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We consider a simple model in which the matter-antimatter asymmetry of the universe is brought about by
an effective two-particle interaction that violates baryon-number conservation as well as CP invariance. The
particle fields participating in the interaction are quantized, and their time development in an isotropically
expanding universe is found to all orders in the coupling con~tant. Pair production by the asymmetric
interaction, as well as symmetric production by the gravitational field of the expanding universe, appear
simultaneously in the solution. Taking an initial state in which no particles participating in the asymmetric

interaction are present, we find the created baryon-number density, We consider in more detail the case
when the matter-antimatter asymmetry is produced during a stage when the radius of the universe is small

with respect to its present value. We make numerical estimates of the created matter-antimatter asymmetry,
and put limits on possible values of the parameters of this model.

I. INTRODUCTION

Observational evidence seems to indicate that
there exists a fairly large-scale imbalance of
matter and antimatter in the universe. ' If the
homogeneity oi the universe includes that of the
matter and antimatter distributions, then one
would expect there to be more matter than anti-
matter in the universe as a whole. Such asym-
metry could in principle be present in the initial
conditions, but it is more satisfying to contem-
plate a model in which the initial conditions are
symmetric and the matter-antimatter asymmetry
arises through a dynamical mechanism. Models
of that type also have the possibility of being
tested against observations. The possibility that
the mechanism- for producing the asymmetry in-
volves elementary-particle interactions which
violate the conservation of baryon number and
other symmetries has been raised or discussed
in a number of papers. ' " Unified gauge theories
of strong, weak, and electromagnetic interactions
generally involve nonconservation of baryon num-
ber, "'"and such violations can also occur through
instantons in the Weinberg-Salam model. "

In this paper, we consider a simple model of
the baryon-number-nonconserving interaction in-
volving a complex scalar field Q which carries
a nonzero baryon number (which we take to be
unity) and a complex scalar field g which has zero
baryon number (which we treat as an antilepton"
field). The asymmetric interaction is of the gen-
eral form introduced in Ref. 9:

~(Q*Ag+ )*A*/),
where A. is a dimensionless coupling constant, R
is the scalar curvature of spacetime, and A is a
complex function of space and/or time. [In Ref.

9, R" ~R„.B& replaced R in Eq. (1.1) so that the
interaction would not vanish in a black-hole

.metric. ] This may be regarded as an effective
Lagrangian summarizing a set of more funda-
mental interactions which allow decay of a baryon
(or perhaps a quark) to an antilepton, or pro-
duction of a baryon-lepton pair (since R becomes
large when the temperature would be high in a
cosmological metric, one could regard R as
modeling the behavior of an interaction mediated
by very massive particles); or the Lagrangian
may be regarded as representing an interaction
in which gravitons interact with the fields in such
a way as to violate baryon-number conservation.
Because of the small value of R today, even if
conventional baryons participate in this type of
interaction, their lifetime would be much larger
than the known limits. For reasonable values
of X. this interaction is significant only when R
is large. The gravitational field is treated clas-
sically, while Q and g are quantized. The parti-
cles have arbitrary masses and additional baryon-
number-conserving couplings to the scalar curva-
ture. The metric is taken to be that of a spatially
flat isotropic universe with an arbitrary expansion
parameter (or "radius") a(t). Our results would
be only slightly altered in the spatially curved
Robertson-Walker universes. During the radia-
tion-dominated phase of the universe, R vanishes
identically, so that this asymmetric interaction
is absent except near the cosmological singularity
or the "bounce, " when it is significant, or near
the present time, when it is negligible.

We find [for arbitrary a(t) and A(t)] the general
solution of this problem expressed as a series in
powers of A, . Our solution exhibits both the purely
gravitational symmetric creation of pairs, '" and
the baryon-number-nonconserving creation of

Q) 1979 The American Physical Society



J. PAPASTAMATIOU AND LEONARD PARKER
\

19

pa, irs and decays caused by the asymmetric in-
teraction (such pair creation is permitted because
the gravitational metric acts as a time-dependent
external field) . For an arbitrary a(t) in which the
expansion is slow at early and late times, we give
the baryon number density at Late times to all
orders in A, . [We treat a(t) as though it were con-
stant at early and late times, but the results are
unchanged if a(t) varies sufficiently slowly at
those times that the particle creation rate at early
and late times is negligible; an example of such
an a(t) would be one in which a cosmological
"bounce" occurs ]W.e take the initial state to con-
tain no particles of the type which participate in
the asymmetric interaction (one could equally
well take an initial state represented by a sta-
tistical density operator). Thus, all such parti-
cles present at late times are generated by the
gravitational field and by the asymmetric inter. —

action. We find that to all orders in A. the created
baryon number density has no explicit dependence
on the parameters which characterize the purely
gravitational (symmetric) pair production. Never-
theless, the created baryon and lepton densities
do have terms involving products of A. and those
parameters.

The matter-antimatter asymmetry in this model
first appears in order A,'. Using our results to
that order in A. , we estimate the magnitude of the
asymmetry in a cosmological model in which the
universe first contracts to a minimum and then
expands to the present time. In obtaining our
estimates, the mass of the lepton is regarded as
negligibly small, and its purely gravitational in-
teraction is taken as conformally invariant (so
that no purely gravitational production of those
leptons occurs). " " The mass m of the baryon
is taken to be sufficiently large that the purely
gravitational production of baryons can be ne-
glected (this also means that thermal equilibrium
is not established for those particles). Alterna-
tively, the baryon can be regarded as massless
with conformally invariant coupling to gravity.
The quantity A(t) appearing in the interaction is
taken to have absolute magnitude unity and to
change phase by 2o at t =0, where the minimum
of the "bounce" occurs. Thus, the angle o is a
measure of the asymmetry of the interaction (when
the phase of ~ is constant for all t, no asymmetric
production occurs) Our estima. tes should remain
valid, as shown in the Appendix, also if the phase
of ~ changes by 2o in a smooth manner during the
period when the interaction is significant. The
approximate magnitude of the created baryon num-
ber density is given a,s a function of m, A. , o, and
the quantity G, of dimension length squared, which
characterizes the minimum of the bounce (G is

not necessarily the Newtonian constant). The ef-
fect is found to depend only weakly on the baryon
massm. For various values of A., G, ando, the
ratio of baryon number density to the total entropy
density (divided by Boltzmann's constant) is esti-
mated numerically, both for models in which the
asymmetric interaction produces most of the
energy and entropy density of the universe, and
for models in which that energy and entropy densi-
ty come mostly from other particles, and only
the baryon number density results from the inter-
action term. In the former class of models the
I atio of baryon number to entropy is independent
of A, (to second order in A), and A, is determined
as a function of G and the Newtonian constant
through self-consistency with the Einstein equa-
tion. The ratio of baryon number to-entropy is
conserved'" in the standard isotropic cosmo-
logical model (this asymmetric production pro-
cess is significant only at times near t =0, so
that the usual predictions of the standard model
are not affected). The observed value of that
ratio, in the range 10 to 10 ', is used to put
limits on A, o, and G (the parameter charac-
terizing the minimum dimension of the universe).
For example, we find that G' ' cannot be larger
than about 10 "sec (=10'x Planck time) for such
baryon-number-nonconserving interactions to be
capable of generating the observed matter-anti-
matter asymmetry.

