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Gauge-invariant perturbations on most general spherically symmetric space-times
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The Einstein field equations and the conservation equations linearized around. a most general

(astrophysically relevant) spherically symmetric space-time are reduced to a set of equations for gauge-

invariant geometrical objects defined on the two-dimensional timelike submanifold spanned by the radial and

time coordinates. Odd-parity metric and matter perturbations are each expressed. in terms of a vector field,

matter perturbations in terms of an additional scalar field on this submanifold. Even-parity perturbations are

expressed in terms of a symmetric tensor field and a scalar field for the metric and in terms of two scalars, a
vector, and a symmetric tensor field for matter. The odd-parity vectorial perturbations are derivable from a
single master scalar equation, and their junction conditions across the surface of a collapsing star are given.

I. INTRODUCTION

Much effort has been spent to develop gravita-
tional detectors capable of receiving signals from
various astrophysical sources, most hopefully
from stellar collapse associated with supernovas
or black-hole formation. ' Currently, the theo-
retical justification for these undertakings is pri-
marily based on the radiated power, spectral
flux, etc. arrived at by either estimates' or actual
computer calculations'~ for certain specialized
and sometimes rather unrealistic models.

Considering the magnitude of the experimental
effort it is interesting to note two facts: (l) No

precise figures on detectable power, spectral
flux, etc. are available for typical astrophysical
events such as slight asymmetries in spherical
collapse of the type first considered by, say,
Colgat'e and White' or by May and White. ' (2) No
results are available that allow one to assert to
what extent the to-be-detected gravitational ra-
diation is diminished by the role of shear viscos-
ity' of neutrinos that do seem to. play an impor-
tant role in such events. ' This lack of theoreti-
cal knowledge is primarily due to the lack of
availability of the general-relativistic equations
that govern the asymmetries associated with
gravitational collapse.

In this paper we purport to remedy this lack
by introducing via a new formalism a set of gauge-
invariant variables as well as their concomitant
equations. They are so remarkably economical
and flexible that they allow one to deal with per-
turbations away from any physically imaginable
spherically symmetric space-time.

Initial investigations of perturbations of spheri-
cal space-times considered a static' or a
homogeneous" '7 background. They quite naturally

single out time as a special coordinate. Such a
singling out is rather infeasible for a general non-
static background.

Treating the time and radial coordinates on an
equal footing, we perform instead, what amounts
to, a 2+ 2 split on the background geometry and
introduce the perturbations as scalar, vector,
and tensor fields on. the totally geodesic submani-
fold spanned by the time and radial coordinates.
The equations for the perturbations in the metric
and in the matter stress-energy tensor receive,
however, their ultimate simplicity only after
gauge-invariant" linear combinations of the fields
are introduced as the new dependent variables. In
terms of these gauge-independent quantities, odd-
parity perturbations (metric and matter) are ex-
pressed in terms of vector fields on the totally
geodesic submanif old. Similarly, even perturba-
tions are characterized by scalar fields together
with symmetric tensor fields.

H. BACKGROUND GEOMETRY

Consider any spherically symmetric space-time
with a metric

Rpp

=g»dx "dx + ~r( x)c( 8d' +sin'Odp')

and a stress-energy tensor

I'& „dx LES = t t& dxAB

+ ,'t', r'(x )c( ed' —s+in'ed'').

Capital latin indices A, 8, C refer to some as-
yet-unspecified radial and time coordinates,
while lower-case latin indices a, b, c, . . . refer
to 8 and p. The functions r(x c) and g»(x c) are
scalar and tensor fields on the totally geodesic
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submanifold M 2 spanned by xc (C =0, 1). The
vector field

is also on this submanifold. The Einstein field
equations for any spherically symmetric space-
time assume the form

8vcc t„B -2(vA—iB+ v„vB)

+(2vc +3vcv r—)gAB=QAB

8gGC 2t b
= V~ + VgVC- g

b=29 b
~

The vertical bars refer to covariant derivatives
and S to the Gaussian curvature on the submani-
fold. The partial trace t', =t', + t', is a scalar
on this submanifold. Equations (2) cast into a
geometric form the well-known coordinate-de-
pendent equations for a spherically symmetric
space-time. "

III. GEOMETRICAL PERTURBATION OBJECTS

Consider general perturbation fields away from
Eqs. (la) and (lb). It has "odd" harmonic compon-
ents, whose parity is (-1)"and whose form (sup-
press the angular integers I and m) is

h„„dx "dx"= h„(xc)S,(8, y)(dkAdh'+ dx'ChA)

+ h(xc)(S,.~+ S~.,)dx'dx', (3a)

t t„„dh"dx"= t tA(hc)S. (8, y)(dh "dx'+ dx'dx")

+ ht(S, , ~+ S~.,)dh'Ch~ ~ (3b)

The covariant derivative of the transverse (S,"=0}
vector harmonic S, on the unit two-sphere is in-
dicated by colon. It is clear that the three metric
expansion coefficients h„h„and h, and the
three perturbed stress-energy expansion coef-
ficients LaEtp Lakty, and ht can be assembled into
two covectors and two scalar fields

h„dh" and h,

b,t~Ch" and ht

is characterized by two symmetric tensors, two
covectors, and four seal~ fields

kg~dh dh k~dh K and G

kt~ Jjdh dh At~dh At, and 4E

on the submanifold M '.
It is a straightforward process to insert the odd-

parity perturbation fields, Eqs. (3a) and (3b), into
the linearized field equations.

