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Hojman-Rosenbaum-Ryan-Shepley torsion theory and Eotvos-Dicke-Braginsky experiments

Wei-Tou Ni
Department of Physics, National Tsing Hua Uniuersity, Hsinchu, Taiwan, Republic of China

and Center for Relativity, The Uniuers!ty of Texas, Austin, Texas*
(Received 27 December 1978)

Considering a modified form of local gauge invariance and minimal coupling, Hojman, Rosenbaum, Ryan,
and Shepley obtained a dynamic torsion theory which allows propagation of torsion in uacuo. In this theory,
the torsion is determined by the gradient of a scalar field P. For the Snn, P = 0.67 &(10 'U where U is the

Newtonian potential, In this field, test bodies with different electromagnetic energy contents behave

differently. For aluminum and gold (or platinum), the gravitational accelerations would differ by 2 X 10 '+U.
This implication disagrees with the null experiments of precisions 10 "g U and 10 "g'U performed

respectively by Roll, Krotkov, and Picke and by Braginsky and Panov.

I. INTRODUCTION

In order to incorporate spin into gravitation the-
ory, torsion arises naturally. Recently there
has been considerable interest in finding possible
interactions with torsion. For reviews, please
see Hehl et al. ,

' and Ne'eman and Regge. '
Not satisfied with the nonpropagating character

of the torsion in Einstein-Cartan-Sciama-Kibble
(ECSK) theory of gravity, Hojman, Rosenbaum,
Ryan, and Shepley (HRRS)' have proposed a propa-
gating torsion theory. In this theory, they pro-
posed a direct coupling between torsion and elec-
tromagnetic field. In the present paper, we look
into some empirical implications of HRRS theory
and demonstrate that it is in disagreement with
experiments.

In Sec. II we review and discuss HRRS theory.
Section III obtains the scalar field and torsion field
of the Sun. Section IV calculates the test-body
accelerations and shows that HRRS theory dis-
agrees with Eotvos-Dicke-Braginsky experiments.

II. HOJMAN-ROSENBAUM-RYAN-SHEPLEY THEORY

To begin with, we review Hojman-Rosenbaum-
Ryan-Shepley (HRRS) theory briefly. For easy
reference, we adopt their notation and conventions.
In general relativity one constructs a minimally
coupled theory by letting the metric of special
relativity g„„go to a general metric g~, and by re-
placing ordinary derivatives by covariant deriva-
tives. For example, the usual definition of the
electromagnetic field tensor I'„„in general rela-
tivity is

I „„=A .„—A„.„,
where a semicolon signifies covariant differentia-
tion involving the connection coefficients I' „,

In the presence of nonsymmetric connection coef-

ficients I" „„,definition (1) is incompatible with
the condition that the coupling of electromagnetism
to torsion be invariant under the usual gauge trans-
for mation A„-A „' =A „+A „, where A is a scalar
function. One solution is to define E„„as

g „=P „—iqb„A, (,
ql et esp

A„-A„'=A„+c„A

(3)

(4)

(6)

with 0„,A, and c„ functions of spacetime, they
found that in order to have the minimal coupling
be consistent with gauge invariance, the following
relations must hold:

(6)

)

(7)

T „„=6„p„—5 (8

wh0re $ is a scalar field and T „„is the torsion
tensor defined by

With the above considerations and constraints,
HRRS proposed the following Lagrangian density

!g,v Avl y AgILt s

where the bar symbol denotes a covariant deriva-
tive using the Christoffel symbols of the metric
(ignoring torsion). This type of definition means
that photons are decoupled from torsion.

By postulating the general principle that spinning
particles both generate and react to torsion, HRRS
argued that photons should also be coupled to tor-
sion. Therefore, they proposed another solution
by retaining the definition (1) but modifying the
form of local gauge invariance in the presence of
torsion. Starting with the minimal substitution
and the gauge transformation of the form
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for their theory:

g —g~+ g ~+ Z~,

with

1
4m

(10)

Using B„and H„„defined by HRRS, i.e.,
=e ~A„,

we can put the generalized Lagrangian density,
which includes all matter fields, into the form

(21)

(22)

1= ——((*„+iqe sA „|t*)(g' " —iqe sA" g)v' —g,

1
g, (12)

