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Parallel transport of a vector along a circular orbit in Schwarzschild space-time
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The parallel propagator on a circular orbit in Schwarzschild space-time is given. By use of it, we find that
the geodesic precession of a gyroscope in free fall which moves along a timelike circular orbit of radius r, is

[[fl([ = (i/ra)(m/ro)'"[(i —3m/ro) '" —i)].

As is well known, the parallel transport of a
vector v' along a curve c: x' =x'(u) in a Rie-
mannian manifold of n dimensions is given by

6u du ' du

When we now write v'p for the vector at a point
P„sayat u=u„ the solution v' of (1) is expressed
in terms of the parallel propagator" g';, as

(4) and (5), the equation of the parallel propagator
(3) reduces to

d~ '.
&p + pl 3 + r pl —4 0 (6)

du ur ' " '0 1 —2m/rop

Vc =gs V

Since the vector v'p may be chosen arbitrarily
at P„substitution from (2) in (1) gives

(2)
dg' 1JO+ p3 1 -0

du ar 0

d 4
jP + P P4 g 0

du 1 —2m/r 4'g '0

(8)

(9)

~A pp
dC' gp+Ii ~ -I 0

~u du
' '"du~" (3)

This is the equation of a parallel propagator
generating parallel vector fields along the curve
C ~

where x' = r, x' = 8, x'= p, and x' = f, and j
= 1, 2; 3, 4. In order to solve Eqs. (6)-(9), dif-
ferentiating (6) and substituting (8) and (9) in the
result, we get

In the following we shall solve (3) on a circular
orbit in Schwarzschild space-time. In Schwarz-
schild space-time the metric form is

i.

C = 1 —— dr'+ x d0'+ sin Od

d2 1
& Sn+y2gi -p

du

where y' = (1 —3m/r, )/a'r, '
The general solution of (10) is expressed as

e~qu+
dp Jp gp

(10)

dt2

The circular orbit lying in the equatorial plane
with an affine parameter u is given by

Pu
2' u~ ' ' 1 —2m/r, '

2p 2—
. (5)

with the vectors', . andB; determined by co-
incidence limits

d~'
lim '" = — I"' g'-
g~ p du Q&p

2 33 Pp

+ i pl -4
1 —2m/~, 44' '0

(12)

(13)

where n and P are constants depending on the
initial conditions. This orbit is spacelike, null-
like, or timelike for 2m &rp&3ng, Kp=3m, or
3m &x„respectively. When we take account of

Similarly, g'& and g'; are obtained by sub-
stituting this g'; in (8) and (9). Thus we get the
parallel propagator on the timelike circular orbit
(r, )3m) as follows:
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where a =m/r, . Formulas (14) may be applied to
the null-like and spacelike orbits by taking the
limits xp-3m and 2m &xp&3m, respectively.

We now consider, with use of this parallel
propagator, the geodesic precession of a gyro-
scope in free fall which moves along a timelike
circular orbit. Taking the affine parameter u
for the proper time, we have the constants o. and

P, from (4) and (5), such that
(g'g-, ) =

—sinyu 0 cosyu 0

0 0 0 1

(19)

where a =m/r„pe;} is the coordinate basis
(S/Sx'}, and ((u'} its dual basis fdx'}.

Transforming from the basis (e,}to (e;}, we can
calculate the parallel propagator g'I in the co-
moving f~a~e by the formula g
with the result

cosyu 0 sinyu 0

0 1 0 0

We introduce the co-moving frame (e",}and its
dual basis g&'} attached to the gyroscope as
follows:

Let S' be the spin vector of the gyroscope.
Since the spin vector S'- is defined to remain
orthogonal to the velocity dx'/du, i.e., S,.dx'/du
=0, the following relation holds:

and these transformations rpatrices are given by
r,(m/r, ) 't'
1 —2m/r,

(20)

and
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The spin vector S' in the co-moving frame can
similarly be obtained by S' = t'~S, and then the
component S' reduces to zero by use of (20). Let
S"0 (o. =1,2, 3) be the spin vector at the point

P, (u = 0) on the circular orbit, and let S" be the

parallel transport of S p at the point I'
[u=u~=2vro(r, /m)' '(1 —Sm/ro)'i'] where the

gyroscope returns to the initial spatial pointalong
the orbit. We can then define the scalar product
of S o and S by parallel transporting S to the
point &p along the time axis x'. .

As one can see from (19), the spin vector S"
is turning around the basis vector'e", . We may
therefore set S'o= 0 for seeking the geodesic
precession frequency Q of the gyroscope. Then
we have the angle between S p and S,

S pS-
cos6 =

iiSe ii ii+gii
= cosyup i (21)

where S =g 8 Sso,. and ggy=q&J in our co-moving
frame. Since yu~ = 2v(l —3m/ro)'i', we get

3~ 'i'
5=+2vil — +2nv, n=O, +1,+2, . . . .

p

(22)
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Further, we have 5-0 according to Sm/~, -0
and have 5&0, so that

Hence we obtain the geodesic precession fre-
quency as follows:

(»)

(24)

and its direction is in the e~ direction.
If we use the coordinate time t =u/(I —3m/r, )' ',

the approximation of (24) to lowest order becomes
', (m-/~, ')(m/r, )'~', which coincides with

Schiff's formula.
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