the above sort;
perturbation theory around the Minkowski metric
then allows the effects of fluctuations around that
metric to be calculated explicitly.

But there may be many (even infinitely many)
solutions of the appropriate field equations which
could be substituted for the right-hand side of (2).
There appears no a priori reason to choose among
various such possibilities. On physical g Poster-
iori grounds it may be argued that an expanding
universe metric is more appropriate than the flat
Minkowski value. However, our assumption (I)
cannot support the e priori choice of any specific
background field over any other. We note paren-
thetically that the most satisfactory theory of the
forces of nature would be one mith only one classi-
cal solution, so that such a choice of backgrounds
is destroyed. We will not attempt to apply such

a criterion here. Our further discussion will
therefore only apply to theories which have a
plethora of classical solutions, as is the case
with present theories containing Einstein general
relativity.

Our conclusion from the above arguments is
that quantum mechanics is not compatible with a
Riemannian metric space-time. Nor, on the
same grounds, is there expected to exist any
preferred classical affine connection, so that
space-time is not even an affine manifold. It is
necessary to consider a set of space-time events
with more general structure in order to include
quantum gravity in a consistent fashion.

Having lost any preferred metric, we have also
lost the ability to define time either locally, by
means of local inertial frames, or globally by
means of a suitable globally defined variable.
Traditional quantum mechanics has so far only
been defined when some time variable has been
present. We will therefore have to construct a
modified form of quantum mechanics in which
time is not indispensable. We will also have to
see hom the time of our physical experience can
arise from some more general approach. In
order to do that we will first try to develop a
general approach to quantum space-time which
mill hopefully contain quantum gravity without the
above- mentioned inconsistencies.

II. SPACE-TIME AS A DIFFERENTIABLE MANIFOLD

One of the most basic features of our experience
of the material world is that events in it can be
described by means of four real coordinates.
We thus have good experiential grounding for the
second basic assumption of this paper, that (II)
space-time is a differentiable manifold M of di-
mension four. We are assuming thereby, that
the set of all space-time events forms a topolo-
gical space which is locally homeomorphic to
Euclidean four- space with certain compatibility
relations on the coordinate functions on overlapping
neighborhoods. The relations are that if Q and g
are coordinate functions which map their domains
in M'homeomorphieally into open sets in B4 and if
domain PA domain god g =nul set), then g 0 Q

'
is a C~ map from P (domain QA domain P) into
R; k is a non-negative integer, ~, or u& (for
analytic maps). The resulting manifold is called,
a C~-differentiable manifold. 3 On such a manifold
it is then possible to define s-times differentiable
(or C') functions f on M by the condition that
fop ' is C' on the image of each coordinate func-
tion Q(s ~k).

Such a, supposition seems in agreement with
naive experience, though goes considerably beyond
it in the compatibility condition on overlaps.
Thus, (II) may be false. For example, there
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may be regions of space-time in which the
overlap condition breaks down or which are not
locally homeomorphic to Euclidean four-space R4

or even to any finite-dimensional Euclidean space.
It would seem difficult to give numerical predictions
in such pathological regions. Loss of the compati-
bility conditions gives a corresponding loss of
suitably differentiable functions defined on M.
Real numbers representing events seem to be the
sine qmanonof scientific validation. Yet we may
find that experience is better described by a
different assumption than the one above. As in
the previous section we will test our basic as-
sumption by deducing all we can from it to see -if

it fits experience correctly or not. We have not
yet specified the degree of differentiability which
M should possess. In order that we may have at
least twice-differentiable functions defined on M
we will assume that M is a C~-differentiable
manifold with k ~ 2.

We have assumed the dimension of the space-
time manifold to be 4. It might be possible to
prove that to be the only value supporting a non-
trivial dynamics by showing that for lower di-
mension the dynamics degenerates, while for
higher dimension than 4 it is unrenormalizable
from a quantum-field-theory viewpoint. Since we
have not yet completed such a proof we have made
assumption (II) contain the four-dimensionality.
Some of our further results will not depend heavily
on such dimensionality, though the details of the
dynamical forms to be given shortly will so do.

We must now ascertain if our two assumptions
I and II contradict each other. They would have
done so if we had chosen for our second assump-
tion that space-time was an affine or Riemannian
metric differentiable manifold. At no tiine need
there be any preferred classical field, be it the
metric tensor or the affine connection, if (II) be
valid. Yet there is still a preferred manifold
structure on M, however, so that some contra-
diction might still be expected with (I). Indeed
that will specifically be so if M were assumed to
be paracompact, and so still possess a Rieman-
nian structure. 4 But space-time must have some
structure in order for differentiable functions to
be defined on it, as was remarked above. How
far does our corollary of (I), that there are no
preferred classical fields on space-time, extend to
the nonexistence of preferred topological struc-
tures of any sort/

We might conjecture that the quantized fields
allowed on a general enough differentiable mani-
fold IVY give dynamical consequences which are
independent of the specific differentiable struc-.
ture on M. We would thus have compatibility be-
tween (I) and (II). (I) and (II) are compatible pro-
vided that for (II) we require that l8 has neither
Riemannian metric nor even affine structure. We

will have to return to this question as to whether
or not such compatibility does actually occur when
the possible dynamical consequences of (I) and (II)
have been more fully explored. In the process we
will, however, try to single out those dynamical
features independent of the particular differen-
tiable structure on M.

