Parallel transport of a vector along a circular orbit in Schwarzschild space-time

Ken-ichi Sakina and Jiro Chiba

Department of Electrical Engineering, Tohoku University, Sendai, Japan (Received 18 May 1978; revised manuscript received 21 December 1978)

The parallel propagator on a circular orbit in Schwarzschild space-time is given. By use of it, we find that the geodesic precession of a gyroscope in free fall which moves along a timelike circular orbit of radius r_0 is $\|\vec{\Omega}\| = (1/r_0)(m/r_0)^{1/2}[(1 - 3m/r_0)^{-1/2} - 1)].$

As is well known, the parallel transport of a vector v^i along a curve c: $x^i = x^i(u)$ in a Riemannian manifold of n dimensions is given by

$$\frac{\delta v^{i}}{\delta u} = \frac{dv^{i}}{du} + \Gamma^{i}_{jk} \frac{dx^{i}}{du} V^{k} = 0.$$
 (1)

When we now write v^{i_0} for the vector at a point p_0 , say at $u = u_0$, the solution v^i of (1) is expressed in terms of the parallel propagator^{1,2} $\tilde{g}^{i_{j_0}}$ as

$$v^{i} = \tilde{g}^{i}{}_{j_{0}}v^{j_{0}}.$$
 (2)

Since the vector v^{i_0} may be chosen arbitrarily at p_0 , substitution from (2) in (1) gives

$$\frac{\delta \tilde{g}^{i}_{j_{0}}}{\delta u} = \frac{d \tilde{g}^{i}_{j_{0}}}{d u} + \Gamma^{i}_{ik} \frac{d x^{i}}{d u} \tilde{g}^{k}_{j_{0}} = 0.$$
(3)

This is the equation of a parallel propagator generating parallel vector fields along the curve c.

In the following we shall solve (3) on a circular orbit in Schwarzschild space-time. In Schwarzschild space-time the metric form is

$$\Phi = \left(1 - \frac{2m}{r}\right)^{-1} dr^2 + r^2 (d\theta^2 + \sin^2\theta d\phi^2)$$
$$-\left(1 - \frac{2m}{r}\right) dt^2.$$
(4)

The circular orbit lying in the equatorial plane with an affine parameter u is given by

$$r = r_{0}, \quad \theta = \frac{\pi}{2}, \quad \phi = \frac{u}{\alpha r_{0}^{2}}, \quad t = \frac{\beta u}{1 - 2m/r_{0}},$$

$$\alpha^{2}\beta^{2} = \frac{1}{mr_{0}} \left(1 - \frac{2m}{r_{0}}\right)^{2},$$
(5)

where α and β are constants depending on the initial conditions. This orbit is spacelike, null-like, or timelike for $2m < r_0 < 3m$, $r_0 = 3m$, or $3m < r_0$, respectively. When we take account of

(4) and (5), the equation of the parallel propagator (3) reduces to

$$\frac{d\tilde{g}_{j_0}^{1}}{du} + \frac{1}{\alpha r_0^2} \Gamma_{33}^1 \tilde{g}_{j_0}^{3} + \frac{\beta}{1 - 2m/r_0} \Gamma_{44}^1 \tilde{g}_{j_0}^{4} = 0, \quad (6)$$
$$\frac{d\tilde{g}_{j_0}^{2}}{d\tilde{g}_{j_0}^{2}} = 0 \quad (7)$$

$$\frac{\partial \sigma}{\partial u} = 0, \qquad (7)$$

$$\frac{d\tilde{g}_{j_0}}{du} + \frac{1}{\alpha r_0^2} \Gamma_{3_1}^3 \tilde{g}_{j_0}^{-1} = 0, \qquad (8)$$

$$\frac{d\tilde{g}_{j_0}^4}{du} + \frac{\beta}{1 - 2m/r_0} \Gamma_{41}^4 \tilde{g}_{j_0}^1 = 0, \qquad (9)$$

where $x^1 = r$, $x^2 = \theta$, $x^3 = \phi$, and $x^4 = t$, and j = 1, 2, 3, 4. In order to solve Eqs. (6)-(9), differentiating (6) and substituting (8) and (9) in the result, we get

$$\frac{d^2 \tilde{g}^{\,l}_{\,\,0}}{du^2} + \gamma^2 \tilde{g}^{\,\,l}_{\,\,0} = 0 , \qquad (10)$$

where $\gamma^2 = (1 - 3m/r_0)/\alpha^2 r_0^4$.

