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Birkhoff theorem for an R + R theory of gravity with torsion
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6'e investigate the gravitational Lagrangian I.G = (c /16mG)R —(Ac/16mnG) R»z 8, where the
curvatures are computed from a metric-compatible connection with torsion. We prove that the Schwarzschild
metric and its torsion-free connection constitute the unique O(3) spherically symmetric (including reflections)
solution to the vacuum field equations of LG.

I. INTRODUCTION

We have been investigating the theory of gravity
given by the Lagrangian'

16~G 16~~, gy5 a N '

where o.~ is a new dimensionless coupling con-
stant, all curvatures are computed from a Cartan
connection (which is metric-compatible but may
have nonzero torsion}, and I.a is the matter La-
grangian minimally coupled to the Cartan connec-
tion. Debney, Fairchild, and Siklos' have proved
that in vacuum, in the absence of torsion, this
theory is exactly equivalent to Einstein's theory.
We do not assume that the torsion is zero. In-
stead, we assume O(3) spherical symmetry' and
prove the following result.

Generalized Birhhoff theorem. Let the metric
and Cartan connection on a region of spacetime
be an O(3) spherically symmetric vacuum solution
to the field equations derived from Lagrangian
(1). Then the connection has zero torsion, and
the metric is the Schwarzschild metric.

This theorem is analogous to Birkhoff's theorem4
for Einstein's theory. In the remainder of this sec-
tion, we motivate the choice of Lagrangian and
discuss the implications of our theorem.

Torsion was first introduced into a theory of
gravity by Cartan. ' He suggested that spacetime
might be a Riemannian manifold with a connection
I' o„(hereafter called a Cartan conne'ction) which
is metric-compatible but may have nonzero tor-
sion. The simplest extension of Einstein's theory
to include torsion i~ the Einstein-Cartan-Sciama-
Kibble (ECSK) theory, which has been studied
extensively by Hehl, Trautman, and others. '
Part of the motivation for the ECSK, theory is that
it may be considered a gauge theory for the
Poincare group, whereas Einstein's theory may
be considered a gauge theory for only the trans-
lation group. ' Both the Einstein theory and the
ECSK theory use the energy-momentum tensor
as the source for the metric. A differential equa-

tion must be solved for the metric or orthonormal
frame. In addition, the ECSK theory uses the
spin tensor as the source of the torsion. However,
the torsion is algebraically coupled to the spin
tensor and so is nondynamic. Hence, the ECSK
theory does not treat the rotational and transla-
tional parts of the Poincare group on an equal
footing. This motivates one to examine theories
of gravity such as Lagrangian (1) in which the
torsion is differentially coupled to the spin tensor.

The stluared Riemann curvature term in (1}
would, by itself, be sufficient to differentially
couple the torsion to the spin density. It is in
fact the, gravitational Lagrangian most analogous
to the Lagrangian in a Yang-Mills theory of the
Lorentz group, as pointed out by Yang. However,
by itself, the squared curvature term would not
handle the rotational and translational parts of the
Poincare group symmetrically. What is more,
Fairchild' has shown that such a theory does not
have a satisfactory Newtonian limit. So we include
in (1) the scalar curvature term, which is the
Lagrangian for the ECSK theory, and may be
regarded as a kinetic term for the translation
group. ' It is hoped that a Newtonian limit can be
derived from Lagrangian (1). Fairchild' claims
to have done this, but he fails to justify his iden-
tification of Tpo+ V00 as the mass density. We feel
it should be simply T». In that case it is neces-
sary to show that there exists a consistent limit
in which the propagating torsion is sufficiently
small so that V« is negligible. More work is
needed on this problem.

In addition to having a Newtonian limit, a theory
of gravity must make predictions which agree with
the other standard experimental tests. In the ab-
sence of torsion, test particles and light waves in
the theory of Lagrangian (1) move in the same
manner as they do in Einstein's theory. ' There-
fore, if the gravitational field of the solar system
were precisely spherically symmetric (including
reflections), our generalized Birkhoff theorem
would show that Lagrangian (1) makes the same
predictions for solar system experiments as does
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Einstein's theory. A stronger statement about
the predictions of this theory for solar system ex-
periments can be made only after. checking the
stability of the Schwarzschild solution under per-
turbations involving torsion.

It is also desirable that a theory of gravity have
a l.ocally unique vacuum solution which is spatially
homogeneous, isotropic, and parity invariant.
This solution would be regarded as the ground
state of the gravitational field. Furthermore, it
is desirable that this solution be Minkowski space
so that the ground state would have no gravitational
field. (For the Einstein theory with a cosmological
constant, the ground state is de Sitter space,
which has tidal forces. } Our theorem shows that
in the theory of Lagrangian (1), as in the Einstein
and ECSK theories, Minkowski space with zero
torsion. is the locally unique vacuum solution which
is spatially homogeneous, isotropic, and parity
invariant. This foQows because such a solution
would have to be O(3) spherically symmetric
about every point. This is in contrast to the
theory investigated. by Horowitz and Kaid,"who
showed that their field equations have homogeneous,
isotropic, vacuum solutions in addition to Minkow-
ski.

