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We explore the problem of the existence of global maximal (K = 0) and constant-mean-curvature (K =—Kp)
&ime functions in general relativity. We attempt a, rigorous definition of numerical relativity so as to bridge
the gap between the field and mathematical relativity. We point out that-numerical relativity can in principle
construct any globally hyperbolic solution to Einstein's equations. This involves the construction of Cauchy
time functions. Therefore we r'eview what is known about the existence and uniqueness of such functions
when their mean curvature is specified to be a constant on each time slice. We note that in strong-field
solutions which contain singularities the question of existence is intimately connected to the nature of the
singularity. Defining the class of "crushing singularities" we prove new theorems showing that K = 0 or
K = Ko time functions uniformly avoid such singularities (which include both Cauchy. horizons and some
curvature singularities}. We then study the inhomogeneous generalizations of the Oppenheimer-Snyder
spherical-dust-collapse spacetimes. These Tolman-Bondi solutions are classified as to their causal structure
and found to contain naked singularities of a new type if the collapse is suAiciently inhomogeneous. We
calculate the K = 0 and K = Ko time slices for a variety of these spacetimes. 'We find that since some
extreme dust collapses lead to noncrushing singularities, maximal time slicing can hit the singularity before
covering the domain of outer communications of the resulting black hole, Furthermore, the use of K = Ko
slices in the presence of a naked singularity is discussed.

I. INTRODUCTION

Much research is underway to develop computer
codes capable of solving the time-dependent Ein-
stein field equations of general relativity. ~ A pre-
requisite for the success of numerical relativity is
the selection of a good spacetime coordinate sys-
tem' in which to describe the dynamics. In par-
ticular, one must be able to construct smooth
Cauchy time slices over that part of the maximal

development which is of physical interest. For
instance, during the birth of a black hole, one may
want to follow numerically all the gravitational ra-
diation outside until late times, without having the
computer "crash" because the time slice has run
into the spacetime singularity inside. Numerical
experience to date' has shown that maximal time
slicing is often useful. However, the rigorous
results' available on maximal slices do not go far
enough to gua~an~e its success in all the spa.ce-
times of interest to numerical re1ativity; most
crucially, almost nothing is known in general
about whether maximal (K =0) slices avoid space-
time singularities. Similar remarks hold for con-
stant-mean-curvature slicing (g =go).'

In this paper we want to evaluate what one actual-
ly knows about maximal and constant-mean-curv-
ature slicing in the presence of spacetime singu-
larities. First in Sec. II we attempt a rigorous
definition of numerical relativity. We:-conclude

that those spacetimes which can be constructed by
numerical relativity are precisely the globally
hyperbolic spacetimes. We then review the cur-
rent status of existence and uniqueness theorems
for K =0 and g =gp slices in cosmologies and as-
ymptotically flat spacetimes. We conjecture about
possible extensions of these results to problems
of interest in numerical relativity, particularly
the questions of avoidance of singularities by these
slicings. Then, we turn the tables and define a
restricted class of cxushinI. singularities that
automatically have the desired property, that K =0
and K =Kp slices avoid them. The problem then
becomes to discover how general the class of
crushing singularities is among ail singularities
that arise in gravitational collapse. We do not
know how restrictive this class is; to gain insight
we look to some simple examples.

In Sec. IG we apply these ideas to Schwarzschild,
Heissner-wordstrom, and Kerr black hol. es. In
Sec. IV we discuss the spherically symmetric dust
spacetimes of Tolman' and Bondi' as models of
gravitational collapse to a black hole; we point out
a new kind of naked singularity, the "shell-focus-
ing singularity, " which has hitherto escaped notice
in these models for 40 years. Finally, we numeri-
cally construct families of K = 0 and & =&p slices in
a wide variety of Tolman-Bondi marginally bound
models. We conclude that much stronger con-
straints than just energy conditions are needed to
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avoid the formation of naked singularities. Fur-
thermore, we demonstrate that even assuming
"strong cosmic censorship" (global hyperbolicity)
is not enough to guarantee that maximal slicing
will necessarily avoid singularities.