Though we have apparently rejected the metri-
cal foundations upon which Einstein's theory of
general relativity was based there. is one crucial
feature of that theory which can be saved, the
principle of general covariance. As stated suc-
cintly by Einstein' "As all our physical exper-
ience can be ultimately reduced to such coinci-
dence" (of point events), "there is no immediate
reason for preferring certain systems of coordin-
ates to others, there is to say, we arrive at the
requirement of general covariance. " We will
assume, with Einstein, that general covariance
is valid. In other words, we will require that
physically observable results are always expres-
sible in coordinate independent fashion. We will
further assume that dynamical equations them-
selves can also be expressed in a coordinate in-
dependent way; there are to be no coordinate-
independent observables needed for specifying
the dynamics.

It is accepted that general covariance cannot
be used in classical general relativity to delimit
physical laws. 6 Only through the additional re-
quirement of the principle of equivalence can the
detailed form of interactions of gravity and mat-
ter fields become specified. There are various
forms of this latter principle, but all require the
ability to choose local coordinates near a point
which removes the gravitational field. This is
not possible in general when gravity is regarded
as a quantized field. We meet again the same
difficulty of the previous section: The principle
of equivalence can only apply to expectation
values or classical gravitational fields. Since the
existence of preferred cases of these latter is
contradictory to our basic assumption (I), we
have not only lost the Riemannian geometric
interpretation of gravity given by Einstein, but also
any natural way of expressing gravity 'as a uni-
versal quantized field of nature interacting in a
very specific manner with matter fields.

It is important to realise that while general co-
variance does not have such direct physical im-
port as the principle of equivalence in the classi-
cal regime this is no longer true when assump-
tions (I) and (II) are considered. In particular,
the possible dynamical fields on a nonaffine dif-
ferentiable manifold are extremely restricted.
If that is so then we need not mourn too much the
loss of the principle of equivalence. We might
even attempt to prove it from the allowed dynam-
ical structures. To see how this might be so let
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us turn to investigating the possible dynamics on
a general manifold.

III. DYNAMICS ON ARBITRARY MANIFOI. DS

We will analyze the dynamical properties which
can be supported. by M by determining the set of
all the fields which can be regarded as developing
dynamically on M. Such development will be as-
sumed to be described by differential equations
satisfied by certain of the fields on M, following
the tradition of development of field theory since
Newton's theory of gravitation. It is not possible
to differentiate tensor fields on a coordinate-in-
dependent manner, since we have agreed that we
cannot introduce an affine connection on M. We
may, however, use the forms on M, ' since for
any form Go„of degree r on M, the derivative
de„ is defined on M in a coordinate-independent
fashion, being of degree (r+1). An equivalent.
and more useful form of this is that it is possible
to differentiate the covariant antisymmetric ten-
sor fieMs on M.

To proceed further we assume that dynamics on
M ls governed by RIl action px'lnclple ln terxlls of
a local action (fA (essentially d4xL in terms of
the usual Lagrangian density L). dA will itself be
assumed to be a form of degree 4 on M which is
also a local function of the various dynamical
forms of various degrees on M. If these are de-

I I I IInoted by ~p, vp (Of GO.f ~ ~ Gd (dg (Og, . . . ,
then

I IdA =dA((do( d(do'(do d(do). . . I(d(~ d(d() ~ ~, )

We may integrate A. locally by means of the co-
ordinate functions in the usual way, 8 so can give
sense to the action A(V) defined over some open
set Vin M:

fields we can only construct dA from the exterior
products of forms of suitable degree. There are
only a limited set of such products, which we can
tabulate explicitly. Denoting by ~„ the generic
forms of degree r, we note first that forms of
degree 4 contairiing two derivatives are, to within
powers of urp

(1) d(d» A d(dl » ~

(il) d(id» A d(d» A (dl

(iii) d(d» A d(d» A (d p A (d2»» p

(0 ~ i,j ~ 1; 1 ~ k ~ 4; i +j +0 & 2) .
Those containing one derivative are

(i) d(d„(ii) d(d, A(d. ».

(iii) d(d»A(d»*(d~ » ..
(lv) d(d» A (d» A (d&A (d3»» &

I

(1 ~j, k & 4, i +j+k &3),

while those with no derivatives are

(1) (d4& (11) (d&

(1il) (d» A (d», A (d 4 y», ,

('V) (d»A("a*(d»" (d4 » (» ~--

(6)

(8)

where i &j,0, l &4, j+0+l &4.
Since d(d A dQ =d((d *dQ), where d Q =0, then the

first term in (6) gives only boundary contributions
to g(V) plus a term of the form (6) (iii) so can be
neglected. We can thus write the independent
terms of (6), (7), and (8) in detail as in Table I,
those from (6) being expressed as quadratics in
de„. We note that the forms +„are only repre-
senta, tives of the class of all r forms, so that
Table I denotes possibly an infinite set for each

dA. TABLE I. The components of L.

In this manner we may obtain the Euler-Lagrange
variational equations from (4) by infinitesimal
variations of the forms Gdp, cop, . . . , etc. :

6A(V) =0 . (5)

We can attempt to justify such use of an action
principle since the resulting dynamical system
should then be quantized in a manner which will
satisfy unitarity and other reasonable physical
requirements. We have limited the local action
only. to be a function of the forms and their first
derivatives due to the ghost difficulties asso-
ciated with higher derivatives. In any case we
cannot justify (3), (4), and (5) fully except by
further analysis of their consequences.

We will next consider the possible contributions
to dA. Since there are no preferred classical

Order in dGd„

Quadratic, (6)

Linear (7)

Zero, (8)

(i)
(ii)
(iii)

(i)
(ii)
(11)
(iii)
(i~)

(i)
(ii)
(1i)
(111)

(iv)

TerxQs

dcdfI dGdf

d Gd p
+ d Gd p ~ Gd 2

d(d pA d(dp ~ Gdf ~ Gdf

dGd3

d(d2AGdf

dGdf + (d2
dGd f ~ Gd f i Gd f
d Gd p

A Gd f & Gd f + Gd f

G04

Gt) 3 h Gd f
Gd2~ Gd~

Gdf I Gdf+ Gdf ~ Gdf
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entry. We would expect the quadratic contribu-
tions to correspond to Bose fields, the linear to
Bose fields in first-order form or Fermi fields
and the zero terms to describe interactions with
no dynamical propagation in M. Thus, we will
restrict our attention for the present to the linear
and quadratic terms.