The results of our estimates are expected to be
of the correctorder of magnitude for any model
in which the matter-antimatter asymmetry is
produced mainly by interactions which are ef-
fectively described by the present Lagrangian at
times when the expansion parameter a(t) was
small with respect to its present value. With the
present interaction, the asymmetry does not
vanish when the masses vanish. The considera-
tions of Refs. 9, l0, and 20 concerning massless
particles do not apply to this case, in which the
external gravitational field induces asymmetric
pair creation.

The general formalism and solution as a power
seriesto all orders in A. is given in Secs. II and
III. The second-order results and numerical esti-
mates placing limits on the parameters of the
model are given in Secs. IV and V. In the Ap-
pendix, Lorentzian forms for the scalar curvature
and the phase change are considered.

II. GENERAL FORMALISM

We consider a system of two complex fields
Q(x) and g(x) described by the Lagrange density

2 =~g[g""s„p*s„p+g""a„g*s„y—(m, '+ (,R)Q*p

—(m, '+ g ji!)g*g—AR(/*A(+/*A*/)] (2.1)
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with R the scalar curvature. We interpret P(x)
as carrying baryon number + 1 ("baryon field" )
and g(x) as carrying zero baryon number ("anti-
lepton field" ). Then the last terms in (2.1) violate
baryon-number conservation. We assume that
the fields Q(x), g(x) participate in other inter-
actions which conserve baryon number and es-
tablish their baryonic and leptonic nature re-
spectively; since such interactions do not con-
tribute to any possible baryon-antibaryon asym-
metry, we do not consider them explicitly in this
paper. Finally, the complex quantity A is a func-
tion of time and/or space; thus the last two terms
in (2.1) also break CP invariance. Therefore,
the Lagrangian (2.1) provides a simple framework
for investigating the cosmological implications of
baryon-number and CP nonconservation.

The invariance of the Lagrangian (2.1) under
constant-phase transformations

I(x)-"'0(x),
q(x) - e"q{x)

implies the existence of a conserved current:

Since
I

R =6(a 'a'+a 'a),

Egs. (2.7) imply that

R(t}=0 for t&iri, (2.8)

4(x) =- E e'"'"fl a(t)] "At;(t), {2.9)

so that at early and late times spacetime becomes
flat and one can define in and out Hilbert spaces
in the conventional way. Notice also that the
baryon- and CP-none onserving interaction vanishes
for t& iTi. To preserve the homogeneity and iso-
tropy of the model, we assume that ~ is a func-
tion of time alone.

Since the metric (2.6) is spatially flat, it is
convenient to decompose the fields in Fourier
components. As a purely mathematical device,
we imagine the system confined in a box of side
L with periodic boundary conditions at the walls
(the continuum limit f -~ will be taken at the
end); then

j~ (x) = 2~gg~ (4 +8& p+ (+B&g),

where

(2 2) y,(x) = Q e'~'" [La(t)] 'i'q-„(t),

with

(2.10)

B„j"(x) =0.
Therefore, the quantity

ds„j"(x)=-Q

(2.3)

(2 4)

ds'= dt' —a'(t)5; dx'dx'

ia, t)T

(2 6)

is independent of the spacelike Cauchy hypersur-
face o. It corresponds to the total charge if the
particles are charged, and in general to the con-
served sum of the baryon and antilepton numbers
in this model.

The equations of motion are

s„(Mgg"'s„p)+ {m,'+(,R)p+mAq=0,1

(2.5a)

B„(~gg""8„$)+(m, '+ $/)g+ARA*P =0.1

(2.5b)

Instead of continuing with a general form of g"",
we specialize to a spatially Qat, statically bounded
Robertson-Ralker metric:

-- 2r
k = —{n„n„n,), (2.11)

and n„n„n, integers.
In terms of the Fourier components, the equa. -

tions of motion reduce to

jP 3a 3a
dt' " a' ' ' 2a 4 a'p- (t) + —+m '+ $ R ——————

Q k (t)

+ mAy-„(t) = 0, {2.12)

3a 3a'
k

—q-(t)+ —+m '+ t.~ ————— y-, (t)2a 4a'

[e-.(t), ~'-, {t)1= t5-.+,
l~~(t), ~-,*,(t)) = t5~, ~,

(2.14a)

(2.14b)

and all. the other equal&time commutators among
them are zero.

For t &- T, one has

+mA+P-„(t}=0. (2.13)

We also note that as a result of the canonical
commutation relations, the operators Qk, $T, obey
at equal times

a(t) -g (2.7) 1 (), , t(&
&u{t)=- (ayre ' "'+5y-Te' "'} («-T)

where a, are constants. (2.15a)
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]. (in) &, f(in)
0i«)= -- (&t, » e ' "'+by-» e' -") («-T)

42(d 2y

1
xg»(t)= e '""' («-T).

"/2(d 2y

(2.21b)

with

1/2

+1,2k 2 ~ 1,2a

Similarly, for t&T

(2.15b) The solution of Eqs. (2.19) and (2.20) are known
for specific cases, and can be approximated under
various conditions, as in Sec. Dr' below.

The quantities

t»$(k't t')=t8(t —t')[0 (t), 0 (t')], (2 22)

~,(k; t, t') =- tb(t —t') [q-„(t),q-„(t')] (2.23)

4»(t) = ] (out); t f( out)
(~ - ' "+bg - ' '"') (t T)

1A,

(2.16a)

1/2
/ 2

+1~2~ 2 ~1 2
Qp

We will also need the solutions of Eqs. (2.12),
(2.13) for A. = 0; at all times,

(0) (in) f(in)
0» (t) =~exp»(t)+by» x&»(t),

(0) (in) f(in)
0» (t)-~g» xga(t)+by i, xp, (t)

(2.17)

(2.18)

where X», y&, are c-number solutions of

k'
2 3a 3a'

dt. Xg~(t)+ —,2+~i'+ &iR —
2 —,—4

—,Xg»(t) =o,

(2.19)

2 3a 3a
dt2 ~" a' ' 2a 4a'x (t)+ —+I '+$P- —————x.(t)=o

(2.20)

satisfying the boundary conditions at t &-T:
1

e '"»' (t &- T),xpa(t) =
4(d g»

(2.21a)

(out) . p
&

t(out )
q-(t) =-— (a -„e ' '"'+b~ - e'"'"') (t&T)

42&2'&

(2.16b)

are retarded Green's functions for Eqs. (2.19)
and (2.20), respectively; for example,

, d 3 a 3 a

I

gt2 a2 1 1 2 a 4 a2
—+ —,+m '+g R ——————h„(k;t, t')

=5(t t'),—

as can be seen easily by means of the yzuaf-time
commutation relations obeyed by the P», Q»

[Eq. (2.14)]. Using the decompositions (2.17),
(2.18) we find

t y(k t, t') = '8'(t -t')[xy (t)x*.(t') -x*.(t)x (t')],

(2.24)

t»&(k; t, t') = t8(t —t') [x,.(t)xg. (t') -x&*.(t)x,.(t')],
(2.25)

where 6(x) is unity for x &0 and zero for x &0.
These Green's functions allow us to convert

Eqs. (2.12), (2.13) into integral equations:

t, (k; t, t')R(t') A(t')y-»(t')dt',

t t(k; t, t')R(t') A*(t')P»(t')dt'.