Il. NUMERICAL RELATIVITY: A DEFINITION7

A. Causal structure

Numerical relativity' is a method for obtaining
solutions to the Einstein field equations. The pro-
cedure is as follows: (1) Pick an initial data set
(y;;,K;;)=(three-metric, extrinsic curvature) on
an edgeless spacelike hypersurface S. (2) Using a
spacetime metric form,

ds' = (n' ——P, P') dm'+2P;dhodx'+ y, qdx'dx~,

where (n, P, , y&;) are smooth functions of (ce, x')
&B&S,. choose a gauge by specifying the lapse
function n and shift vector P, (3) Evolve (y,.&, K,.;)
from S to the nearby surface S' using the mapping
of points in S to S' defined by (n, P, ). (4) Iterate
steps (2) and (3) thereby creating a spaeetime M
foliated by slices S, determined by e and threaded
by a coordinate congruence determined by P, . In
this section we study the causal properties of such
spacetimes.

The events which can be predicted from S are
contained in D(S) =D+(S) U D (S), the domain of de-
Pendence' of S. That is, D '(S) =(x~ every (g,",)
inextendible nonspacelike curve through x inter-
sects Sj. The ('~~ ') boundaries of D'(S) are the
('",'„') Cauchy horizons of S; H '(S) =D '(S)
—I~[D '(S)], where I ' is the chronological (~~",'„"")of
S. If S has no edge, ' then H'(S) is null. Besides
H'(S), D '(S) may have boundary points added as
terminal indecomposable paste (TIP's) or terminal
indecomposable futures (TIF's) which represent
singularities or points at infinity. ' In general, D'(S)
maybe smoothly extended across H'(S) in an infinite
number of different ways to form the complete mani-
fold M; thatis, thatpartofM outside D(S) cannot be
predicted from S. If spacetime is assumed to be
analytic, not just smooth, then the number of pos-
sible extensions is greatly reduced, often to one (e.g. ,

, analytic extensions across Cauchy horizons in
Heissner-Nordstrom or Kerr spacetime). " But this
is too strong an assumption because most space-
times are not analytic. Therefore, in general, S
will be a partial Cauchy surface, that is, no non-
spacelike curve in' intersects S more than once.
In this case D(S)eM. 1'f D(S) =M, which often is
not the case, S is a (global) Cauchy surface.

In a general spacetime (M, ds'), a time function
zv on an open neighborhood N of M' is a smooth real-

valued function on N with an everywhere timelike,
future-pointing gradient vector -V'so. Then m is
strictly increasing along any future-directed caus- .

al curve. A time slice S(mo) is a level surface
zv = MID = constant of m. If this time slice has the
additional property that any inextendible causal
curve in N intersects S(u,) exactly once, then S(su, )
is a Cauchy slice for N. A Cauchy time function gg

on N is a time. function on Ã such that each time
slice is a Cauchy slice for ¹ Clearly, the pro-
cedure of numerical relativity constructs a Cauchy
time function on NCD(S) such that the level sur-
faces are the time slices S(m) =S, mentioned above.

The spacetime Ã is the future development d„'(S)
of the initial slice S, i.e., a solution of the Einstein
equations which contains S as a Cauchy slice. This
development depends both on the S chosen and on
the time

functional@

chosen. In any ease, d„'(S)
CD'(8). As a result d„'(S) is globally hyPerbolic
and stably causal. The time slices S(ur) must there-
fore all have the same topology. Only globally
hyperbolic spacetimes N can be constructed by nu-
merical relativity. Conversely, Qeroch' has shown
that any globally hyperbolic spacetime admits a
Cauchy time function, so that any globally hyper-
bolic spacetirne can in principle be constructed by

numerical relati vi ty.
The choice of gauge breaks into two parts. Chang-

ing P& has no effect on so and therefore on d„'(S). It
merely threads the same time slices with different
coordinate congruences. Therefore we ignore P,.
in the i.est of this discussion. ' Changing the speci-
fication of the, lapse function leads to a different
time functions' and an inequivalent d„(S). These
various developments are isometric in the region
of their overlap and are all subsets of the nzaxingal

developmerit" d,„(S) which can be identified with

D(S).
For a given w and S there will be a future boun-

dary of d„+(S). This boundary may be composed of
various components, e.g., null (8') and spatial (Io)
or timelike (I') infinity, spacetime singularities
such as curvature singularities, Cauchy horizons
H'(S), or m limit surfaces. A w limit surface is
the future boundary in D(S) of the neighborhood on
which' is a Cauchy time function. We shall en-
counter all of these cases in our study of Tolman-
Bondi spacetimes in Sec. IV.