Let us consider the quadratic contributions in
more detail. The various terms can be written
in coordinate-dependent fashion as proportional
(factors of powers of the scalar field A being
omitted) to

e„A„B)„A,p

A evA A),e

&~" '8~AB, AA)tA,

(9)

(1o)

where, locally in some coordinate representation
+2=A „dx~+dx", a&=A dr~, wo ——A, and q~" '
=+ 1 (p vXo =+ permutation of 1234), and =0 other-
wise. In none of (9), (10), or (ll) is it possible
to obtain a quadratic derivative term in A„or A,
respectively, by integrating by parts, due to the
presence of &~"~' (corresponding to d'+„=0).
Thus, in no classical background fields A, A
or A„, respectively, willA„or A propagate as
bosons in terms of the inverses of d'Alembertians.
We take this as indicating that none of (9), (10),
or (11) are suitable to propagate the forms &o,

or &,, dynamically on M. It is to be noted that
this criterion does not depend on the existence of
any preferred classical field on M. Indeed, it
is a criterion arising naturally from the functional
integral definition of quantization, where a sum
over all classical fields is used. We are thus
left with the five classes of terms linear in d&„
in Table I from which to obtain dynamics on M.

Let us now consider which expressions from
these latter terms could serve as first-order
terms to describe the propagation of bose fields
on M. We will again require them to reduce to
the usual quadratic second-order form contribu-
tion to the action density in an arbitrary classical
background. The term dko3, in coordinate-depen-
dent form, is locally

f(A) etlvxttsp

where f(A) is an arbitrary local function of A.
This can 'only serve for a first-order action den-
sity if there is also a term in L, quadratic in &,
or A@3. Only the first possibility could occur, ac-
cording to Table I, being proportional to g' in a
background field A„or A „. The resulting quad-
ratic expression in I, will be (c""~'S„A„„,)' multi-
plied by background field terms; writing z~""'A„„
=B"we see that the expression (B„B~)'would re-
sult. This has no propagation (the quadratic de-
rivative operator is 8~8„with characteristic sur-
face reduced to the origin) so does not seem an

appropriate candidate for a dynamical form on
M.

We are thus left with the last four linear terms
in Table I, together with appropriately chosen
terms from the zero-order terms, to describe
in first-order form the dynamics of M. These
terms appear- to give suitable candidates. In
order to consider them in detail we must clarify
the range of values of the forms of ur„and condi-
tioris related thereto.

IV. GAUGE INVARIANCE ON THE MANIFOLD

So far we have not specified the space in which
the forms &„on M take their values. In order
that the discussion of the last section be sensible
we must require that this space be at least an
algebra A, which we take to have a finite basis
denoted by K,. Thus, each form ~, will (locally)
have .a representation (summation convention as-
sumed)

(12)

We can now impose the further condition that all
dynamics must be independent of any local change
of basis. Thus, in addition to our assumption (II)
of coordinate independence of results (space-time
labels do not matter), we also require that a la-
bels do not matter, even locally. If A were a Lie
algebra, then this condition would be that of local
gauge invariance under the corresponding Lie
group. In the general case we will find that the
allowed terms in the Lagrangian will be even
more - restricted than those we arrived at in the
previous section.

An important reason why we should search for
an algebra A larger than the trivial one-dimen-
sional one is that we wish to obtain a dynamical
structure on M including at least that of classical
general relativity. Otherwise, neither space not
time will be differentiated or even seem possible
of being defined. A must therefore be chosen
large enough to allow us to recognize spin-2
fields which might qualify for a metric tensor or
affine connection on M. More positively, we
might expect that M would have realized on it the
largest possible A restricted by certain criteria.
We will look for such an A with the further condi-
tion that there is only one spin-2 massless field
contained in the theory. This latter requirement, '

as we will see allows us to find a simple maximal
A.

Let us first remark that not all forms need be
assumed to belong to the adjoint representation,
as (12) dictates, but some may be chosen to
transform as the fundamental (or some other)
representation of A. Nor is it clear that the X,'s
need to be chosen only as the generators of a
Lie algebra. Thus, they could be taken as the
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D&( —d(u, +(o) ~ (o, , (14)

with the appropriately covariant transformation
law

D(d ( gD(d (g"

Any r-form v„ transforming covariantly

{dz~gad+

will thus have a covariant derivative

D(0 =d(d +(0( & (0 —(—1) (d A (d( &

while if co„ transforms as

then the corresponding covariant derivative is

DOSED
=dip. &+Ops & (dz .

We note that singling out +, from the other forms
does not contradict our assumption (I). The
existence of (d, does not require the existence of
any preferred classical field, as would the exis-
tence of a metric or affine structure for M with
associated covariant derivative of tensors on M.
Thus, ur, can be a quantized field without any
difficulty being caused thereby to the structure
we have set up.

One solution has already been found to contain
the Einstein Lagrangian and be maximal". The
generators X, are the set (v,&, y„y&y,X&, y5y&, X&},
where y, are the usual 4 Dirac matrices (e ~a
~S), e„=(1/2f)[r„r,], r, =r,r,r,r„and X, are
the other generators of a (not necessarily associative)
algebra with product tule

X,X~ ———Cq~l+f, ~a ~,

where C~& ——C~, and f,» —f&,~. It is the term in-——

basis elements of a, finite-dimensional not neces-
sarily associative algebra P. Local gauge invar-
iance would now be invariance under the automor-
phisms of g. This allows inclusion of octonion-
valued fields, which have been discussed recently
with special reference to quark confinement. e

Ne will not discuss such a modification here in
detail.