The general solution of (10) is expressed as

$$\tilde{g}_{j_0}^{1} = A_{j_0} e^{i\gamma u} + B_{j_0} e^{-i\gamma u}, \qquad (11)$$

with the vectors A_{j_0} and B_{j_0} determined by coincidence limits

$$\lim_{u \to 0} \tilde{g}^{1}{}_{j_{0}} = \delta^{1}{}_{j}, \qquad (12)$$

$$\lim_{u \to 0} \frac{d\tilde{g}_{j_{0}}}{du} = -\left(\frac{1}{\alpha r_{0}^{2}}\Gamma_{33}^{1}\tilde{g}_{j_{0}}^{3} + \frac{\beta}{1-2m/r_{0}}\Gamma_{44}^{1}\tilde{g}_{j_{0}}^{4}\right)\Big|_{u=0}.$$
 (13)

Similarly, $\tilde{g}_{j_0}^3$ and $\tilde{g}_{j_0}^4$ are obtained by substituting this $\tilde{g}_{j_0}^{1}$ in (8) and (9). Thus we get the parallel propagator on the timelike circular orbit $(r_0 > 3m)$ as follows:

2280

19

$$\left(\tilde{g}^{i}_{j_{0}}\right) = \begin{bmatrix} \cos\gamma u & 0 & \frac{r_{0}(1-2a)}{(1-3a)^{1/2}}\sin\gamma u & -\frac{(1-2a)\sqrt{a}}{(1-3a)^{1/2}}\sin\gamma u \\ 0 & 1 & 0 & 0 \\ -\frac{\sin\gamma u}{r_{0}(1-3a)^{1/2}} & 0 & 1 -\frac{2(1-2a)}{1-3a}\sin^{2}\frac{\gamma u}{2} & \frac{2(1-2a)\sqrt{a}}{r_{0}(1-3a)}\sin^{2}\frac{\gamma u}{2} \\ -\frac{\sqrt{a}\sin\gamma u}{(1-2a)(1-3a)^{1/2}} & 0 & -\frac{2r_{0}\sqrt{a}}{1-3a}\sin^{2}\frac{\gamma u}{2} & 1 + \frac{2a}{1-3a}\sin^{2}\frac{\gamma u}{2} \end{bmatrix},$$
(14)

(17)

where $a = m/r_0$. Formulas (14) may be applied to the null-like and spacelike orbits by taking the limits $r_0 \rightarrow 3m$ and $2m < r_0 < 3m$, respectively.

We now consider, with use of this parallel propagator, the geodesic precession of a gyroscope in free fall which moves along a timelike circular orbit. Taking the affine parameter ufor the proper time, we have the constants α and β , from (4) and (5), such that

$$\alpha = \frac{1}{r_0} \left(\frac{r_0}{m}\right)^{1/2} \left(1 - \frac{3m}{r_0}\right)^{1/2}, \quad \beta = \frac{1 - 2m/r_0}{\left(1 - 3m/r_0\right)^{1/2}}.$$
(15)

We introduce the co-moving frame $\{\tilde{e}_i\}$ and its dual basis $\{\tilde{\omega}^i\}$ attached to the gyroscope as follows:

$$\mathbf{\tilde{e}}_{\hat{i}} = s_{\hat{i}}^{k} \mathbf{\tilde{e}}_{k} , \quad \hat{\omega}^{\hat{i}} = t^{i}_{k} \hat{\omega}^{k}$$
(16)

and these transformations matrices are given by

$$(s_i^{\ k}) = \begin{pmatrix} (1-2a)^{1/2} & 0 & 0 & 0 \\ 0 & \frac{1}{r_0} & 0 & 0 \\ 0 & 0 & \frac{(1-2a)^{1/2}}{r_0(1-3a)^{1/2}} & \frac{\sqrt{a}}{[(1-2a)(1-3a)]^{1/2}} \\ 0 & 0 & \frac{\sqrt{a}}{r_0(1-3a)^{1/2}} & \frac{1}{(1-3a)^{1/2}} \end{pmatrix}$$

and

$$(t_{k}^{i}) = \begin{bmatrix} \frac{1}{(1-2a)^{1/2}} & 0 & 0 & 0\\ 0 & r_{0} & 0 & 0\\ 0 & 0 & \frac{r_{0}(1-2a)^{1/2}}{(1-3a)^{1/2}} & -\frac{\sqrt{a}(1-2a)^{1/2}}{(1-3a)^{1/2}}\\ 0 & 0 & -\frac{r_{0}\sqrt{a}}{(1-3a)^{1/2}} & \frac{1-2a}{(1-3a)^{1/2}} \end{bmatrix},$$
(18)

where $a = m/r_0$, $\{\tilde{\mathbf{e}}_i\}$ is the coordinate basis $\{\partial/\partial x^i\}$, and $\{\tilde{\omega}^i\}$ its dual basis $\{dx^i\}$.