One might also obtain inequivalent developments
by choosing different slices S in the same space-
time. However, Budic, Isenberg, Lindblom, and
Yasskin~' have shown that if S is either compact,
or a partial Cauchy slice extending to spatial in-
finity in an asympotically flat spacetime, then
D(S) cannot be extended to a larger globally hyper-
bolic spacetime N. In these cases, therefore,
numerical relativity can start from a fixed initial
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slice S, and attempt to construct the largest sub-
set D(S) of an unknown spacetime by varying zv. It
is not necessary to vary S.

8. Asymptotic structure

Let us turn to.the study of the asymptotic prop-
erties of spacetimes generated by numel'ical rel-
ativity. The simplest case is that our partial
Cauchy surface is compact without boundary.
There is no "asymptotic region" and so boundary
conditions never arise. If the surface is compact
with boundary, then suitable boundary conditions
must be specified. If the surface is.noncompact,
but not asymptotically flat, then little is. known
about boundai'y conditions. A number of eases oc-
cur in asymptotically flat spacetimes. 'A space--
time might admit just one asymptotically'flat in- '

finity, as in the gravitational collapse spacetimes
of Sec. IV; it might admit two such infinities, as
in the complete Schwarzschild-Kruskal-Szerkeres
manifold, » or more generally it might admit n such
infinities, connected by various spacelike worm-
holes. ~' A completely satisfactory definition of
"an asymptotically flat infinity" has not yet b'een-
agreed upon; here w. e shall follow the definition
of Geroch and Horowitz, "which guarantees that
each infinity consists of two null infinities 8':, each
$'&&A, with the null generators complete. We shall
further assume that the point I -at spatial: infinity
can be attached as a boundary point to the C space-
time manifold by conformal equivalence, so that
all null generators of future, null infimty 8' (re-
spectively, past null infinity 8 }terminat'e to the
past (respectively, future) at Io. We.shall say-

that a spacetime M has n asymptotica lly znfinitzes',
or simply is asymjtoticaEly flat, if it has n dis-
joint open neighborhoods N„with each N, possess-
ing an asymptotically flat infinity (Inf), =-8',. UIOU8,
i:n the above sense.

For each 8,~ one can define the domain of outer
communicationsz (doc},. = (x~ x&I (8', )A I "(8,.}].
Points in the manifold M not in any (doc),"will. be-
said to be inside holes. The points are in black
holes if they are in S:=M -U, [I (8',.)] or white .holes
if they are iri 'N =M -U, [I+(8,.}]. Now' in many max-
imaQy extended spacetimes there. are many sets of
infinities (Inf), (e.g., Reissner-Nordstrom or "

Kerr). 'o However, numerical relativity, is con.-.
cerned only with the evolution'of data. from some
partial Cauchy slice S. That;surface intersects a
particular set of (Inf},'s which must be the only
set D(S) intersects, that is, . all other. sets of in-
finities are hidden behind the Cauchy horizon H(S)
=H'(S) UH-(S).

The existence of Cauchy horizons in a complete
manifold M is intimately connected. to the, question

of whether naked singularities arise from regular
initial data set on S|"M. We will use the definition
of naked singularity proposed by Penrose, "a sing-
ular .TIP contained in the past I (q) of some point q
in M or a singular TIF contained in the future I+( p)
for some point p in M. Such a singularity violates
strong cosmic censorship, ' i.e, the hypothesis
that M be globally hyperbolic. For this reason,
such a singularity must by hypothesis occur be-
hind a Cauchy horizon of S, since as remarked
before, D(S) is global1y hyperbolic. Now a naked
singularity may be local [see Fig. 1(b)], i.e.,
H'(S) A8+ = Q or global [Fig. 1(c)] in which case
H'(S)A8 e Q and not all of 8' can be predicted from
S. In the latter case we can only assume M is
paytjal$y asymptotic Pedi ctable. "

By definition, strong cosmic censorship (global
hyperbolicity} obtains for every spacetime N gen-
erated by numerical relativity. However, that
does not mean that one is unable to investigate the
formation of naked singularities in numerical rel-
ativity, As seen in the examples in Sec. IV, one
can use. asymptotically null slices (defined below)
to approach the null surface H'(S). If the naked
singularity is global, one wiQ find that regardless
of how nearly null the slices are, d+(S) always be-
comes:singu1. ar before all of 8' can be covered.
This implies that H'(S)A8' is not empty and there-
fore that a global naked singularity exists to the
future- of S.