The limits of integration can be extended from
-~ to because R(t') vanishes for ~t'~ &T.

The boundary conditions (2.16a), (2.16b) have
been incorporated in these equations. One can
easily deduce the following decoupled set of
equations satisfied by P-»(t), g»(t):

(o)
4»(t) =4» (t)— b, g(k; t, t')R(t')A(t')(» (t')dt'

dt"s (k 't t')R(t')A(t')a (k't' t")R(t")«(t")Q»(t"), (2.26)

(O)

4k (t) 0» t,, (k; t, t')R(t')&+(t')y» (t')dt'

dt"6 (k t t')R(t')&*(t')6 (k t' t")R(t")A(t")q-(t") (2.27)

If we introduce

c,(k; t, t') = &t~c,~t'&-
=t, (k; t, t')R(t')A(t'), (2.28)

(2.29)

we can rewrite Eqs. (2.26), (2.27) in the compact
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form

(O) (p)
Qk =@k —AGy. g-k +X GyGy@k, (2.30)

(o) (O) (O)

& k
= 4«+ G yF(XGy&i - 4k )

(O) - (O) (O)

~-k-~k +G&F(XG«k ~-k ).
(2.36)

(2.37)

- (O) (o)
XG-yak +x'GyGegk ~

Their solution is

(o) (O)

~k = 2 X'"(G&G,)"l&k -XG&~-k 1,
n=p

(O) (p)
&k

= Z X'"(G&G&)"l~k -XG,e; ].
n=p

For later convenience, we introduce

F g X2n+i(G G )n
n=p

F—g xan+ 1(G G )n
n=p

and rewrite the solutions (2.32), (2.33) as

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

Now we are ready to relate the in and out
creation and annihilation operators by examining
these equations at t&T. The functions X&k, X&k

for t & T are related to those at t &- T [Eqs. (2.21)]
by Bogoliubov transformations:

xek(t)= (u~„e ' &'+P~,e' "') (t&T),
/2~~, ~

Xyk (t) (ljgke + Pgke ) (t & T)

(2.38)

(2.39)

where n and P are complex constants satisfying

l~gkl'- IPgkl'= l~gkl' IPg.-l'=1 (2,40)

This identifies the positive- and negative-fre-
quency components of the first terms on the right-
hand side of Egs. (2.36), (2.3V). For the second
terms, we have, using (2.28), (2.24),

O~G~P(&G At) g(&)~&» f rM ~~('&Y)KR(P)A(~ }0 ~~(~G 0(») &())~t)

= axe. (~) «"&(t - t")X[.(t")&(t")A(t")«"IF(XG,e',"—4') ll')

—~xq (t)f e"~(~ t")x, (& )&(&"-)&(t 1(& "l&(&G,R'"0"")IV),-

and the positive- and negative-frequency com-
ponents can be separated by means of Eqs. (2.38),
(2.39).

The result can be written in the fogm

ll pe ~ dt~ Z(tiP ty tl, + tl.P t2 GQ t2P t3 X@A t3

h'pa=~ dt, &y~ t& ~ t&1'ti t2

(out)
( ) (s)

&@T = (nyk+ @ek)a yk + (P ye+ & gk)be k

( )
(ln)

( )
f(in)

+ k@t,a~k +h@gb~ k,

g(out�)

(in} g(in)
= (Pgk+P'g'a)ng T, + (~ya+P'e'k)&ek

( ) 'n)
( )+P @&ag-k +P @&~gk

(out ) ( )
'

(2)
nyk (&gk+ ~gk )ngk + (Pyk+ ~gk )~g-k

$(in)
+h&', a&Z+h&&b& k,

f(out) ( ) (in) ( )
f(in)

(Pgk+Pgk )sg-k + (etQA+Plpk )~Qk

(jn) ( ) t(in)
+Pyk a@-k +Pea ~ @k

(2.41a)

(2.41b)

(2.41c)

(2.41d)

x G,(t„t3)Xgk (t.)

h fp dt z@p ty + ty + t] t2 Xgg tp

p',"', =x (II«,)e,*.(t,)~(&,)F(t„t,)

x G~(t„ t,)X~„(t,),

p'g = X (IIdt,.)e,*,(t,) ~(t,)F(t„t.)

xG&(t2, t3)xq (t.)

p(') = dt. z~„t, u t, F t„t, X~„ t, ,

(2.42)

(2.43)

With the definitions in Eqs. (2.46)-(2.48) below,
the constants are given by
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I",,' = x (IIdt, )~„(t,)~*(t,)F(t„4)

~
Q (t3 t3)xt!ttt(t3)

t, ~*t, F t„t,
x G, (4, t,)x,*,(4),

(2.44)

~ 3,R(t) -3[c(3,RXgR(t) -P gRX yR(t)]

~„(t)= t [~„x,*.(t) -P,*,x„(t)],
II (t) = f~(t)A (t),

F(t„, t,) =«, I&It,) .

III. BARYON-ANTIBARYON ASYMMETRY

(2.46)

(2.47)

(2.48)

0k — dt Zkt SV tlEt t X~kt, ,

x G~(t„ t,)x&,(t,),

X G~(t3t t3)xftt(t3) x

P() dt gg t ~gt Ft t t

Pgk dt ' ~gk tl tl F tl t2 X@k tg

(2.45)

(3.1)

Substituting the expressions (2.41) and using Eq.
(2.40), this reduces to

»e(~g. I g" - ti e.I ga')+ l
I g"' I'

(4) 2—II ~/I'+ III~"'I'- ll 3,kl'=0 (3 2)

In this section we are going to derive a formula
for the baryon-antibaryon asymmetry using the
results of Sec. II. It is essential for this calcula-
tion that the operators given in Eqs. (2.41) are
indeed creation and annihilation operators, i.e.,
that they satisfy the correct commutation re-
lations. This can be proven formally by means
of the integral equations (2.26), (2.2'I); it is in-
structive however to verify it directly in terms
of the explicit solutions (2.41).

Let us examine the relation
(Ptit) (OUt)

[IIyk xs@I(' ] =6( k' ~

In the above formulas we used the abbreviations Using Eqs. (2.42),

Ixell'-lxt'll'=x'f(IIdt &*,.(t ),'.(t ) (t ) "(t )R(t„t )z"(t., t )c,(t. t)G,"(t,; t )Ix,,( , ) '(t t)-x(4) x(4)]x.