Another reason for adding curvature squared
terms to the Lagrangian talthough not necessarily
the term added in (1)] is the result of Stelle, "
He shows that the addition of curvature squared
terms (without torsion) to the Einstein Lagrangian
yieMs a renormalizable, although nonunitary,
theory.

The standard objection to adding curvature
squared terms to the Lagrangian is that they pro-
duce field equations containing higher than second
derivatives of the metric. This is true of the field
equations of Lagrangian (1}when they are regarded
as functions of the metric and the torsion. How-

ever, when the components of the orthonormal
frame and the "mixed" components of the Cartan
connection" are used as the independent variables,
the field equations contain no higher than first
derivatives of the frame (or metric) and second
derivatives of the connection. ' Without the tor-
sion, the frames and mixed components of the con-
nection would not be independent.

In Sec. II we give the field equations for Lagran-
gian (1), and in Sec. III we prove the generalized
Birkhoff theorem.

II. NOTATION AND FIELD EQUATIONS

We take the signature of the metric to be
(-+++). The Cartan connection I' ~„may be
compared with the Christoffel connection P~„J
which is metric- compatible and torsion-free.

Their difference is defined to be the defect tensor

" si =I nr &™-a.&.

The torsion tensor, Riemann tensor, Ricci tensor
(asymmetric}, scalar curvature, and Einstein
tensor {asymmetric) are (in a coordinate basis)

Bgn=B ~ 6,
B=g~eB~~,

1
a~ =&so -~gee"

In performing covariant derivatives, a caret over
an index denotes that the correction on that index
is performed using the Cartan connection, while
a tiMe denotes a correction with the Christoffel
connection. For example,

The Cartan connectiori automatically satisfies the
Bianchi identities,

~PP/5 g gc —0BtJ v

where q'"". is the totally antisymmetric tensor.
Varying the Lagrangian. (1) with respect to the

components of the orthonormal frames, "one ob-
tains

which will be called the Einstein equations. Vary-
ing the Lagrangian (1) with respect to the mixed
components of the Caftan connection, "one obtains

+g" ~ +4X~ &~"~6
8 t3

= 8&Gc 4SNq", (4)

which will be cal&ed the Cartan equations. Here
t„„is the canonical energy-momentum tensor (as-
ymmetric), 8 ~" is the canonical spin tensor, and

'

y, = KG/(c'Qo). In vacuum, t„„and S ~" are zero.

III. PROOF OF GENERALIZED BIRKBOFF THEOREM

We first give an outline of our proof. After
writing .out the field equations and Bianchi identities
for a spherically symmetric system, we note that
the Einstein equations -factor, yielding three cases.
In two of the cases, adding the Bianchi identities
to the Cartan equations leads to a contradiction.
In the third case, subtracting the Bianchi iden-
tities from the Cartan equations shows that the
Einstein and torsion tensors are zero. Birkhoff's
theorem for Einstein's theory then implies that
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the Schwarzschild metric is the unique solution.
The details of the proof follow.

The most general spherically symmetric metric
can be written as

ds =-s odz +s ~ dR +r ((gg +sjn38 tfy2) (5)

a~ =eodr,
~~ =e'aR,

a'=rd8,
@~ = r sin&dQ .

(6}

(7)

(8)

(9)

We impose O(3) spherical symmetry on the Car-
tan connection by demanding that the defect tensor
be invariant under rotations and reflections, and
that the Christoffel symbols be computed from
the spherically symmetric metric (5). The inde-
pendent nonzero components of the spherically
symmetric defect tensor' are

where 4, A, and r are arbitrary functions of R
and 1'. We are allowing here for the possiblility
that the SchwarzschiM r is a bad coordinate, by
making r an arbitrary function of good coordinates
R and T. We write out all tensors in the ortho-
normal frame, with basis one-forms,

and the nonzero components of the Einstein tensor
are

G~~ =2H+L,

Gr~=-2D

G~~ =-2G,

G~~ =2C —L,
G~=G~q =C —H+A

(25)

(26}

(27)

(28)

(29)

-2D+8g(CD —HG) =0,
-2G+8y(CD-HG) =0,
2C —L —4g(D'+ C' —H~ —G2+ —,'L' —2A2} = 0,

C —H+A+2y(L 2A )=20.