There is some evidence that in any generic (no
Killing vector) solution to Einstein's equations,
Caucby. horizons will not appear. " Calculations on
sortie solutions which contain Cauchy. horizons"
(e.g. , Reissner-Nor'dstrom, Kerr, some "whim-
per" cosmologies) indicate that these horizons will
change drastically if perturbed. The general idea
is that perturbations will "blue-shift"" near a
Cauchy horizon and grow into curvature singulari-
ties. . A strong version of this notion is that all
spa;cetirnes of physical interest will be globally
hyperbolic, i.e., that the, maximally analytically
extended spacetime will obey strong cosmic cen-
sorship. . If that turns out to be true then numeri-
cal. relativity would be. able, in principle, to pro-
vide- all physically realistic. solutions to the Ein-
stein, fj.eld equations.

Even;if. the singularity is aehronal, and inside a
Mack hole (i.e., disjoint from the doc}, one still
has. the problem: that various time functions se lead
to different future boundaries on d„+(S). The time
slices of ze can hit the singularity at a. point or
small neighborhood in S(zs), they can uniformly
wrap up around the singularity, - or they can simply
not probe an open neighborhood of the singularity
("avoidance"). By singularity we mean "future (or
past) boundary of D(S), not counting infinity" so
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that we may consider part of Ii'(S) as part of the
singularity. This differs from the usual definition
of geodetic incompleteness, but is the appropri'-
ate definition for numerical relativity, because
y, ; becomes singular or degenerate at all of the
boundary of D(S), including II'(S). The ideal time
function would be one which covers both the doc
and the inside of the black hole, i.e., one which
spanned d', „(S)=—D(S). No satisfactory prescrip-
tion for choosing such a time function has yet been
made. One of the major purposes of this paper is
to discuss the behavior of Cauchy time functions
near such singularities (see Sec. IID below).

In the compact case, the required time function
should define slices which are compact partial
Cauchy slices. In the case where D(S) is asymp-
totically flat, the partial Cauchy slices S are of
two types. If for any set of neighborhoods N, of
(Inf), , S -UN, is compact, S is said to be an as-
ymptotically flat partial Cauchy slice. This im-
plies that S intersects any neighborhood of the
asymptotically flat sPatial infinities I',. of D(S) but
has no other infinities.

Alternatively, S is a future asymPtotically null
partial Cauchy slice of M if S lies in a globally
hyperbolic, asymptotically flat neighborhood NCM;
if for each 8+ of N (the conformal completion of N)
SA8+, is a smooth cut (two-dimensional spacelike
cross section), if SU{U, [8',.flI (S, N)]) is a Cauchy
slice of ¹ and finally if for any set ¹ of neigh-
borhoods of 8', , S -UN, is compact. . Here I '(S, N)
is the chronological ('„",'„') of S in N. Therefore S
itself is not a Cauchy slice of N, but S in union
with some pieces of the 8& is. The pieces of 8& are
necessary for the complete prediction (or actually
retrodiction) of all of N because some gravitational
radiation may have already crossed 8', to the past
of S, and it is necessary to save data describing
this radiation. The slice S does carry complete
data for its own future development D'(S) =I+(S,N).

Henceforth, we shall restrict attention to those
asymptotically flat spacetimes which admit an
asymptotically flat slice S near every (Inf), . This
is so spacetime itself will have no other infinities.

Past asymptotically null slices could similarly
be defined and used. In fact, up to now, numerical
relativists have employed none of these slices and
boundary conditions. Instead, the spatial mesh has
been truncated at some large but finite radius (e.g. ,
r =50M), and an approximate outgoing radiation
condition imposed there. The boundary in space-
time is therefore a timelike cylinder. ' In principle
this is an awkward boundary condition for Einstein's
equations, but in practice is has seemed to work.
One area of future work should be to justify this
"engineering" approach in terms of the rigorous
definitions given above.

C. Maximal and constant-mean-curvature slices

One class of time functions has received con-
siderable attention, the maximal and constant-
mean-curvature slicings. The investigation of
their properties in various model spacetimes will
occupy the remainder of this paper. The convex-
genceK of a time function is

K =V„[V"w/(-gg, V "zg V"gg)"'],

which is equivalent to the mean extrinsic curvature
of the level surfaces of zv. For a given initial sur-
face S, g has some deperidence on spatial position
in S, that is, some initial value K(x ). A useful
way to consider the generation of a time function'
is to give a prescription for B„K(x'). Many aspects
of the problem simplify if one requires Z' to be in-
dependent of spatial position on the slice, that is
K =K(su) only. If K =0, and the slice is compact or
asymptotically flat, then the slice is said to be a
maximal slice If K.(m) =Ko on S(xo), and the slice
is compact or asymptotically null, then it is called
a slice of constant mean curvature. A maximal
time function cu has level surfaces with K() =0,
whereas a constant-mean-curvature time function
has level surfaces K(zu) =K,(w) where K, is a con-
stant on each level surface.

