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The parallel propagator on a circular orbit in Schwarzschild space-time is given. By use of it, we find that
the geodesic precession of a gyroscope in free fall which moves along a timelike circular orbit of radius r, is

0 = (/re)(m /7)1 = 3m /r)~""* — 1)].

As is well known, the parallel transport of a
vector v* along a curve ¢: x*=x'(u) in a Rie-
mannian manifold of » dimensions is given by
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When we now write v*0 for the vector at a point
Do, say at u=u,, the solution v* of (1) is expressed
in terms of the parallel propagator? g‘; as

1)i=§ijovj°. : (2)

Since the vector v*o may be chosen arbitrarily
at p,, substitution from (2) in (1) gives
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This is the equation of a parallel propagator
generating parallel vector fields along the curve
c.

In the following we shall solve (3) on a circular
orbit in Schwarzschild space-time. In Schwarz-
schild space-time the metric form is

1
( - i—m) ar? +7%(do?+ sin6d¢p?)

(1 2 )dt2 - (4)

The circular orbit lying in the equatorial plane
with an affine parameter u is given by
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where « and B are constants depending on the
initial conditions. This orbit is spacelike, null-
like, or timelike for 2m <7 ,<3m, 7,=3m, or
3m <7, respectively. When we take account of

(4) and (5), the equation of the parallel propagator
(3) reduces to
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where x'=7, x>=0, x*=¢, and x*=¢, andj
=1,2,3,4. In order to solve Egs. (6)-(9), dif-
ferentlatmg (6) and substituting (8) and (9) in the
result, we get

dzglj 231
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where y?= (1 =3m/ry)/a’r,*.
The general solution of (10) is expressed as
B, =AM 4By e, (11)
with the vectors A; and B;  determined by co-
incidence limits
lim glj():blj’ (12)
u—>0
dg
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Similarly, 33,;) and g% are obtained by sub-
stituting this gr‘jo in (8) and (9). Thus we get the
parallel propagator on the timelike circular orbit
(ro>3m) as follows:
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where a=m/7,. Formulas (14) may be applied to
the null-like and spacelike orbits by taking the
limits 7~ 3m and 2m <7,<3m, respectively.

We now consider, ‘with use of this parallel
propagator, the geodesic precession of a gyro-
scope in free fall which moves along a timelike
circular orbit. Taking the affine parameter u
for the proper time, we have the constants o and
B, from (4) and (5), such that
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We introduce the co-moving frame {&;} and its
dual basis {w'} attached to the gyroscope as
follows:

8 =558, o =t (16)

and these transformations matrices are given by
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where a=m/7,, {&;} is the coordinate basis
{8/0x%}, and {&°} its dual basis {dx‘}.
Transforming from the basis {&; } to {&;}, we can
calculate the parallel propagator g'; in the co-
moving frame by the formula g ;O—t ,,s,0 og® 1y
with the result
cosyu O sinyu O
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Let S* be the spin vector of the gyroscope.
Since the spin vector S* is defined to remain
orthogonal to the velocity dx'/du, i.e., S;dx*/du
=0, the following relation holds:

gic ” (m/r )1/2 .

1-2m /7 (20)

The spin vector S' in the co-moving frame can

similarly be obtained by st=41,5%, and then the
component s% reduces to zero by use of (20). Let
5o (x=1,2,3) be the spin vector at the point
P, (u=0) on the circular orbit, and let S% be the
parallel transport of s% at the point P
[ =u, =217 (ro/m)?(1 = 3m /r o)¥/?] where the
gyroscope returns to the initial spatial pointalong
the orbit. We can then define the scalar product
of S%0 and % by parallel transporting S% to the

‘ point P, along the time axis x*

As one can see from (19), the spm vector S%
is turning around the basis vector €;.- We may
therefore set S%0=0 for seeking the geodesic
precession frequency & of the gyroscope. Then
we have the angle between S% and S%,

cosbd = ‘—L&‘H (21)

[STol| [|ST]| ~ CO5T%e

where %= g‘ 3 SBO, and gj; =7;; in our co-moving
frame. Since yu,=2n(1-3m /7Y%, we get
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Further, we have 6 - 0 according to 3m/7,~ 0
and have 6 >0, so that

6=2w[1-( --37%)1/2]., | (23)

~Hence we obtain the geodesic precession fre-
quency as follows:
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and its direction is in the &; direction.

If we use the coordinate time ¢ =u/(1 ~ 3m /7 ,)"?,
the approximation of (24) to lowest order becomes
1€l = £ Gn. /72 om /7 )*2, which coincides with
Schiff’s formula.®
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