1 P Q g16m
(13)

~,' is the gauge-invariant Lagrangian density for
the complex scalar field. , ~ is the Lagrangian
density for the gravitational field with torsion,
where R' is the scalar curvature derived from the
connection I' ~» which includes torsion. Ex-
pressed in terms of the scalar curvature R de-
rived from the symmetric Christoffel connection

g,~ = & + ~+total divergence,

with

1
cG g 16

gg g

(14)

3
4 -g. (16)

Combining (10)-(16), the total Lagrangian density
can be expressed as

(R —6$,$ '-F„„F""—(*„P") . (17)

The definitions of $» F„„,I"s„can besummarized
a.s follows:

(R —6P &f&' —e'sK„+"")+ 8,'„(A„-B„),I:g
(23)

where g,',(A„-B,) is the Lagrangian density in
general relativity for matter fields other than
electromagnetic (em) field with A, replaced by
B„.

Between (A» F„„)and (B„,H„„) in this theory as
to which one should be interpreted as electro-
magnetic field, we mention two points: (i) In the
absence of the scalar field P, they agree, and
(ii) according to the usual methods of measure-
ment, we can see clearly from the substitution
rule A„-B„ in 2,'„of (23) that (B„,H,„) is the
quantity measured. %ith this interpretation, the
torsion in the original consideration only plays an
intermediate ro1.e of arriving at the Lagrangian.
Our conclusion in Sec. IV for test bodies does not
depend on which interpretation w'e choose, e.g. ,
which stress-energy tensor we choose (see Sec.
IV).

From the variation of P in 2 in (23), we obtain
the field equation for P:

—-' e H""H = 0,gV (24)

where the bar symbol denotes covariant deriva-
tives using ( s,). Using (22), Eq. (24) can be
written in HItRS form derived from (17):

III. SCALAR FIELD AND TORSION FIELD DUE TO THE SUN

~
—2/8 A~/ )

F„„=A„„-A„„+A„p,-A„p „,
I"s~= ('s.) —~ .&,s+gsr4' ~

(16)

(19)

(20)

(26)

. HRRS theory has Newtonian limits for g„„.
Hence in the solar system, we have the following
solution for g„„:

where (™s„}is the symmetric connection generated
by the metric.

To generalize the Lagrangian density to include
the spinor fieMs and other matter fields. , we note
that the following substitution rule is required and
works for the HRRS scheme: Replace A„ in the
general-relativity counterparts by e ~A.~. The-
torsion coupling to spinor fields can be neglected
for our purposes.

The structure of HRRS theory is strong in the
sense that this structure is dictated by the con-
struction and no free parameter can be naturally
introduced.

g,s = -1+2U+ O(U'),

g, = 0(U' i'),

g,) —1+O(U),

(26)

(27)

(26)

where U is the Newtonian gravitational potential
and where O(x) means of order x. Here we use
Latin indices as spatial indices.

For the scalar field of the Sun, Eq. (24) or (25)
reduces to

(29)V'y= —,
' (i'-E')

to first order in p, where B= (K», H», H») and
E=(H„,H„,H„), and where we have absorbed the
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constant factor e of the background field into the
normalization of units [see discussions following
(30)]. If, instead, I',„ is used in defining 8 and
E, Eq. (29) remains the same except that no
change of units is needed. To a good accuracy,
the solar field is spherical and the solution of (29)
outside the Sun is

(O' —E')d'x
SUn

21-
40 n (5 magnetic 8 e!ectric) a3 (30)

where g „„„;„.and 8„„„;,are respectively the
total megnetic and electric energy of the Sun. In

(30), tft, is the background field due to the Galaxy
and the Universe. The variation of this back-
ground field is small compared with the variation
of $ due to the Sun. Hence tI!, can be treated as
a constant in the solar system, and only appears
as a constant factor e ~o between the relation of
B„and A„. Therefore, Q, can be set equal to
zero by appropriate normalization of units.