If one wishes to study a spacetime numerically
using these time functions, a series of questions
must be asked. First, can one find a single space-
like hypersurface S in the spacetime for which
K(S) =Ko'? This is the slice on which one wishes
to pose initial data. Second, if so, does there exist
a family of such slices and is the future boundary
of d'(S) by a maximal or constant-curvature time
function go nonsingularP This is the evolution of
the initial data. Third, does d'(S) =d' (S). Fourth,
if not, can d„'(S) be extended by selecting a differ-
ent ze? That is, how much of the domain of depen-
dence of S can be reached byre'P

Some significant progress has been made on these
problems in the last five years."The kinds of
questions which can now be answered rigorously
are of the first type and partially of the second.
That is, for spacetimes "sufficiently close" to a
spacetime known to contain a E =E, or g =0 slice,
one can prove the existence of such a slice in the
nearby spacetime. If the original spacetime has a
family of such slices, then so does the nearby
spacetime. However, these theorems have been
proved only for the simplest cases, i.e., space-
times with compact slices or those asymptotically
flat spacetimes of the topology 8'~B. We review
these theorems below.

Of principal interest to numerical relativity are
those spacetimes which are "far away" from any
known spacetimes. Usually such strong-field
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spacetimes develop singularities. Thus the the-
orems we need are global answers to the second
question, i.e., can one construct a maximal or
constant-mean-curvature time function which cov-
ers the entire manifold in a nonsingular fashion?

It would seem that this question is intimately re-
lated to the character of the singularities which
form. This in turn is related to the matter content
of the spacetime. We will make some conjectures
below that if the spacetimes are vacuum, the slic-
ings tend to be well behaved. This is because, as
discussed in Sec. IID, we believe that. vacuum
globally hyperbolic spacetimes will have singular--
ities of a type (we call crushing) which have nice
properties with respect to K =0 or K =.K, slicings.

The restriction to vacuum is important here;
presumably it can be weakened to aDow matter
fields which obey well-behaved hyperbolic equa-
tions. We certainly need a stronger assumption
about the matter fields than one of the usual ener-
gy conditions on the stress-energy tensor, because,
just as for the cosmic censorship problem, there
exist counterexamples involving pressureless per-
fect fluid matter ("dust" ), which we shall discuss
in Sec. IV.

We now review what is currently known about lo-
cal existence of K =0 or K =K, slices in various
classes of spacetimes. We organize these theor-
ems and conjectures by the topology and asymp-
totic conditions satisfied by these spacetimes.

First, we summarize the results for the compact
case. Simple examples are the fluid filled Robert-
son-Walker k =+1 cosmologies, which admit one
maximal slice or K =Ko slice for each value of Kp.
The maximal slice corresponds to the moment of
maximal expansion of the universe. Gn the other
hand, there exist spatially compact cosmologies,
for instance, the T'-identified vacuum Kasner
models, which have no maximal. slice because they
expand forever. "

The general uniqueness theorem is
Theorem 2.1 (Ref. 24): Suppose a spacetime

(M, g) contains a compact C" spacelike Cauchy
hypersurface S. Let the timelike convergence con-
dition R„V'V ~0 for all timelike vectors V' hold
in (M, g). If S is a K =Ko surface, then there is no
other smooth compact spacelike hypersurface in
M withK=K, .

The above also holds for K =0 if (1) (M, g) is not
identically flat and if (2) S is not time symmetric
withe„Z'Z =0, where Z' is the unit normal to S.
In case (2), the theorem holds if either R,„
=0 at each point of S or at some point of S,
Z'Z"Z&, R»,~&,ZI& 0 0. For cases not covered by (1)
or (2) see Marsden and Tipier. ~~

The best existence theorem to date is
Theorem 2.2 (Ref. 25): If M is a spacetime suf-

ficiently "close" to a spacetime I which contains
a compact K =0 or K =K, slice S, then unless S is
totally geodesic, there exists aK =0 or K=KD
slice, respectively, in M. In the special case S
is totally geodesic (time symmetric and therefore
with K =0), there exists a K =K', surface with K',