Transforming from the basis $\{\tilde{\mathbf{e}}_i\}$ to $\{\tilde{\mathbf{e}}_i\}$, we can calculate the parallel propagator $\tilde{g}^{\hat{i}}_{\hat{j}_0}$ in the comoving frame by the formula $\tilde{g}^{\hat{i}}_{\hat{j}_0} = t^{i}_{k} s_{j_0}{}^{i_0} \tilde{g}^{k}{}_{i_0}$, with the result

$$(\tilde{g}^{\,\hat{i}}_{\,\hat{j}_{\,0}}) = \begin{bmatrix} \cos\gamma u & 0 & \sin\gamma u & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\gamma u & 0 & \cos\gamma u & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} .$$
 (19)

Let S^i be the spin vector of the gyroscope. Since the spin vector S^i is defined to remain orthogonal to the velocity dx^i/du , i.e., $S_i dx^i/du$ = 0, the following relation holds:

$$S^{4} = \frac{r_{0}(m/r_{0})^{1/2}}{1 - 2m/r_{0}}S^{3}.$$
 (20)

The spin vector $S^{\hat{i}}$ in the co-moving frame can similarly be obtained by $S^{\hat{i}} = t^i{}_k S^k$, and then the component $S^{\hat{4}}$ reduces to zero by use of (20). Let $S^{\hat{\alpha}_0}$ ($\alpha = 1, 2, 3$) be the spin vector at the point P_0 (u = 0) on the circular orbit, and let $S^{\hat{\alpha}}$ be the parallel transport of $S^{\hat{\alpha}_0}$ at the point P $[u = u_p = 2\pi r_0 (r_0/m)^{1/2} (1 - 3m/r_0)^{1/2}]$ where the gyroscope returns to the initial spatial point along the orbit. We can then define the scalar product of $S^{\hat{\alpha}_0}$ and $S^{\hat{\alpha}}$ by parallel transporting $S^{\hat{\alpha}}$ to the point P_0 along the time axis x^4 .

As one can see from (19), the spin vector $\hat{S}^{\hat{\alpha}}$ is turning around the basis vector $\hat{e}_{\hat{2}}$. We may therefore set $S^{\hat{2}_0}=0$ for seeking the geodesic precession frequency $\hat{\Omega}$ of the gyroscope. Then we have the angle between $S^{\hat{\alpha}_0}$ and $S^{\hat{\alpha}}$,

$$\cos\delta = \frac{S^{\alpha} \circ S_{\hat{\alpha}}}{\|S^{\hat{\alpha}} \circ\| \|S^{\hat{\alpha}}\|} = \cos\gamma u_{p}, \qquad (21)$$

where $S^{\hat{\alpha}} = \tilde{g}^{\hat{\alpha}}_{\hat{\beta}_0} S^{\hat{\beta}_0}$, and $g_{\hat{i}\hat{j}} = \eta_{\hat{i}\hat{j}}$ in our co-moving frame. Since $\gamma u_p = 2\pi (1 - 3m/r_0)^{1/2}$, we get

$$\delta = \pm 2\pi \left(1 - \frac{3m}{r_0} \right)^{1/2} + 2n\pi , \quad n = 0, \pm 1, \pm 2, \dots$$
(22)

2282

Further, we have $\delta \rightarrow 0$ according to $3m/r_0 \rightarrow 0$ and have $\delta > 0$, so that

$$\delta = 2\pi \left[1 - \left(1 - \frac{3m}{r_0} \right)^{1/2} \right] .$$
 (23)

Hence we obtain the geodesic precession frequency as follows:

$$\|\tilde{\Omega}\| = \frac{\delta}{u_p} = \frac{1}{r_0} \left(\frac{m}{r_0}\right)^{1/2} \left[\left(1 - \frac{3m}{r_0}\right)^{-1/2} - 1 \right]$$
(24)

¹J. L. Synge, *Relativity: The General Theory* (North-Holland, Amsterdam, 1960).

²B. S. DeWitt and R. W. Brehme, Ann. Phys. (N.Y.) 9,

and its direction is in the \widetilde{e}_2 direction.

If we use the coordinate time $t = u/(1 - 3m/r_0)^{1/2}$, the approximation of (24) to lowest order becomes $\|\overline{\Omega}\| = \frac{3}{2}(m/r_0^2)(m/r_0)^{1/2}$, which coincides with Schiff's formula.³

We want to thank T. Obata for his useful suggestions.

220 (1960).

³L. I. Schiff, Phys. Rev. Lett. <u>4</u>, 215 (1960).