From Eqs. (2.24), (2.28)

x ~.(t.)x ~'.(t.) -x ~.(t.)x~*.(t.) = t [~*(t.) 'G&*(t., t.) ~(t,) 'G, (t—„t,)],
and from (2.34)

(3.3)

dt, dt3A, F t„ta G~ t» t3 G@ t3j t4 F tl~ t4 ~~ tl t4 ~ (3 4)

Therefore,

(* —xeI t('= xftet(IIdtt, ) ~ e„(t,)ee",it,)te(t,)te'(t, )R(t„t,)z'(t„t)(Ge(t„t,)w',(t,) ' —oe'(t, , t,)te(4) 'I

2 Be sA dt,. zek t, K t, F t„t, G~ t» ts g4', k t3 ~

/

In a similar fashion, one can derive

(xt!( (xt!
( f(IIdt ).*.=(-t )..".(()R(t, .t» (t. t)IG, (t. t) ".(t & G.,"(t., t ) .(t ) l--

Finally, using the definition (2.46) of z»,

x Re(ee xte' —t)e xeet) = 3 Re txf(IIdt &ee(t )e (t )R(t„ t )Ge(l t)ee„(t)„
tw

(3 6)

(3.6)

(3.7)

It is clear from these results that Eq. (3.2), and therefore Eq. (3.1), is correct The proof of t. he re-
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maining commutation relations proceeds along the same lines.
The operator which measures the baryon number in mode k at times t )T is

{Out) {OUt) f{OUt) {Out) f {Out) {OUt)
+yak +Q-k ~ @k +@k ~ @k ~ $k (3.8)

In general, one considers a state expressed in terms of eigenvectors of the in-Hamiltonian (we work in
the Heisenberg picture); such a state is represented by a density matrix

p = g ~n, in& p„&n, in~ .

The baryon-antibaryon asymmetry which develops in this state at t) T is given by
{out) {out) {out) {out)

&f(Ie)( -Ner( ) =»[P(&yk —Ng )]

(3 9)

%e can simplify this expression considerably by using the methods presented earlier in the proof of the
commutation relation (3.1):

~).".'l'-)(!'l), ' )()'f(n&) =l ()) "()))'() ))~"() ))(:()»))(:"()))) I.*,.())*;.())x",.())x,.())1.
(3.10)

One also has

I [, (f ) *, (f )X,* (f )X, (f )]=-«[, (f )," (f )]I [X, (f )X*, (f )]-«[X, (f )X*, (f )]I [,* (f ), (f )]

(3.11)

and, from (2.46), (3.3)

and can be calculated by using the known expansion of the out creation and annihilation operators in terms
of the in-ones. Since in the present paper we want to illustrate the effects expected when the interaction
(2.1) is present, we limit ourselves to the simplest case: The baryon-antibaryon excess produced in the
in-vacuum.

Using (3.8) and (2.4la), (2.41b), we obtain

~&.~ =-&» inl @"V"—&'V") I0 in& =2 «&.a(I "'-C")+ II "0 I'+ Il "-'I'- I&"-' I'- I&"-' I'.

1m[X,&(f3)X,'&(fe)l =2 [~"(f3) 'G,'(f6, fa) —~(f6) 'G ,(f3, f6)],

Im[z~ (t|)z (f )]=- Im[X a(ti)Xqa(t4)]= a [w (f4) 'Gq(ti t4) co{t|) 'Go{f4 f|)] ~

Hence, if we define

+)()y(f$ f2) «[~)()a(fj)~4tll(f2)] +yk(f2 t1)

II)))a(fi) f2) =Re[X,&(fi)X*,))(f2)] fly%(f2) f)) )

we have

2im[z„(t,)z*„(f,)X*„(t,)X„(t,)]=- W„(t,, f,)[u*(f,) 'G,'(f„f,) —~(f,) 'G, (t„t,)]
+II/)){f3) t6)[~ (t4) G())(ff) t4) + (f$) Gy(f4) f$)]

Substituting Eq. (3.15) in Eq. (3.10) and using Eq. (3.4), and

dtpdt3G@, t f& t2 E t2& t3 G~ t3& t4 —E tg& t4 —A. 5 tg —t4

(3.12)

(3.13)

(3.15)

(3.16)

we find

I~,",'I'- If,",'I'=-' m«, ) (f,) *(f,)~,(f„f,)&(f„f,)~*(f„f,)[G„(f„f.) *(f,) ' —G*(f„f,) (f ) ']

—2 (g«, )B (f2, t4) 1m[xv(t, )E(t„ta)E*(t„t4)G (t„t2)]

—2A. dt& A» t&, t3 Im w t& F t~, t2 G& t2, t3)

+2k. gt, B t, t Im so tf, F t&, t2 6& t2, t3 (3.17)
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Another term in Eq. (3.9) is

~

h[«~«)
(

—
I
p«[3«'

~

=2i (ddt, .)w(t, )w*(t3)E(t„ t~)E*(t~, t&) Im[z««(t[) z~««(t«) X««(t2) X„«(t4)] .

One has, in analogy with (3.15),

2 im[e»(t[) e»(t~) X.*«(t2)X««(t4)] =- ~.«(t„t,)[w(t, ) 'G.*(t4, t,) —w*(t«) 'G, (t2, t4)]

+J3««(t„t4)[w*(t,) [G~«(t„ t,) —w(t, ) 'G«(t„ t,)],
with B„«defi nedas in (3.14) with X» replacing X». Then

~h««( —(P«« I
——i (ddt, .)w(t, )w*(t,)A««(t„t,)E(t„t,)E*(t„t,)[w(t, ) 'G«(t4, t,) —w (t4) 'G„(t„t,)]

2, 4
*

3 E t(, t2 F* t3, t4 Qq t3, t(

Finally,

(3 18)

(3.19)

Using the identity

2 im[P ««(t[)X «(t2)] + «(t[ t2) +««(t[ t2)

we obtain

2Re[))„(h"'—(,",' ,),]=—2xf([[«,)[))„()„),) —A„()„),)])m[su(), ))l()„),)O,()„),)].

(3.20)

(3.21)

Using the identity

EG« = G+,
we can rewrite (3.22) in a highly symmetric form

~4 IM ~Q + ~$ ~2 + ~3 ~4 ~$ ~3 ~$ +$]jt ~2 ~4 ~ + ~$ 2 + ~3 ~4 G@ ~3 ~7

(3.23)

(3.24)

When we substitute Eqs. (3.17), (3.19), and (3.21) in (3.9), many cancellations occur and we obtain

AN ~
=- 2Im dt,. J3~~ t2, t4 se t& I t&, /3

I'* t&, t4 0& t3, t2 —B&& t2, & 83 Ii t&, S2 E* t» t4 Q t3, t&

(3.22)

where definitions of the various quantities appear-
ing are givenin Eq. (3.13),Eqs. (2.46)-(2.48), Eqs.
(2.28)-(2.29), and Eqs. (2.34)-(2.35). This is our
final form for the asymmetry.

In the remainder of this section we comment on
its implications:

(i) The parameters o(@„P&«,n», and P&«of Eqs.
(2.38), (2.39), which represent the purely gravita-
tional production of particles, do not enter in the
expression for the asymmetry. They do appear
in the formulas for N@g, Ã@k, but they cancel out
in the difference.