(30)

(31)

(32)

(33)

(34)

The independent Cartan equations (4) in vacuum
are

The independent Einstein equations (3) in vacuum
are

2H+L —4g(D2+C2 —H2 —G2 —'L2+ 2A—2) =0

A. rsvp =f(R, T),
XrRR =k (R, T),

=k(R, T),
yR —yR —g(R 7)

(10)

(11)

(12)

(13)

-2(W+e ~r 'r')+4&[e ~r '(r'A)'- 2YG+2WC]=0,

-2( Ye~r 'r) —4g[e or '(r A)'+2YH —2WD]=0,

(36)

I'r =e ~@'+f= V(R, T), -
1 ERR = e oA+h =X(R, T),
I'r~g=l'r =e or ~r k—=+Y(R, T),
I' gg= I'"~~ = er 'r'+g -= W(R, T),
I'~ =-r 'cot8.

(14)

(15)

(16)

(17)

(18)

Dots denote differentiation with respect to T, and
primes denote differentiation with respect to R.

The independent nonzero components'of the Rie-
mann tensor are

RT [(X&A) (V&o}&P-I-A-

R ~r~=R ~r~ =e or '(Yr) + VW=-C,

, =e 'r '(Yr)'+XW= D, -

R"„,=R"„,=e 'r '(Wr) + YV-=-G-,

(19)

(20)

(21)

(22)

where, f, g, h, k are arbitrary functions of R and

,T. Adding the defect tensor to the Christoffel
symbols, we obtain the independent nonzero com-
ponents of the Cartan connection:

[X+Y s-o-Ar-1(rch) ]
—4X(e o ~r '[(Dre~)'+(Cre~) ]

—[W- V+e-+-~r-~(re+)']

+ VG+XH+ YL}=0, (37)

—4X(e o ~r '[(Hreo)'+(Gre~) J

+ VC+XD+WL)=0.

The independent Bianchi identities (2) Ie

er '(r'L)'+-2YD —2WH = 0,
e.-'r '(r'L)' +2YC- 2WG =0,

(38)

(39)

(40)

e o ~r'[(Gre~)'+(Hre~) ]+VD+XC+1'A =0, (41)

e o Rr '[(Creo)'+ (Dre~)']+ VH +XG+ WA =0. (42)

Based upon equations (30)-(42), we now prove
that the defect and Einstein tensors are zero.
First, the Einstein equations (30)-(34) can be
manipulated into the equivalent form

R",„,=R",„,=e 'r '(Wr)'+YX= H, -
R q~q=r +% —S =L,

(23)

(24)

G=D,

G[1-4q(C-H)]=0,
(43)

(44)
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(H+C)[1-4X(C —H)]=0,

(A —I ) + 2 (C —H) = 0,
(A. + L) [1+ 8 X(C —H) ]= 0 .

(45)

(46)

(47)

These equations split into three cases.
Case I C .—H=(4X) ', so that 6 =D and L=-A

=(4x) '
Case II. C —H = —(8X), so that G = D = 0, H = —C

=(1.6X) ', and A —L =(4X) '.
Case III C-.H e-(8X) ' and C —H e(4X) ', so

that G =a=0 and A=-I =-2C =20.
Next, we compare the Cartan equations (35)-(38)

with the Bianchi identities (39)-(42) in each of
the three cases.

Case I. We add 4X times (41) to (37), and 4X
times (42) to (38), and use the conditions of case
I on the resulting two equations to show that F= W
=0. From the definitions (20) and (23) of C and H,
this implies C =H =0, which contradicts C —8,
= (4X) ', ruling out case I.

Ca[e II We add .4X times (39) to (35), and 4X
times (40) to (36), and use the conditions of case
II to show that F = 8'=0. As before, this implies
C =H =0, which contradicts C —H =-(8X) ', ruling
out case II.

Case III. We subtract 4X times (39) from (35),
4X times (40) from (36), 4X times (41) from (37),

and 4,X times (42) from (38), and use the conditions
of case IlI as well as Eqs. (14)-(17) to show that
f g=h, =4=0. This implies that the defect and
hence the tox'sion tensors are zero. , The condi-
tions of case III directly imply that C =.D =2H+I
=2C —I =C —H+A =0. This implies that the Ein-
stein tensor, computed with torsion, is zero, but
since the torsion is zero, the Einstein tensor com-
puted from the Christoffel connection is also zero.
Birkhoff's theorem for Einstein's theory then says
that the metric is the Schwarzschild metric. This
is, in fact, a solution since with zero torsion, any
solution to the vacuum field equations of Einstein's
theory is a solution to Eqs. (3) and (4) in vacuum. "
Hence the SchwarzschiM metric, with zero tor-
sion, is the unique solution.

This compjetes the proof of our generalized
Birkhoff theorem.
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