We would develop our discussion in the langu-
age of fiber bundles, ' but feel that the purely
differential-geometric language of forms is more
appropriate; we will persist therefore in such a
framework. We first require, for the existence
of a covariant derivative, a particular one-form
which we denote by v&. This will transform under
a general gauge transformation g of the Lie group
G defined by the Lie algebra& (or the group G of
automorphisms of & if g is not a Lie algebra) as

(d
~ ~gh) ~g —dgg

We may thus define the covariant derivative Der&

of 40~ by

volving {"&&which prevents extra gravitons from
appearing when the algebra& is closed. If it is
assumed that the f~» are the structure constants
of a Lie group, then it is straightforward to see
that the only possibility for (X,}is the set of 2
x2 Pauli matrices. For let H be the tartan sub-
algebra of the Lie group (assumed simple), the
basis elements in a particular representation
being H, in H and E otherwise, and ~m) a
state in that representation. We have, from the
commutation relations of & and (17),

a,z. ( m) =(m, +n,.}z.( m)

+P' y5X, +StX(),
where the associated local action is, in first-
order form,

dA =Tr(y5D(o(A D(d() . (19)

We remark that although (19) appears to be one of
the quadratic derivative terms which we discarded
earlier the truly quadratic term Tr(y&der& ~ dw, )
is indeed zero, leaving only terms linear and of
zeroth order in the derivative (as shown in detail
in Ref. 11).

The second-order form of dg in (19) was shown,
independently of the existence of any preferred
fields such as (2), to be that of a massless spin-2
field described by the vierbein /„and connection
8'~ in interaction with a multiplet of massless
vector mesons 8', with associated field strength
proportional to g", the components p' do got

or

(m+-,'n, ) E„~ m) +C,.~m) =0.
Since E ~m) and ~m) are linearly independent,
then C&

——0 and either (m&+ ~o.&) =0 or E
~
m)

=0. In the latter case the representation can
only be the trivial one, while in the former only
a. two-dimensional representation is possible,
with basis

~
m), E,„~m). It is straightforward to

see that this is only possible for the Lie algebra
SU(2). Furthermore, (17}excluded direct pro-
ducts of SU(2} with itself any number of times.
In this case the gauging is straightforward, going
along the usual lines. The other known solution to
(17) is the octonion nonassociative algebra. '2

This does not allow such a simple gauging due to
the nonassociative character of the octonion alge-
bras; we will not consider this question further
here.

The components of the gauge form ~, were
written in Eq. (13) of Ref. 11 as

co, =dr"(B o„+I'„y,+is", r,r,X,
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propagate. Since the theory based on (19) is gen-
erally covariant, by construction, and the self-
interacting Lagrangian for the spin-2 terms is
that of Einstein, it is natural to suppose that
this latter describes the gravitational field.
Thus, (19) should be a suitable Lagrangian for
interacting gravitational and Yang-Mills theories
(the latter having only a restricted range of
symmetries) .

We see from Table I and our earlier discussion
that it is possible to introduce other terms in the
local action beyond (19). We will discuss their
nature briefly now so as to understand better the
range of possibilities allowed by assumptions (I)
and (II) above. Fermion forms &o„may contribute
bilinearly in d& if r =0 or 1, the corresponding
terms (for e„being a vector in the representation
space of 4 and &v„ transforming contragrediently)
being D(d fy5, A(df ~(lo f and D(dpy5 A(uf' ~ (df"+(g,"(g„
where ~,"are some suitab1y covariant one-forms.
Choosing these latter to be ~f, we obtain the
usual Harita-Schwinger and Dirac Lagrangian
densities evv~D@„y, l„g, and e~"~'Dvgy, l„l~l,g,
respectively, along with other interaction terms.
There will also be mass and self-interaction
terms constructed from zp~f ~(df~ cuf~ ~f~p and
co f *0) f + (d f A (0 f possibly multiplied by powers
of &o,&uo=gg. There are also terms involving
the bosonic two-form co„ if that can be propa-
gated on M; these would be v,fy5A c02~ M'fand
(It) py5(d 2 A (Jo 2v p These give contributions to the
Lagrangian density, in component form, pro-
portional to &"v"'4 y~l, ~@, and &"""~g[y5l vl„,j g,
where ~2=Ch'~ dh "l~„.

Let us turn, then, to the further bosonic pos-
sibilities on M. Since all the terms listed in
Table I are in first-order form, it seems pre-
sently necessary to go through the same exer-
cise as in Ref. 11 and reduce the terms to se-
cond-order form before their physical content
can be unravelled. We first consider the bosonic
two-form +2, for which there is the derivative
term Tr(y5D&2 ~ u&&). In order to obtain a non-
trivial result it is necessary to include the term
~, ~ ~„so that the variational equation for co,
will express it as a derivative of &f and the re-
sulting local action as quadratic in the derivatives
of (0 f However, the form v, will ther' be purely
a function of u„so not be propagating indepen-
dently. We may choose another 1-form &f',
transforming under a local gauge transformation
g as (Jo f gal) f g', and conside r the joint effect of
the terms Tr(y, D(u, ~ (u f) and Tr(y, (u2*(of A(0I').
It is possible to construct terms with suitable pro-
pagation characteristics for (d f', such as the La-
grangian density

&v vie(S geabfivd +IIlleaf jPIiofb+clf) (20)abel p, y - Ref g v Xe

In a range of classical background fields (20) will

allow propagation of the field B"„",which reduces
to a massless scalar. This is because the quad-
ratic terms in (20) are invariant under 5B",„'~

=8 g —8„$ with f =- g so that B has
only one independent component, and can des-
cribe at most a massless scalar. The other
components of wf" can describe at most spin-1
or -0 fields; we will give a detailed discussion of
these fields elsewhere.