(ii) Since E and E are of order X, the asymmetry
is of order A. '; in fact, Eq. (3.24) involves only
even powers of A. . Thus, changing the sign of A. in
the Lagrangian (2.1) does not affect the result.

(iii) If the phase of A(t) is constant,

A(t) = jA(t) ~e*',

Eqs. (2.28), (2.29) show that

G@=e' /G~[,

(3.25)

m, =m„

Then

(3.26)

G«=e "/G~f,

and one sees from (2.34), (2.35) that E and E are
real. Therefore, each term in the integrand of
Eq. (3.24) is real, and the asymmetry vanishes.
If (3.25) holds, one can adjust the phases of g(x),
(t)(x), so that CP is conserved; we thus have veri-
fied that matter-antimatter asymmetry exists if
and only if CP is violated.

(iv) The model simplifies considerably when



ASYMMETRIC CREATION OF MATTER AND ANTIMATTER IN. . .

X@k Xrfrk X ~

G@= G~
———G,

~@k +gk +k &

and Eq. (3.24) reduces to

(3.27)
g (1) -w (2)W

Q, k Pg, k
g(3) -~ (4)W

@,k P II), k

I (2) —w (1)g g ( ) -A( )8P If, k

On the other hand, using Eqs. (3.27) in (2.42)-
(2.45), we find that

(3.2S)

(3.29)

p (out)
+@k

&yk

& (in)
Qyk

Qpk

b~$-k
(3.30)

g-k

and define

(v o)
V=I

Eo zrl
(3.31)

If we redefine ((), P as the baryon and antilepton
fields, respectively, and denote by a tilde the in-
states defined by these fields, we have

—
(Q 1nl+t (out&(t( "t& f)t (o"t&I) ( "t&IQ

=
I «T~'), .I'+ I

(&T&')„I'

l(fJTII').,I'- l«—TfI'), I'.
Now choose

(3.32)

I

&Nok =4Im (ddt, .)B»(t„tu)w*(t3)F(t„ t,)
I

x ~*(t„t,) G(t„ t,)

which is nonvanishing in general. However, if
(3.26) is satisfied, and if other interactions do not
determine which linear combinations of P and (
are the actual baryon and lepton fields, then the
identification of the asymptotic states is ambigu-
ous; any constant unitary transformation

»,(&l

(&1
leaves the equations of motion invariant in the
asymptotic region (t &

I Tl).
Let us write Eqs. (2.41) in the form

and similar relations with (t) and tr) interchanged.
Then, using the explicit form of the T,-,. 's,

(2)
13 Pk ~l»k t 31 Pk P $k

(4)~14 32
(3)

T41 P $k
(3)

»u p» + It(I», TU3 = p»+p(I

we obtain the relations

13 42& 14 41~ 23 32~ T24 T3] 0

When these are substituted in (3.34), we find

AN@k=0 .

We therefore conclude that, if the masses and $'s
for both fields are equal and if other interactions
do not require the original (&)) and P to be baryon
or antilepton fields, then the baryon-antibaryon
asymmetry is spurious; it can be eliminated by
any change of basis of the form (3.29), (3.32).

Finally, we remark that in this model, the mat-
ter-antimatter asymmetry is twice the baryon-
antibaryon asymmetry calculated above. This fol-
lows from the existence of the conserved charge,
Eq. (2.4). If we evaluate it in the in- and out-re-
gion and set the two expressions equal, we obtain

Since P(x) is the antilepton field, the lepton num-
ber in the in-vacuum state is

(Q
~ nit)t (out)f&(out& t (out& (out)

IQ 1n)
Pk lt&k

g& gin)g (in) y~ (in)$ (in) + g~ (m)a (In) yf (in)$ (in)

Pk @% gT& @k gk yk yk yk

f (out) (out) yf (out)y(out)
(II&k $k @k

t (QUt) (QUt) bt (out)5(ollt) (3 34)
yk yk qk gk

with cr an arbitrary real constant phase. Then

&Ng, = ll: I T,.I'+ I
T„I'+

I T..I'+ I T..I'

—IT. I'- IT..I'- IT I'- IT..I'I

+ Rel.e (T T»3+ tu 3u T T* T33 u») j

and Eq. (3.35) gives

EN@k —AN~„= 0 .

Therefore, the difference between the number of
particles and antiparticles is

(3.33) ANk =—AN@k + AN~k = 2 EN~k . (3.35)
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IV. RESULTS TO SECOND ORDER

lt is clear from Eq. (3.24) that the matter-antimatter asymmetry first appears in second order in X. It
will be useful for making specific estimates to give the various results explicitly to second order. To that
order, one finds from Eqs. (2.41), or directly from the integral Eqs. (2.26)-(2.27), that

a ~' = [n»(1+iX Hi) —iA. p)qH~]a + [piq(1 —QH4). +iX n»H2]bQA;

zX [n»ij Pggi3]a
' ' —iX [n»I2 —Pg~i4]b

. gk y, -k

b' &'"'i = [n~+„(1 —zX'H, )+in'p~~, ]b" '+ [p»(1+a'H, ) i~—'n)„H, ]a' '&

+iX[n)~I, —p»I2]bt ~ '+iX[n)„I3—p»I, ]a~ ~,
y-k

a '&""= [n&~(1+ iX'H&, ) —iX'p&~H&, ]a '"'+
[p&,(1 —i&'H&4) +iA 'n

&„H&,)b
Qs—

(4.1a)

(4.1b)

(4.1c)

bt ~ '~ = [n~~(1 —iX H~ )+9. ptqHt, ]bt~~ "'i+ [pt~(1+zA. H@) —iX n~jH~ ]a~

i+A [ n~+qif —pt~i3*]b P~+iX [n~qIf —ptqi~~]a~ (4.1d)

where

I~= dt's t A t Xy~ t gyp t )

I, = dtRt At X@~t X&„t

I,= dtRt At g&~t X&~t

dt.a(t )A(t )q»(t )yg, (t ),

H, = dt dt'Rt At X „t Rt'

(4.2a)

(4.2b)

(4.2c)

(4.2d)

(II""")=(0 inlat'""a"""Io, in)
Qk @k

=
I p» I'+&'(II.I'+

I pg. l'(II. I'+ II.I')

+2 Re[n»p»(iH2 —I2if)]], (4.4)

and the number of antibaryons is

(Ã""'&)=(0 inlb~1'"~b('-"'IO in)
@k +k

=
I
p»l'+~'&li, l'+

I p„l'(II, I'+ II,I')

—2 Re[n &„p$,(i H, + r+I,)]], (4.6)

where we have made use of Eq. (2.40), and of the
identitie s

(4.6)

xA*(t')A&(k, t, t')}t& (t'), (4.3a) 2 lmH, = II, I' —II,I' . (4.'7)

H, = dt dt'A t A t ~~~, t Rt'

xA*(t')A, (u, t, t')q~, (t'), (4.3b)

B3= dt dt'8 t A t y@„ t R t'

x A*(t '}a&(k, t, t ')y~, (t '), (4.3c)

where Im denotes the imaginary part. One has
similar expressions for the average numbers of
leptons and antileptons in mode k. .The expecta-
tion value of the baryon number in mode k is thus

AX"""=(II""")—(I7""")=x'(lI I' - lI I') (4.8)
yk

where use has been made of the identity

H4= dt dt'Zt At q„t Zt' H, —P3 2I2I3 2I2I4 ~ (4.9)

xA+(t')s~(u, t, t')X~+,(t'), (4.3d)

and the H, &(j = 1, 2, 3, 4) are d. efined by inter-
changing A with A* and the subscripts Q and g in
the H,. defined above.

