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By studying constrained local supermultiplets, we couple a nonlinear realization Qf supersymmetry to
supergravity and investigate the super-Higgs mechanism.

Immediately after the formulation of supergra-
vity, "attempts were made to couple it to various
supersymmetric matter systems. ' One system
which attracted attention was the nonlinear reali-
zation of supersymmetry, ' since such a coupling
would permit the investigation of the super-Higgs
mechanism. ' Coupling was achieved in two and
three dimensions, ' but heretofore the problem has
remained unsolved in four dimensions. "

Recently great progress has been made, both in
coupling matter to supergravity, ' "and in our
understanding of nonlinear realizations. Ivanov
and Kapustnikov have investigated nonlinear real-
izations of global (rigid) supersymmetry and their
relation to linear representations in great gener-
ality, "and in particular have shown that all non-
linear realizations are equivalent. Further, the
explicit relation between the Volkov-Akulov mod-
el' and a constrained chiral superfield has been
given. "

In this article, we use tensor calculus'" to gen-
eralize the constrained chiral superfield" to the
local case, and thus couple a nonlinear realization
to supergravity. %e investigate the super-Higgs
mechanism, and discuss the uniqueness of our ac-
tion. Although our entire analysis could be done
using only the tensor calculus and working only
with components, at ti~es we have found it con-
venient to use the more compact superspace for-
malism. ' Our notation is the two-component
spinor notation of Ref. 15.

In Ref. 13, the imposition of the constraints
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In global supersymmetry II'„C * is the kinetic mul-
tipjet. " Both the projector II~ and the kinetic mul-
tiplet have local analogs. The projector is"
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and g»„, is the spin--,' field, g is the complex
spin-9 auxiliary field of the supergravity multiplet,
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is the spin connection with spin--, torsion, A.», is
the axial-vector auxiliary field of the supergravity
multiplet,
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where C = 8+ 28„y"+8'p is a (right) chiral super-
field, was shown to yield a nonlinear realization
of supersymmetry equivalent to the Volkov-Akulov
model. ' Here a is a constant of dimension (length)'
and II~ is the global right chiral projector, which
in chiral coordinates takes the simple form

A»~, is the spin- —,
' curvature in two-component

form, "R=—8+2L9„q +8'(R is the Ricci scalar mul-
tiplet" in superfield form,

g = 8&g 8:8~ 8 and P:t/)~ ~~tP (2)

We consider the local analog of the constraints
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4'=0 and 4=a4II+4*,

or, in components,

(3a)

where the kinetic multiplet
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XA=a[-v2 QD A
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is the contracted affine connection. Yo solve these
constraints we observe that HEXA= 0 can only be
satisfied if 8 is proportional to X (this automati-
cally ensures that 8' = 0). This leads us to the
ansatz

Q=X (a+a„X +AX )

and $' an arbitrary function of X and X'. System-
atically collecting terms of the same order in X
and X', we obtain an explicit. solution of the con-
straints (3). This solution, however, is neither
manifestly supercovariant nor illuminating; we,
therefore, rearrange our solution and eventually
obtain the results
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where, for the constrained field, p, and 8 are man-
ifestly supercovariant ob jects:
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Substituting (4b) into (4a) yields Q and p explicitly in terms of X and X'. ,This gives the following nonlinear

realization of the local supersymmetry algebra" (the supergravity transformations are given in Ref. 9):

&X"=&(X,X')~"-~2~A B '8(X X')+~2&A 4""'X'=~"+". (5a)
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(cf. Ref. 7). Clearly, there exists a gauge (Ugauge) where X=O ~8=0 and 6'=I/a.
The action invariant under the transformation (5a) is found by applying the density formula'.

I

cf g cCsG 4
& y)x 2 ~~~X +Q y)x 8 +2 ~~~ ~~ +~ ~i»I +cic ~

l
I

A& A~ A ~, ~~SG+ (X D», X + X D»~X ) + ~ ~ .
2

where ZsG is the supergravity Lagrangian. '
In the U gauge the action (5b) reduces to
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The supergravity Lagrangian ZsG can be taken to include a separately invariant term,
ca~ a~~a~

'C~ me(S 24»~ye~ aust//&0 + c~c') ! (5d)

and necessarily contains the auxiliary spin-0 field in the combination -(e/3)SS*; integrating out the aux-
iliary field S (still in the U gauge) leads to a cosmological term, e(3m' —1/2a ), which vanishes for m'
= 1/6a', in agreement with Ref. 7, and leaves the spin- —,

' field with a mass m = I/a~6. In a general gauge,
the relevant terms quadratic or lower in X'are
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Again, integrating out g, @re find
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reduce to

V(4) = v, +v, x4,
W(4, II 4 *)=ge, x C

where

in agreement with Refs. 7 and 8. To see the super-
Higgs mechanism (the absorption of the Goldstone
spinor by the spin--,' field) one can either go to the
U gauge (as we did above) or redefine the spin--,'
field to absorb explicitly the Goldstone spinor by'
(ANN~ 4NAf~+ ( /~3) AAIXkf' (3) AM'XA
(where we have taken m'=1/6a'). This discussion
paraQels precisely that given in Ref. 1 for the
general coupling of the linear chiral multiplet to
supergravity.

The most general Hermitian locally supersym-
metric action for a self-interacting chiral multi-
plet without higher derivative terms quadratic in
the fields can be written as'"

dxZsG+ d ~g VC

gg~ = gli ~ X Q ~

j=1
(6c)

For 2ax (v, +so,) = —1, this is precisely the action
(5b) with the separately invariant term g„of Eq.
(5d) for m= v, . In this sense our action is unique.
One might also consider including terms of the
form U(II~4 *) in the action. However, this would
lead to higher derivative terms quadratic in the
fields. Such terms are expected to violate caus-
ality in the classical theory and unitarity in the
quantized theory.

From this nonlinear realization, we can easily
construct others. For example, consider a gener-
al real scalar ("vector") superfield V which sat-
isfies the constraints

+ W(C, II~C *)]+c.c. (6a)
V'=0 and V= ——Vx(g)„il~g)" +g)„ II~~" ) V. (7)
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Using the relations

C =0 ~CgC =0

W(e, II 4 +) = p u, , x (C)' x (II C +)~,
4i=&

and g is the chiral density of Ref. 14.
When we impose the constraints (3), Eqs. (6b)

n„,C =0 ~Ca„,~„4=e(~„„~„)e~@~„„,c =0,
where ~» ~„,, ~», are the curved superspace
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covariant derivatives, ""one can show that the
constraints (V) are satisfied if V=aC4 *. In the
notation of Ref. 17, this can be written as V= g4
x4. V is a natural nonlinear realization for ana-
lyzing the super-Higgs mechanism in supersym-
metric gauge theories. "

We have presented a nonlinea. r realization of
supersymmetry coupled to supergravity and used
it to demonstrate the super-Higgs mechanism. We
have shown that our action is unique modulo higher-
order derivative terms (and, of course, field re-
definitions). Finally, we have suggested a gener-
alization which should be useful in studying the

super-Higgs mechanism in supersymmetric gauge
theories.
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