Another possibility for co,
" and co2 is from the

terms Tr(y5Du&, ~ to", ) and Tr(y5a&, ~ur2). However,
these terms give the only satisfactory second-
order term z~""'z,b,~8 B„""8~B,"'~, which in any
case is zero to within a surface term. Hence,
there are no ways of propagating the pair co&, ~f'
than by the terms we discussed above involving
D~2I cof" and cu, ~ vf" *cof', these containing fields
of spin 0 and 1.

We turn to the possibility of propagating &of"

without use of co, . The only way of achieving
purely quadratic expressions for derivatives of
a&& would be by use of the terms Tr(y5D&, ~ u&"

A (d() and Tr(y, (cr,
"

A (u", ~ (u, ~ (o,) . In a locally con-
stant background wf the result of such terms
would be the Einstein-restricted Yang-Mills
theory described by (19), but with e,' replacing
&„and in its linearized version. This would
seem to produce a further graviton, though this
can be offset by the term Tr(y, &uI A Q', A(0, ~(0,).
On a locally constant background (d f this gives
the Pauli-Fierz mass contribution proportional
to (I"'„I„",' —/'„"„I"„), so that the resulting spin-2
field need not compete with the graviton. The
other contributions from these combined terms
can have spin 1 in suitable locally constant back-
ground fields.

Finally, we mention the possibility of scalar
fields arising directly from zero forms, using
one- or two-forms in the manner described above
to give a first-order local action whose second-
order version will be quadratic in the scalar
fields in suitable locally constant background
fields. Here again we will not give any details,
but reserve this for elsewhere.

We conclude that the terms in Table I can give
contributions to the local action corresponding to
fields of spins 0, ~, 1, —,', and 2. This conclu-
sion is made modulo the existence of locally con-
stant background fields of spin 1 and 2 (Einstein-
Yang-Mills). This is not a statement in contra-
diction with assumptions (I) and (II), but will re-
quire discussion when the role of classical fields
in the quantal framework has been explicated.
We must turn, then, to the question of field quan-
tization, but before doing so we should note that
an alternative group approach is possible in which
the whole algebra is not used for local gauge
transformations. Thus, the SL(2, C) approach to
unified Einstein- Yang-Mills theories in Ref. 11
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followed this avenue by taking the group SL(2, C)
as the unbroken invariance group. The algebra.
sl(2, C) was extended to thatof su(2, 2). One-forms
with values in [su(2, 2) —sl(2, C)] X& for any Lie
algebra g, transforming covariantly under SL(2, C),
were then introduced and used to construct four-
forms invariant under local SL(2, C) and A, gauge
transformations, giving the Einstein- Yarig-Mills
I agrangian when reduced to second-order form
The extra internal symmetry is gained, however,
at the expense of the rather artificial group ex-
tension process involved. It may indeed be nec-
essary to describe the universe in this way, but
presently the scheme based on local gauge invar-
iance relative to this whole group is to be pre-
ferred.

V. QUANTIZATION ON THE MANIFOLD

We must now turn to the question of how to
quantize the dynamical forms we introduced in
the previous sections. This question is crucial to
answer. For as we emphasized in the first two
sections, we are regarding the quantum frame-
work as superior to the classical one. The latter
is only to be regarded as derived from the former
as an approximation, valid in certain circumstan-
ces. But the proMem of defining a quantization
process without any preferred classical fields is
not trivial. We do not have a definition of time
in the manifold, so the traditional approach by
way of Schrodinger or Heisenberg equations of
motion does not exist. Nor can we use canonical
or covariant techniques in any form, again due
to lack of timelike surfaces. Even the more gen-
eral methods of axiomatic field theory do not
seem particularly helpful since we have to attempt
to obtain a detailed dynamical description in a
completely coordinate-free manner. Indeed, it
seems that this is a problem which has not been
discussed in the literature, at least as far as I
know.

To proceed we will consider first the notion of a
quantum-mechanical state. We may define the
labels of a state in a coordinate and gauge-inde-
pendent fashion by means of the eigenvalues of
the dynamical forms [those for which der enters
into d& of (3)] on submanifolds. It is not to be
expected that these eigenvalues can be indepen-
dently evaluated at all points of the whole mani-
fold, and we will assume that they can at least
be given on three-dimensional submanifolds.
For one such, v, we denote by

~
co(c)) that state

for which the dynamical forms ~ take the values
v' when measured in o. There may also be re-
strictions on the choice of o, though any such
might come into conflict with our first basic
assumption. We will consider this further now

when we define the inner product between two

states.
We wish now to define this inner product or

overlap (&o,(o,) ~
ro, (s,)) between two such states

in a coordinate- and gauge-independent fashion.
We will do that by means of the sum-over-paths
formulation of quantum mechanics, ' using the
action density dp of Eq. (3). We consider first
the case that the region B(o„c2)between o& and

F2 is enclosed by a coordinate neighborhood U,
with associated coordinate functions. By this we
mean that R(v„o,) U. We write, formally,

where the values of + are fixed to be && on o&.
The integration measure Ild&u J(x) is formally de-
fined in terms of the componerits &„...„ofeach
of the dynamical forms +„of degree r by

d(o(x)=, ', dA„...„(x), J(x) =[detl;(x)] " .
r u~~ ~ fJ„

Here g~ are the y' components of the fundamental
one-form +& of Eq. (13), as defined by Eq. (18),
and a =. pm„, where there are n, separate compon-
ents of the dynamical forms of degree r. It is
the factor J'(x) which gives the coordinate invar-
iance of the right-hand side of (21), since in an
overlapping coordinate system U' with coordinates
x' we have J'(x') =[8(x)/B(x')] J(x), while ko'
=[8 (x) /8 (x') ]'du) .