If the state is the in-vacuum IO, in), then the ex-
pected number of baryons in mode k at late times
ls

Equation (4.8) may also be obtained directly from
Eq. (3.24) to second order in X. The number of
baryons in Eq. (4.4) involves both the purely
gravitational particle creation through the appear-
ance of n and P, as well as a term which remains
when P vanishes. The latter term is due to the
production of baryon-lepton pairs by the interac-
tion involving X. This pair production 'is energet-
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ically forbidden in flat spacetime (even if R did
not vanish), but is possible here because of the
time-dependent external gravitational field. It is
only this term that contributes to the baryon num-
ber of Eq. (4.8), which is therefore essentially in-
dependent of the purely gravitational component of
the particle production. As noted earlier, &w and P
do not appear in AN ~,

"' to all orders in A. .
The above expectation values all refer to the

volume (La, )2. Therefore, the average number of
baryons per unit volume at late times, obtained by
summing over all modes and going to the conti-
nuum limit, is

(N&'"") =(2w'a, ') "

=X2(2w2a ') '

dkk2(b2t-„b2f)

dkk'&I, ~' (5,5)

and

T-[Eq. (5.3) differs from the X(t) obeying the
boundary condition of Eq. (2.21) by an unimportant
constant phase]. In this ease, the expressions to
second order in X for the number density of lep-
tons and antileptons created by the interaction
simplify to

(N&'"'&) = I&m(m+) ' g (N"""
$k

(N &'""))= (2w'a ')-' dkk2 (a~21 a„;)

=(2w'a, ') ' dkk'(N" ')
&t& k

(4.10)
= &&2(2w2a ')-' (5.8)

Similarly, the average density of antibaryons at
late times is

(N""') =(2w'a ')-' dkk'(N" &) (4.11)

and the average baryon number density at late
times is

~&0()&& (2 2 3)-1 duo'~N&'"'&
&t& k

or

t&.N~"""=Z'( 2'wa, ')- (4.12)

m2=0 4=6. (5.1)

V. ESTIMATE OF THE MAGNITUDE OF THE EFFECT

In this section, we estimate the baryon-anti-
baryon asymmetry in a specific example, assum-
ing that the lepton is sufficiently light that its
mass can be neglected. In particular, let

where N~ refers to leptons and N~ to antileptons
in accordance with our definitions.

The expression for the created baryon number
density is given by Eq. (4.12), namely

&&"""=&'(»'~ ) fd»'''((& (*- (I (*) (5 ))'
0

(This also equals the created lepton number den-
sity, as the difference of the baryon and lepton
numbers is conserved. ) Production of baryon-
lepton pairs by such an interaction in flat space-
time is forbidden by energy conservation, but in
the expanding universe the coupling to the time-
dependent gravitational field makes the process
possible.

The baryon under consideration is assumed to
satisfy conditions such that one can neglect the
creation of baryon-antibaryon pairs purely by the
gravitational field. That pair creation will be
negligible if the baryon mass m, is never much
less than ~a/a ~, or alternatively, if m, =0 and

In either ease, one has (exactly, if m, =0,

Then there is exactly zero production of these
leptons purely by the gravitational field" "al-
though there will be production caused by the in-
teraction term. Thus,

(5.2)

and the exact solution of the zeroth-order lepton
field equation [Eq. (2.20)] is

and the VifKB solution

y»(t)= [2&d,(1,t)] ' ' exp i &(),(—1,t')dt',

(5.8)

(5.S)

X„(t)= [2&d,(2, t) ] '"exp—

where

~„(2,t )at, (5.2)
y2 1/2

&d„(l, t) =,,
)

+m, '
Q t(t

(5.10)

(u,(2, t) = k/a(t), (5.4)

and t is an arbitrary constant time earlier than

In this approximation one has (N~& "")= (N2&'"") and
$7&'"& &) = (72&'"'&), as given in Eqs. (5.5) and (5.6),
respectively. The quantities I, and I, take the form
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and

&&exp -z dt [+,((,'t )+ w, (2,'t')] I.

t
x exp i «' co, 1, t' + ~, 2, t' 5.11

t

R =6(a'a 3+aa ') (5.14)

take the state vector to be the vacuum for t&-T,
but more generally one could use a density matrix
to describe the state of the system, or one could
include some classical background matter. The
construction of a self-consistent model during the
contraction phase would probably require such
complications, which we avoid here (alternatively
one might start with an initially anisotropically
expanding universe, and have the @nisotropy rapid-
ly damped by the particle creation26 ").

The scalar curvature

(5.12)

If the only particles created significantly were
the baryon and lepton under consideration (or a
number of types of similar particles), and the
other types of particles are formed through sub-
sequent decays, then the ratio of the baryon num-
ber to the total number of particles and antipar-
ticles created initially would be

AN&'"'' J~ dkk ()I2 I
—[I~ I )

0

2 J, dkk'()I, ('+ [I, (')
(5.1s)

This ratio is independent of the interaction
strength X, which would have to be chosen so that
the total created energy density is consistent with
the Einstein equations. The entropy density of the
created particles divided by Boltzmann's constant
would be of the order of p()(I), so that Eq. (5.13)
gives the conserved ratio of the baryon number
density to the entropy density. The choice of A(t),
or in particular its phase, would determine that
ratio, which is observed to be in the range 10 to
10

More generally, other particles, not involved
in the asymmetry interaction will be created by
the expansion of the universe, and one may expect
the density of those particles and antiparticles to
be the dominant contribution to PQN), while
&N~""" is still determined by the asymmetric in-
teraction through Eq. (5.7). Both possibilities are

. considered below.
To make estimates in a simple case, consider

a universe which contracts to a minimum value
a(t) =ao at t =0, and then expands into the present
universe. Then t&-T refers to a time before the
universe started contracting, or when the con-
traction was slow, and t&T refers to a time when
the expansion has ceased or become slow, such
as the present time. Possible causes of this
"bounce" might involve violation of the energy
conditions of the singularity theorems through ef-
fects such as cosmological particle creation or
black hole evaporation. "-" For simplicity, we

R(t) - G ' and a(t) - a for -G' ' & t ~ G (5.15)

and R(t) negligible outside that interval. We take
A(t) to have a simple form in which lA(t)l=1 and
A(t) = A*(-t). In particular, let

e "for t&0

e" for t&0,
(5.16)

where o is a real constant. In the Appendix, we
consider a Lorentzian form, R(t) =(t'+G) ', for
the scalar curvature, and a similar smoothly
varying function for A(t) which undergoes a phase
change of -2o in the interval from t =-G' ' to
t =G' '. We find that our results are not changed
appreciably.