For the Sun, the macroscopic and atomic elec-
tromagnetic energy content is negligible as com-
pared to its nuclear electromagnetic energy con-
tent. The nuclear magnetic energy is small com-
pared to the nuclear electric energy. So

2 M &„, 2
(31)

where 8„, is the total nuclear electric energy. The
composition of outer layers of the Sun is, by
fractional mass,

then the tf„,/M ratio should be higher. Combining
(31) and (33), we find

y = 0. 67 x 10-'U. (34)

Using (20) and (34), the torsion field in the solar
system is

T „„=0. 67 x 10 '(6„U „—6„U„). (35)

IV. TEST-BODY ACCELERATIONS AND THE
EOTVOS-DICKE-BRAGINSKY EXPERIMENTS

In this section we will folIow the method intro-
duced in a previous paper' to calculate the test-
body accelerations. First we define stress-energy
tensor density, four-momentum, and center of
mass. According to the canonical Lagrangian
formulation, the electromagnetic stress-energy
tensor density can be defined as

where 1'„'""is the usual stress-energy tensor
density of other fields and particles. The four-
momentum vector of a, test body is

(38)

rt Hvet 1 5 vH ~xta
4m' gx

(36)
modulo a total divergence term. The total stress-
energy tensor density is

v g &(em) + g v(yf)

X(H) = 0.71,

I'(He) = 0.265,
Defining the center of mass as

X"= x'g, 'd'x P, , (39)

"' =1 Ox10 4I (33)

If the solar interior has more 'He than average,

Z (other elements) =0.025.
The Sun has converted all its deuterium to 'He.
The isotopic ratio 'He/'He, as derived from the
solar wind value by Apollo and Surveyer data, '
is 4 x 10 '. From the %eizsacker semiempirical
mass formula, the Coulomb energy of a nucleus
is a, Z(Z —1)/A'~' where a,(= 3e'/5x, ) can be de-
termined from high-energy electron-scattering
experiments to have the value 0. 807 MeV. ' Using
this formula, the Coulomb energy of 'He is 1.02
MeV, 2. 7 x 10 ' of its rest mass. Assuming that
the total solar composition is similar to that of
outer layers and that the average fraction of Cou-
lomb energy for heavier elements in the composi-
tion is roughly that of "0 (i.e., 1.2 x 10 '), we
arrive at the following value for the ratio b„,/M:

one can readily show that

X' =P"/P' (40)

This will not affect the definition of Ia„ in (38).
Note a,iso that if we use A„ instead of B„ to define

' in (36), the difference is of order VP (aside
from a renormalization of units). Subsequently,
the difference in test-body accelerations is of
order P,„which can be neglected. Therefore,
alternations of the definitions of the stress-energy

for a test body for which the second-order deriva-.
tives of $ can be neglected.

Note that the definition (36) of the electromag-
netic stress-energy tensor is not symmetric. To
symmetrize it together with F„""",we can add a
total divergence to obtain
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tensor will not affect our results.
From the Euler-Lagrange equations, we derive

the matter -response equation

(42)

where 2'= 2„+2,'„(A„-B„) F. rom Eq. (42) we

show that

(v ge -) *'J(„RB -2*E*)d'x

(g,/M)„, = l. V x lO-',

(8/I)„„, „,=4.5xlO-'.

Thus, on earth,

I'g
(Xg: Au (or) pt (Xj)A1 2

Au (or) Pt A1-

(4v)

(43)

compared to electric energy. The 8,/I ratios
for aluminum and gold (or platinum) are

1 g gx6 (pf )d3
)t6, y 7 (43)

=2x10 U ], (49)

for a test body. Now choose a "local inertial
frame" of g„„such that the test body is at rest at
the moment considered and the Christoffel sym-
bols vanish at the location of the body. Then (43)
reduces to

P„=2(S,-S„)~„, (44)

where 8 and 8, are respectively the total mag-
netic and electric energy of the test body. From
Eq. (40) we see in this local frame

P„=d(P X„)/dt=P X=mX (45)

X =2'
m

Therefore, in HRRS theory, test bodies of dif-
ferent electromagnetic content mould accelerate
differently in the solar field. For aluminum and
gold (or platinum), the magnetic energy is small

(45)

where m is the mass of the test body. Combining
(44) and (45), we obtain

where the Latin index i ranges from 1 to 3. But
according to the precision experiments of Roll,
Krotkov, and Dicke, ' and Braginsky and Panov, '
the accelerations of aluminum and gold or plati-
num do not differ respectively by 1 part in 10"or
10"of U, in the solar gravitational field.

In the earth's gravitational field, $ -10 'U
(U~ = earth gravitational potential), and matter of
different, composition would fall differently by 10 'g
to 10 g. This is in violation with the original
Ebtvos experiment and with the present-day geo-
physical measurements with accuracy 10 'g.
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