We may extend (21) to the case that the region
Jt (o» 02) between o, and e2 is the union of a set of
(possibly overlapping) coordinate neighborhoods
(U. }. In each of these we choose the coordinate
representations for the components of the forms,
the different possible choices in overlapping
neighborhoods not affecting the value of d&oJ'(x).
We can thus define the overlap between the two
states by the same formula (21), now extended to
this general situation. This is not, in fact, the
most general situation, since even though the
manifold is covered by a suitable atlas defining
the manifold structure, the region B(o„o2) be-
tween two manifolds need not be well defined in
general. For this to be so it would seem neces-
sary that the submanifolds e, and o2 c@n be con-
tinuously deformed into each other with preserva-
tion of orientation. The integrations in (21) will
then be over the points covered by this deforma-
tion. We will assume such a relation between e&

and o2 from now on, and say that o~ and c2 are
measurably related.

There are two features of (21) which require
further analysis. Firstly, the measure Hdhd is
very poorly defined. There are various ways of
making it more precise, '4 whose relevance to (21)
we will consider elsewhere. Such delay is espe-
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cially necessary since the rigorous definition of
(21) would in any case require what is expected to
be a lengthy analysis of ultraviolet and infrared
divergences contained in the theory.

The second question is that of group invariance.
Indeed the right-hand side of (21) is invariant
under local group transformations if these are
brought about by the groups considered in Sec.
IV, since by (13) to (16) the changes in dv brought
about by the gauge transformation (13) will be at
most proportional to detg, which is one. Vfe will
have to consider the Faddeev-Popov ghost con-
struction (15) in due course, but at this point we
will turn to various formal features of (21) which
seem of value to describe.

We note first that we have not called (21) a tran-
sition amplitude, which is its usual term. For
we have no direction of time defined on the mani-
fold, so no concept of transition. %e will inter-
pret (21) as a measure of the proportion of the
state

I
~'(o2)& in the state

I
e'(o, )& (or vice versa).

Such an interpretation would seem to require the
ability to prepare the system in the state

I
v'(o', )&

in the first place. But this latter phrase again
brings time back into the discussion. It is diffi-
cult to describe in the usual way how anything at
all happens in this present framework where
time is absent, since we are so used to thinking
in sorae sort of causal sequence. In the lack of
the latter we can only consider events at given
(locally defined) coordinates. In that sense we
assume that somehow a state can be prepared
over a three-dimensional submanifold. The

similarity of this state to another prepared over
another such submanifold is given by (21).

This similarity function has the following pro-
perties:

=0 ((d 4V )
(a)&~'(o,)

I

&o"(o,)) when o& ——o2
= 6((u' —(u") ((u' =(u")

(22)

since when o, =o2 the integrand of the right-hand
side of (21) is the unit matrix in (&d', v") space,
and there is no integration over internal varia-
bles,

=&~'(o~)
I
&'"(o )& (23)

where the summation over e" should more cor-
rectly be given as

der" (x)J"(x) .

(c) We may use (23) above to re-express (21) as
a sum over contributions from similarities be-
tween neighboring submanifolds. Thus, if
o(t), 0 f-1, is a family of manifolds defined
by a family of continuous maps of-a given mani-
fold, say o(0), then we may write

(24)&ar'(o'(0))
I

&u "(o(l)))=lim g „II &~ "'(o'(r/n))
I
e(o' "((x+1)/n))&,

ff-+ Q ~ spy 8 f'+0

where argo'(o'(0)) =e'(o'(0)), &u'"'(o(1)) =e"(o(1)). This formula (24) is that frequently used at various levels
of rigor'3'4 to give a definition of the left-hand side of (24) by means of similarities between states on
neighboring manifolds, o(t) and o(t+&), for arbitrarily small &. We will attempt to use it shortly in
evaluating the left-hand side of (24). We may now develop more general states than

I
v'(o)& by taking

sums of such eigenstates, of the form

(25)

where 4 is a complex-valued functional of the eigenvalues &' of + on 0. The inner product between two
such states

I
4„cr,& and

I
4'„o,& will thus be

(26))= rid ( ) gd (y)@*( ( ))+ ( ( ))& ( )I ( )&.
X60g yeCr

We will interpret (27) as being the similarity amplitude between the states I4'„o,& and I4'2, o2&. We may
also define expectation values of observables by means of the resolution of the identity expressed by the
right-hand side of (23). Thus, if E(&u(P)} is a function of the dynamical forms at the point P, then we de-
fine its matrix element between the states Ik,o,& and Ik,o,& as

where

Jll. d~&(~) II d~2&y)+&(~&(o&)) ~( 2( &))&~&(o&)IP(~(P)) I~2( 2)&
XSO) $8g2

(27)



QUANTI ZIN G SPACE - TIME

ru e)
(28)

with 0 some three-dimensional submanifold through P and measurably related to 0, and 0, . The right-
hand side of (28) is independent of the choice of o since if o is also measurably related to o., and o2 it will
also be so to o, so

& &~i(oi) I
~'(o)»(~'(P))&~'(o)

I ~~(o2) &

~'(e)

But

&~~(o~) (
& ~(cr'))(~"(o') [~'(o))F(~'(P))(~'(o)

~

~'"(o'})(~'"(o')
~
~,(o,)) . (29)

e' (e), co~:(e' ), co"' (e' )

td' (e)
co' (P) =so'" (P)=e"' (P)=5(e"-ao'" )

by (22), so that the right-hand side of (29) re-
duces to the left-hand side of (29) with o replaced
by o'. Thus, (27) is unambiguously defined.