Then Eqs. (5.11) and (5.12) yield

G 'exp(t5)
[&d,(l, 0) (d,(2, 0))"'&d„(0)

and

x(sino+ sin[G'~'w»(0) —a]) (5.17)

will go as t ' during the period when a(t) follows
a power law (such as t'~' for a dust-filled uni-
verse). During the radiation-dominated phase R
vanishes identically (a ~ t't'), so that the interac-
tion vanishes during that period. Near t =0, during
the period of the bounce, a(t) departs from a power
law, and R(t) becomes large and positive. We sup-
pose that the expansion near t=0 is characterized
by a quantity, G, of dimension length squared in
the present units (k =c =1). If the minimum is
characterized by the Planck time (5.4 x 10~4 sec),
then G is the Newtonian gravitational constant,
but it need not have that value. Thus, we suppose
that the scalar curvature R(t) reaches its maxi-
mum value of order G ' during a time interval of
order G't' near t =0, and that R(t) is relatively
negligible at other times. During that time inter-
val, a(t) is roughly of the order of a„ its mini-
mum value. In summary, for the purpose of mak-
ing estimates, we take
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G ' exp(-i&)
[co,(1,0)~,(2, 0) ]'"~»(0)
&f-sine+ sin[G'/'~»(0) + o ]), (5.18)

dt'&u»(t') . (5.20)

where

(g„(t)-=~„(1,t) + &,& „(2,t) (5.19)
The baryon number density for t& 7.' is then given
by Eg. (5.7) as

(5.21)
X'G ' sin(2v) "d& ' sin[G'/'v»(0)](1 —cos[G' 'a»(0)])

~,(1,0) .&,(2, 0)[~,.(0)]'

As the baryon nonconservation is negligible for t)G'/', the baryon number density nN ~(t) for t &G' ' is
given by the same expression with a, replaced by a(t). Thus, putting m, =m, m2=0, and changing the vari-
able of integration to y =(&1,'a, -'m+1)' ', we have

LN ~(t) = [a,/a(t) p!&2v 'G '/' sin(2(x)E(m),

where

sin((Gm2)1/B[y+ (y2 1)a/2] &
~ siny(Gm2)i/z [y + (ya 1)|/2]}

F(m) -=(Gm')-'/' dy + ( 2 1)1/2 J2
0

(5.22)

(5.23)

The factor of [ao/a(t)]' takes into account the effect of the expansion on the density. Defining

g (Gmn)1/2 (5.24)

one finds that

F(m) = 2 [(1+-',g') Ci(2g) —(1+ -', g') Ci(g)]- —,'2 [2(g+g ') sin(2g) —cos(2g) —(g+ 4g ') sing+ cosg], (5.25)

where Ci(x) is the cosine integral,
00 ( 1)»~2»

Ci(g) =- dtt ' cost =y+ lug+ g 2n 2n !
(5.26)

with y =0.57V. . . , the Euler constant. Notice that when m =0,

F(0) = 2 ' ln2 =0.347 . (5.27)

We have calculated F(m) for a representative set of values of m ranging from G '/' to 0, and find the fol-
lowing values:

F(G '/') =0.124 F(0.8G '/2) =0.173, F(0.5G '/') =0 249, F(0.1G '/') =0.341. (5.28)

The quantity F(m) changes by less than a factor of 3 in the range of interest, so that &1&I~ has only a weak
mass dependence.

~ our model, &N~ does not vanish when m =O. The considerations of Refs. 9, 10, and 20, according to
which ~N~ would be expected to vanish when the mass is zero, do not apply to the present interaction in
which gravity acts as an external field which induces asymmetric pair production.

Taking m =0.5G '/' as a representative value, the baryon number density of Ztl. (5.22) is

t tI~(t) = [a, /(at) }X' G' ' sin(2o)(2. 5 x 10-'), (5.29)

where t ~G'~~

Using the expressions for I, and I, in Eqs. (5.17) and (5.18), one finds that the sum of the number den-
sities of baryons and antibaryons created by the interaction is

{lV~(t)) + P~(t) ) = [a,/a(t) ]'2x'G '/'v 'H(m),

where

H(m) —= (2 —cos2o)(3g) ' —cos2o( —', [sin2g+2(g+g ') cos2g]+(1+-', g') si(2g))

-(1—cos2o)(-', [sing+ (g+4g ') cosg]+ (1+ -', g ') si(g)},

(5.30)

(5.31)
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si(g) = sint

( 1)n+1+3n 1-
2 ~ (2n —1)(2n —1)!

where g was defined in Eq. (5.24), and

(5.32)

pect that the exact results do not differ by orders
of magnitude from these perturbation theory re-
sults. The conserved ratio of the baryon number
density to the entropy density is given by Eq.
(5.13) in this simple model, or using Eqs. (5.34)
and (5.29), by

One finds the following values of H(m):
t3N4, 0.025 sin(2o')

g(+ [0.46 —0.10 cos (2o)]
(5.38)

H(G '!3)=0.80 —(0.40) cos2o, For the observed range of 10 ' to 10 "this gives
H(0.8G ' 3) =0.92 —(0.39) cos2o, 10-7~ 0~10-' . (5.39)
H(0 5G ' 3) =1.13 —(0.24) cos2o,

H(0.1G '/3) =1.47 —(0.09) cos2o,

H(0) =v/2=1. 57.

(5.33)

The sum of the number densities for leptons and
antileptons is also given by Eq. (5.30). For m
= 0 5G '/' one has

K,(t)&+ X,(t))
= [ao/a(t) J'13G '/3[0.23 -0.05 COS(2O)] . (5.34)

We remark that this result includes only the par-
ticles produced by the interaction, and would not
be valid if purely gravitational production of these
particles were appreciable. On the other hand,
our estimate of &N4, Eq. (5.29), would remain ap-
proximately valid because the only effect of gravi-
tational production on &N~ is through modification
of Eq. (5.9) which enters in the calculations of I,
and I,.