'

They reduce to a
vectorial together with a scalar equation defined
on a two-dimensional submanifold M '. Similarly,
the reduced field equations for the even-parity
expressions Eqs. (4a} and (4b) become a sym-
metric tensorial together with a vectorial and two
scalar equations. All these equations, which con-
tain no gauge assumptions, are gauge dependent.

IV. GAUGE-INVARIANT GEOMETRICAL OBJECTS

In this paper we instead reformulate them in
terms of gauge-invariant" geometrical objects.
These gauge-invariant objects are found as fol-
lows:

First write down the gauge change induced by
the infinitesimal vector fields:

p Ch" =M(x ) —(sin8) ' d8
9&

+ sand ---- d

"odd parity",

$„""dx"= )A(xc)Y(8, y)dxA
I

+ g(xt') ( ) de+( ) dy

"even parity" .
The result, the Lie derivative with respect to ~„,
is

on the submanifold M '.
Similarly, an "even"-parity [(-1)']perturbation

mode

h„„dx"dx"=h„B(xc)Y(8,y}dx CxB

+ h„Y,(dx "dx'+ dx'dx")

+ r2[KY(8, y)y, ~+ GY,.~]dh'dx ~, (4a)

t dx «dx" ~t (hc)1 (8 ~)dx Adx

+ atAY .(dx "dx'+ Cx'dx")

+ r'[4t'Y(8, p)y, ~+ b,t'Y, .~]dh'dx ~ (4b)

h-k=-M,

6t - ht = =Bt 'PI,
and

AB AB (~A I B ~ iA)B&

h„—h=-gA —r'($/r') „,)
K —K= -2V

G —G = -2~/r',

(metric) (5a)

(matter) (Sb)

(metric) (6a)
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+fAB +fAB ABIC~ CB~ IA CA~ tB}

gt„Zt„= f„,]'--,'2't', (~/r') „,
aP gt~= -22. '(2't;) „,8,
~P —nf 2= -f'.(, (6b)

For even parity there is an analogous set of
gauge-invariant geometrical objects which is

AB AB (1 AIB PBIA}}
(matter)A=K —2v p~, (8a)

for odd- and even-parity metric and stress-en-
ergy perturbations.

Second, construct the gauge-invariant geometri-
cal objects by taking those linear combinations of
the gauge-transformed (barred) quantities in Eqs.
(6) [or Eqs. (6)] which are independent of the
odd-parity (or even-parity) gauge generator
M(x ) (or (A and $). The set of gauge-invariant
odd-parity geometrical objects is

&Aa- ~~~a —t~a PcIc

—2(fCAP't. + fCB&'I A»

T„=b. tA —tAcpc —2.2(t ',/4)G „, ) (matter) (8b)

T = gP (P}:/2 2)(2 2t}}/2)

T'= ~f' —(2'f' /2)G
k„=k„~'(k/r') „, (matter) (7a)

L„=nt„—(f ', /2)k„,
L = ht —(f', /2)h . (matter) (7b)

where

V. FIELD EQUATIONS IN TERMS OF.GEOMETRICAL GAUGE INVARIANTS

Finally, introduce these gauge-invariant geometrical quantities into the afore-mentioned gauge-depen-
dent reduced linearized Einstein field equations. The resultant simplification is considerable.

The odd-parity equations become

k",„=KL (2- i)

[2 4(2 2kA}IC 2 4(2. -2kC)IA] + (I 1)(f+ 2)kA Ky2LA

The even-parity equations are

(1 & l) .

(Ba)

(9b)

+AB ( CtD} 22 k C 2(8 D+8 } C
l(f+ 1) C, D 4 C

+ 2(vAk B+vBk A+ k AIB) —gAB 2k c + 6v k c —
2 k = KTAB-(f —1}(l+2)

(0 & I), (10a)

ABI C ACIB BCIA}] [ (I }/ 8 C+ 9 4]kAB +AABl+ (+ kCD) it kCD]+ k CIA}2

, A AC CA A C A ( f}s

(k Ic+ 2vck + 8 k)+ [k IcID+ 2vck ID+ 2(vcID+v v )k ]

(lob)

kc = -KT' (0 & l), (10d)
where v= 16m'Gc . Thus both the odd- as well as the even-parity linearized field equations are totally in-
dependent of gauges. In vacuum these equations reduce to the form given by Zerilli. '