We may also define the quantized form &„of
(d„at P as the operator with matrix elements
given by (27) when F(v(P)) =u&„(P) .

We have thus constructed a quantum field. theory
of the dynamical forms on the manifold with a
(formally) satisfactory Hilbert space structure.
The interpretation of the formalism is somewhat
strange, however, since neither space nor time
as they are usually considered are present. We
could only call the quantities (4'(o f) ~

4'(o,)) "sim-
ilarity amplitudes, " the usual term "transition
amplitude" not being allowable. Moreover, in a
world without time the scientific method would
itself seem to be lost, since the key notion of

'

prediction cannot be made sense of. It might be
claimed that the analysis presented so far has a
claim to e Priori validity since the theory being
constructed is all that can be in such a general
situation. That claim has some grounds for
truth, but it does not seem satisfactory when
compared to the usual scientific "a Posteriori"
approach. We may relate to the latter by finding
under what conditions our theory reduces to that
of the macroscopic world with its usual concepts
of space and time. To do that we must attempt
to find out how classical solutions can play any
role in the theory. Hopefully such understanding
will allow us to make testable predictions rele-
vant to this macroscopic world.

VI. THE EMERGENCE OF SPACE AND TIME

The functional integral quantization scheme set
up on an arbitrary manifold in the preceding sec-
tion has been analyzed repeatedly in its more
traditional version on a pseudo-Riemannian mani-
fold. In particular, much investigation has been
given in the case of the Minkowski metric, es-

pecially with the recent appreciation of the im-
portance of Euclidean solutions termed instan-
tons. Indeed, these latter have indicated the
enlargement of the physical Hilbert space of
states to include vacuum sectors described by
pure gauge fields at infinity belonging to non-
trivial homotopy classes of the gauge group under
consideration. Since we are considering gauge
groups which include the Lorentz group, we
should expect to have vacuums described by at
least two integers, since v, (O(4)) =ZXZ, where
Z is the additive group of integers. There are,
however, certain difficulties over the naive ap-
plication of instanton physics to our quantum
formula (21), and we will have to consider those
carefully. In so doing we will appreciate certain
features of (21) which clarify the problem of de-
fining space and time by its means.

Firstly, it is usual to suppose that the local
field theory being considered can be defined in
a Euclidean (more generally Riemannian) space-
time related to the physical Minkowski (pseudo-
Riemannian) universe we inhabit by a supposed
analytic continuation in time. The existence of
such a continuation imposes severe constraints
on the background space-time.

In the function formulation (21) this would be
expressed by integrating only over suitable analy-
tic forms v. However, it is likely that these
give a small contribution compared to more path-
ological ones, by analogy with the Wiener inte-
gral. '4 Thus, we expect to introduce instantons
in a different. manner.

Secondly, and more importantly, the multipli-
cation of vacua arises only by certain require-
ments on the allowed gauge fields, in particular,
that they be trivial at infinity in spatial directions.
Since we have no sense of spatial or temporal
directions given by (21) such conditions are mean-
ingless. Thus the use of r3(O(4)) may be incor-
rect.
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We are clearly faced with the problem of de-
fining space and time before these questions can
be resolved. Since such a problem has great
interest in its own right we turn to that now.

We only expect to be able to define space and
time in our usual sense if we can introduce a
pseudo-Riemannian metric. For only then will
we have a field of cones defined on the manifold

giving a separation of tangent vectors into space-
like or timelike. Thus, we have to discover how
classical background fields can arise in (21). But
that is easy (on the face of it): We use the method
of stationary phase to write the right-hand side of
(21) as a sum of contributions from classical forms
(d"", each contribution being of fluctuations
around the associated form ~'"'.

(30)

We have written (30) as an approximate formula,
valid if the classical solutions (d "' of

5dA/5&v =0 (31)

are well separated in some suitable sense in the
space of all forms on the manifold. We may then
approximate each term in the sum in (30) by the
Gaussian approximation, using only quadratic
terms in the exponent and expanding the rest:

dA(X+(o'") =dA((o'"') + ydA "y +0(X') .
It is then possible to perform the resulting

Gaussian integrals to obtain the standard results
of quantum field theory. Each of the terms in
the summation on the right-hand side of (30)
corresponds to a quantum fieM theory in the
given background v"". It will have the asso-
ciated interpretational features as well as the
expected ultraviolet- divergence problems es-
pecially serious for the gravitational interactions.
It is possibly of value to remark here that these
latter difficulties may only arise due to the ap-
proximation scheme itself. The correct expres-
sion describing quantum features of the universe
is claimed to be Eq. (21); that has no immediate
similarity to the separate terms of the background
quantization approximation (30). We conclude
that (21), not (30), is that requiring direct analy-
818.

For any choice of gauge group, which incorpor-
ates the Lorentz group in the manner described
in the yreceding sections, we may identify the
classical gauge 1-form (&o~&') coefficients of y,
and 0,~ as the vierbein and connection fields of
a classical gravitational field. We can then con-
struct a traditional space-time description in
terms of the associated metric.