Taking G to be the Newtonian constant, the Ein-
stein equation with zero cosmological constant re-
quires a total energy density p(t) of

On the other hand, if ~ is small with respect to
0.8, then the pairs created by the asymmetric
interaction would provide only a small fraction
of the energy density required by the Einstein
equation. Let us suppose that the required energy
density comes from a hot gas of particles and
antiparticles having masses small with respect
to G ~/2 and contributing zero to the total baryon
number. These particles could result, for ex-
ample, from pair production by the time-chang-
ing gravitational field near t =0. Then the energy
density at t = G' ' is that of blackbody radiation,

p =no 3k; r'/30, (5.40)

s =2nm ks T /435, (5.41)

where n is the number of different kinds of par-
ticles present (counting each spin and charge sep-
arately), T is the temperature at that time and ks
is Bo1tzmann's constant. Thus, 7 is determined
by Eq. (5.35) or (5.36). The entropy density at that
time is (ignoring factors of 3 for fermionic con-
stituents),

8mt: (a(t)) (5.35)
so that

+/k (2/45)n1/4P/3(30p)3/4 (5.42)
For t = G' ' when (a/a)3 = G ', this gives

p=(O.12)G-' (t=G'") (5.36)
Taking n'/' =1 and substituting Eq. (5.36) (the
Einstein equation) for p, one finds

In the simple model in which the baryons and
leptons participating in the asymmetric interac-
tion are the only particles created near t=0, if
one requires consistency with the Einstein equation
for t a G'/' then Eq. (5.36) effectively determines

The average energy of a created lepton at
t = G'/' would be roughly the same (0.5G '/') as
the baryon mass, so that the total energy density
of the created particles and antiparticles is ap-
proximately given by the expression in Eq. (5.34)
multiplied by G '/'. Since (ao/a)3 =1 when t= G'/33

consistyncy with (5.36) requires

(5.37)

Then. the perturbation result would not be very ac-
curate, but on dimensional grounds one would ex-

s/k, = O.21G-" (5.43)

= A3(0.12)sin(2o).
s/k~

(5.44)

with ~ =$37 the fine-structure constant, one ob-
tains the observed range, 10, to 10, for

10 'p 0m 10-5 (5.45)

With & = (1/137)' one finds that the ratio in Eq.
(5.44) cannot be larger than 0.34&& 10 3, and that
when that ratio is in the range from 0.34x10 ' to
10 "the angle o is in the range

at t= G" . Then the conserved ratio of baryon
number density to entropy density is obtained from
Eqs. (5.29) and (5.43) as
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—,'va ua 0.15, A. =(1/137)' . (5.46)

For smaller values of ~, one cannot produce a
ratio of baryon number density to, entropy density
which is sufficiently large to be in the observed
range in the present model.

Finally, suppose that the dimension G which
characterizes the minimum of the expansion is
different from the Newtonian constant, which we
now denote by G„. Then Eq. (5.36) is replaced by

p =—(GG ) ' at t= G' '
N (5.47)

(5.48)

In order for Eqs. (5.4'7) and (5.48) to agree one
must have

immediately after the "bounce. "Then two possi-
bilities must be considered. First, if the energy
density of the. universe is created mainly by the
asymmetric interaction, it follows that the created
energy density i,s again of the order of magnitude
of Eq. (5.34) multiplied by 2 (to include the lep-
tons) and by 0.5 G ' ' (the approximate average
energy'per created baryon or lepton). Thus, the
energy den'sity of the.created particles is

p-0 2~'G ' at t-G' '

Thus, for a model of the present type to be capable
of generating the matter-antimatter asymmetry of
the universe, the time characterizing the stage of
the expansion when the violation of baryon number
conservation occured must be no greater than
about 10' Planck times (about 10 "sec}. Thus,
models in which the universe never was character-
ized by a time close to the Planck time are not
capable of generating the. observed asymmetry by
the mechanism proposed here. On the other hand,
it is clear from the above considerations that one
can construct reasonable asymmetric interactions
which will generate the observed asymmetry,
provided the minimum characteristic time is not
much larger than the Planck time.
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0.8(G/G )'/2 (5.48)
APPENDIX

= &'(0.12) sin(2v)(Gs/G)'~' . (5.51)

Then if we make the reasonable assumption that
A.
' sin2o & 1, it follows that the ratio AA'P(s/ks)

will lie in the observed range of 10 ' to 10 'o only
1f

C &10"6„. (5.52)

Thus, if the bounce were characterized by a
length much larger than the Planck length, G'„',
then the value of ~ would be unreasonably large
[for example, with G= (10 "cm)'=104' G„ the
value of A. would be of order 10"]. The second
possibility to be considered is that the energy den-
sity required by Eq. (5.4'7) comes from other
sources. Then Eq. (5.43) becomes

s/a, = 0.21(GG„)-", (5.50)

while Eq. (5.29) is not altered. Using those re-
sults at f = G' ' when a, /a = 1, one finds for the
conserved ratio of baryon number density to en-
tropy density:

In this Appendix, we repeat the estimates of
Sec. V for a different form of the scalar curva-
ture and of A(t). Specifically, we choose

1
R(t) =

A (f ) s-to(t)

gx /ag

o(t) =e

(A2)

In accordance with our previous estimates, we
assume e to be very small.

The reason for this calculation is twofold: We
want to see how sensitive our results are to the
specific choice of R(t} and A(t), and to examine
whether the discontinuities in R(t) and the phase
of A(f) used in Sec. V affected the estimates
significantly.

Using the same approximations as in Sec. V,
we find that, , to first order in &,

4(u, (0)(u, (0)
dt, dt, R(t, )R(t,)[1-iu(t, ) +io (t, )]exp[- i (f, —f, )&u»(0)],

dt,R(t, )R(t,)[1-io(t, ) +io(t, )]exp[i (f, —t, )&u»(0)] .
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[I, and I, are defined in Eqs. (4.2b), (4.2c).]
Substitution of Eqs. (A1)—(A8) yields

~2G-1

4&v, 0 cu, 0

&& exp[- 2G' 'v (0)]

(0) (0)
[1-« ~,.(o)1

(A4)

and

F'(G ' ') =0.027, E'(0.8G ' ') =0 038

E'(0 5G ' '}=0.065, E'(0.1G ' ') =0.117,

F'(0) =0.125,

H'(G '~') =0.007, H'(0. 8G '~') =0.012,

H'(0 5G ' ') =0 055 H'(0. 1G ' ') =0.176

H'{0) =0.250.

& exp[- 2G'~'u)„(0}]. (A5}

) 3 ~G-s/2
E'(m),0

y

(A7)

with

E'(m) =-,'(2g+1)e "—,'g'E, (2g)—,

H'{m}= —,'e "——,'gZ, (2g),

(A8)

(A9)

{Gyp(2)1 /2

-2$'&

Representative values of E'(m), H'(m) are

%hen these expressions are substituted in Eqs.
(4.10), (4.11),-and (4.12), one obtains

To compare with the results of Sec. V, we
identify the small parameter c in Eq. (AS) with

the parameter 2o' in Eq. (5.16), since the phase
changes by that amount in the interval from t
= —Gi/2 tp ~ Gi/2 Then we find that the ratio of the
baryon number density as calculated in this Ap-
pendix over the one calculated in Sec. V ranges
from 0.528 to 0.889 as the mass changes from
m = G ' 2 to m =0. The corresponding ratio for
the density of baryons plus antibaryons ranges
from 0.022 to 0.196 when the mass is varied within
the above limits.

ln the context of the approximations made in this
paper, the difference between the two sets of esti-
mates is unessential. This is particularly true in
the case of our estimates of the baryon number
density ~@.

e therefore conclude that our estimates are
relatively insensitive to the special choice of R(t)
and A(t). In particular, the nonvanishing result
for m =0 is not an artifact of the discontinuities in
B(t ), A (f ) used in Sec. V.
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