The even-parity tensorial gauge-invariant differential equation (10a) can be simplified with the following
identity applicable to an arbitrary symmetric tensor on a two-dimensional manifold with Gaussian curva-
ture,

(kABIC kACIB BC}A) + CIAIB gAB( CD CID ) ( CgAB AB} '

It eliminates all second derivatives of kAB in Eq. (10a), and consequently, with the help of the background
Eq. (2), one obtains
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2V (kABlc —"AcIB —kBclA} —[(I — }(/+ }~r +8 c+6'.]kAB

gAB ( DZIC DCIZ BC ID)g gAB( } CD

l(l+ 1)
gAB r2 2( c a) D ( cgAB AB} ( A B B A gAIB )

I

(l —l}(l+2)
AB 2k c +6V k c — 2 k ——KTAB' (12)

A linear combination of tensorial equation (12) and the vectorial equation (10b) results in further simplica-
tion and one obtains a differential, equation involving the gauge-invariant tensor k» only. Thus, define

1
+AB 2[( A}IB ( B}IA]'y

Then the traceless equation

AB 2gAB C} (~AB 2gAB C}] kABIC CIAIB ( ABIC ACIB BCIA}

A( CDIB BC ID DBIC}g B( CDIA ACID DAIC}g

I /(/+1)
r2 + C a ( AB 2 CgAB}

—[ ( AID+ VAVB) —( D + VDV )gAB] C

is a differential equation in the tensor k» only.
The linearized conservation equations A(t„„' ) =0 are also gauge invariant. For odd-parity perturbations

they reduce to the single scalar equation

(r'L")I„=(l—l)(l+2)L (1- l).
For even parity there is a scalar and a vector equation,

(14)

- (r T )IA+ T +[1 l(l+1)]T /r f (k. kc )+ f k (0( l) (15a)

r 2(r'T„B)' —TA/(/+ I)/r' —2VAT'+VAT'/(/+I)/r'=-2'kBcIAt +kcB' f „—,'k clBt „—k c—t „
+ (—,'k „—kvA)t', +2VBkBctcA+ksctc„IB (0« l) . (15b)

These conservation equations are directly implied by the corresponding linearized field equations pro-
vided one again uses identity Eq. (11).

VI. ODD-PARITY MASTER EQUATION —*dr 4 ~d(r 'kcdx c) + (/ —l)(l + 2)kcdx

~d(r2~Lcdx c)= (/ —1)(l+ 2)L (1 « /),

*d(*kcdxc) = xL (2 «/),

(16a)

(16b)

The solutions to the odd-parity equations {9)
and (14}are most easily obtained from a scalar
master equation. This is accomplished particu-
larly rapidly in terms of Cartan's calculus of dif-
ferential forms. Rewrite the equations in the
form

L,cdx c (1 « l), (16c)

where *kcdx =k eBcdxc is the Hodge dual of
kcdx with respect to the metric gABdx"dx
and an orientation of the submanifoldM', and d
is the exterior derivative. The odd-parity equa-
tions (16) are solved as follows. Let II be the
scalar function,
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For the nonradiative case / = 1 Eq. (16a) implies
that r'*L~dx is closed. Hence there exists local-
ly a scalar T such that

y'+I dx =dT.C

After integration Eq. (16c) therefore becomes

r'~d(r -'u, dxc)= ~T. (19)

Express x 'k~dx in terms of two scalars 4 and

r 'kcdx c = +dC + dg

11= ~d(r '0 dxc)

Take the exterior derivative of Eq. (16c) and ob-
tain the odd-parity master equation

*dr '~dr 4II+ (I —1)(f+2)II= ~~d(I, ,dxc) . (17)

Solve for g. For a homogeneous background this
equation reduced to Eq. (II-12b) in Ref. 3. There
(with r'lI =m, ) it was found with the help of an
algebraic computer code.

For /e1 the solution k~dx is then obtained
from Eq. (16c):

g dx c = [ter'f cdx c+ sd(r 411)][(l—1)(l+ 2)] ',

Io 2. (18)

Thus Eq. (19) becomes

+d+dC = -vr 4T (I = 1) .
One sees therefore that k= 1 odd-parity. perturba-
tions are composed of a particular solution, +dC,
which can be associated with rotating matter and
a complementary solution dC which may be non-
zero even in the absence (T = 0) of ostensible spin-
ning matter.

The junction conditions" across a timelike hy-
persurface Z of discontinuity (e.g. ,

'

the history
of the surface of a collapsing star) are the con-
tinuity of 0 and of the projections of k„onto Z
and onto the unit normal to Z.

VII. CONCLUSION

The Einstein field equations linearized around
the most general spherically symmetric space-
time assume their final most striking simplicity
in terms of gauge-invariant metric and matter
geometrical object~. The generality of these sim-
ple equations allows one to consider perturbations
not only on any spherically symmetric (in general
matter occupied) space-time but also, at a glance,
with respect to any coordinate system. With these
equations at hand the way stands open to consider-
ing astrophysically interesting perturbed spheri-
cal-collapse problems.
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