We note that classical solutions +" do exist.
Using the above interpretation of (d&', as con-
taining the vierbein and connection, all solutions
of Einstein's matter-free equations qualify as
possible |d". It is clearly of interest to find the
set of all (d", but this is not yet even known for

Einstein's equation.
Such a process allows space and time to be in-

troduced for each of the possible classical solu-
tions of (31) with the given values on the boundary
of B. We seem now to have obtained a plethora
of space-times, not the single one to which we
are so accustomed. However, different space-
times are to be expected to give different con-
tributions to (30), so that not all such space-
times need be of importance. The situation is
complicated by the yosition dependence in the
classical phase factor As(~"). Thus in certain
regions the manifold of classical solutions of
importance may be different from that for other
regions.

It is necessary to give a great deal of further
analysis to the question of approximating classi-
cal space-time before the situation is suitably
clearer. We can, however, give a general sketch
of the features of the "big-bang" universe as seen
in our above terms. In the early stages of the
big bang (the first 10 43 sec) all associated re-
gions R of the uriiverse, being inside the Planck
length, involve a great deal of quantum fluctua-
tions. No preferred classical solution, or even
family of them, would appear to be related to
this part of the manifold M, so no classical no-
tion of space or time is applicable there. We
did call this region Mo of M the "first IO-" sec",
above, but that is clearly just a name without
any real descriptive power. Joined to M, is a
sequence of regions M„M2, . . . in which there
should be a successively better description in
terms of quantum fluctuations around a single
classical metric. This means that there are re-
gions in M„, for large n, which can be described
by quantizing on the classical background. How-
ever, even here small-enough regions could not be
so described. In an ever-expanding universe the
above description would be complete; if collapse
ultimately occurs there must be a further region
M„which has the same intrinsically quantum
character as Mo.
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VII. CONCLUSION

We have attempted to construct a theory based on
twoprinciples, (I) thatquantum mechanics is fun-
damental (so that there are no preferred classical
fields) and (II) that of general covariance. The
combination of these two necessitated the use of
a nonaffinely connected four-dimensional differ-
ential manifold M as the bedrock of existence.
Upon this a limited set of differential forms were
allowed which could be regarded as dynamical in
the sense that they satisfied nontrivial second-
order differential equations in an arbitrary back-
ground field. In order to achieve such a structure
it was found necessary for the forms to take values
in a suitable algebra. This latter also had re-
strictions placed on it by the need to obtain non-
trivial dynamics. That the only possibilities
were quaternions or octonions in a suitable com-
bination with elements of the de Sitter group
[broken to O(4)] can be regarded as a prediction
of the theory which could possibly be recognized
in the particle symmetries. Identification of the
octonionic structure with color and O(4) as flavor
would require four "quarts" as fundamental par-
ticles. However, there has been no differentiation
between electromagnetism, weak or strong inter-
actions, nor of the introduction of coupling stren-
gths. That must be done before firm connection
with particle physics can be achieved. Such a pro-
gram does not appear impossible since, as we
remarked above, there are only a limited number
of allowed possibilities of basic fields and inter-
actions between them.

A very clear prediction of the theory is that
there are only fundamental fields with spin up to
2. No higher is allowed, so that the discovery
of a fundamental particle with higher spin would
destroy the theory completely. It is necessary
to be able to decide whether or not a particle is
fundamental or not to make such a prediction of
real value. One way of so doing is to require
that it belongs to the fundamental representation
of a particle symmetry which is itself fundamen--
tal (in that it cannot be constructed from under-
lying symmetries). Thus, the existence of a
spin-~ quark would be very damaging to the
theory.

Before that can be properly effected there are
various questions to be answered. In order to
use (I) properly, we had to construct a quantum
mechanics for the dynamical forms. We did this

in terms of states associated with the eigenvalues
of the dynamical forms on given three-submani-
folds of M. The resulting quantum theory had the
same formal appearance as the functional inte-
gral definition of traditional quantum field theory.
Its interpretation is decidedly different, however,
since there is no notion of time present in the
formalism. We found that quantity only arose by
taking the classical limit, effectively S-O. Thus,
physically experienced time (and space) are to be
regarded as constructs available only at a certain
approximate level, and only then if the environ-
ment is correct. What, then, is the correct in-
terpretation of the quantum-mechanical forma-
lism in the absence of the usual notion of time/
We have tried to set up a consistent answer to
this question, but admit that when time is to be
banished from discussion it is very difficult to
make precise statements. Vfe seem to be so
thoroughly imbued with time as to find it almost
impossible to think without it. Yet we have to do
so if it is to be created from our formalism.

Another question of importance for our pro-
gram is that of evaluation of the functional inte-
gral (21). It is different from the traditional one
in being devoid of backgiound fields. Can it be
evaluated without their introduction'p Even its
definition may not be made sensible without the
use of some symmetry breaking; since the usual
problem of group invariance of the integrand has
to be overcome by some such method, with the
associated introduction of Faddeev- Pop'ov ghosts.
These are problems which require further analy-
sis ~

The final conclusion we reach, modulo the re-
solution of the above problems, is that space and
time disappear as @-~ and that all events occur
as manifestations of the allowed dynamics on a
differentiable manifold. Thus, the question as to
what happened in the first 10 43 sec of the universe
or what will happen in the last 10 43 sec to matter
at the center of a black hole is to be answered by
the realization that time itself has lost its meaning
for such events. Looked at from such small time
units as 10 43 sec time itself is not meaningful.
We must regard experience as determined by the
underlying structure on M itself; the purpose of
science is to discover the detailed nature of that
structure. What determines such a structure on
M is clearly the next question; it also clearly goes
beyond the bound of the present analysis.

'~For a review of progress in this area see, for example,
Quantum Gravity, edited by C. J. Isham, H. Penrose,
and D. W. Sciama (Oxford Univ. Press, London, 1975);
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(Wiley, New York, 1975).
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