'possibly different from 0.
Theorem 2.2 covers a limited number of space-

times, i.e., those which are slightly deformed
from some known analytic spacetime (e.g., Robert-
son-Walker k =+1 or T'-identified Kasner) which
contains a K,=O or K =K, slice. One would like to
prove existence for a much more general intrinsi-
cally defined class of spacetimes, e.g., globally
hyperbolic spacetimes obeying some energy con-
dition. However, such a theorem is not true be-
cause we can find simple counterexamples in the
spherically dust-filled Tolman-Bondi spacetimes
(to be discussed in a later paper). Therefore, we
limit our conjecture about the type of theorems
which might be proved to include only vacuum
spacetimes. This conjecture is essentially due to
York "

Conjecture Z.3: A vacuum spacetime M which is
the maximal Cauchy development of a compact
slice S admits a unique Cauchy slice of constant
mean curvature K, for each value of Ko in some
range K . &Ko&K,,„; "usually" K,.„=- and K,„
=+. These slices cover M. In particular there
exists a Cauchy time function sv, unique to trivial
reparametrization, whose level surfaces ze = const
are all these slices.

Turning from the compact to the noncompact
ease, we consider spacetimes of topology A'xA.
These are of two classes. First, such a space-
time may not be asymptotically flat, e.g. , 0 =0
Robertson-Walker. It is difficult to prove the-
orems here because the three-space is infinite
with no well-posed asymptotic conditions. " In par-
ticular, there are no results on general existence
of K 0 or K Kp slices for such nonasymptotically
flat R'~R spacetimes known to us.

We now consider the asymptotically Qat case,
which is much more difficult and diverse than the
compact case because of the existence of boundary
conditions. The fundamental difference between
K =0 and K =KOO0 slice& is their asymptotic prop-
erties: Maximal slices end on spatial infinity I
while K =K,&0 end on past null infinity 8 and K =K,
&0 end on future null infinity O'. These latter
asymptotically null slices are a special case of the
S(v) used by Hawking and Ellis' (p. 313) in their
discussion of black holes.

For maximal s1ices one has a complete know-
ledge of existence and uniqueness in Minkowski
spac ctime:

Theorem 2.4 (Ref. 29): In Minkowski spacetime
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3f the spacelike, asymptotically flat, K =0 hyper-
surfaces are the 4-parameter family of time
planes. Three of the parameters are the compon-
ents of the boost velocity and the other is the time
translation parameter. For a given choice of
boost, the one parameter family of maximal slices
covers all of M.

This theorem can be extended to discuss the
existence of maximal slices in asymptotically flat
spacetimes of topologyR'XR, i.e., spacetime de-
formable to a portion of Minkowski spacetime.

Theorem 2.5 (Ref. 30): For spacetime sufficient-
ly "close"" to Minkowski spacetime, there exists
a four-parameter family of maximal slices which
cover the spacetime.

Note that vacuum spacetimes of topology R'&R
can be very far from Minkowski spacetime, e.g.,
strong gravitational waves" which focus them-
selves into a black hole and singularity. The above
theorem does not state that such a spacetime can
be completely covered by regular maximal or K =&0
slices.

Even more difficult is the case where wormholes
are present. The topology of the time slices is then
no longer R' and there are several infinities pres-
ent. For the static, spherically symmetric and
analytic black hole spacetimes one can calculate a
two-parameter family of spherically symmetric
maximal slices. " In these spacetimes, unlike the
R case above, singularities to the future of a
Cauchy slice are inevitable. " Thus black holes or
naked singularities must occur. This means that
the existence of globaE maximal time functions,
which cover the doc, is the crucial question. For
the vacuum case of several throats in the time
slice, we conjecture the following:

Conjecture 2.7: A vacuum globally hyperbolic
spacetime M with n different asymptotically flat
infinities, which is a maximal Cauchy develop-
ment, admits exactly a 4n-parameter family of
maximal Cauchy slices. Specifically, at each
spatial infinity I'„ four parameters analogous to
the one time displacement and three boosts in
Theorem 2.4 can be freely given as boundary con-
ditions for the slice. In particular there exist
(many) maximal time functions which are Cauchy
time functions for the domain of outer communi-
cations.

The existence ofK =Ko& 0 slices in asymptotically
flat spacetimes is currently in doubt. " Goddard'
conj ectures that the four-parameter family of hyper-
boloids of radius —3/K, are the only K =K, slices of
Minkowski spacetimes. From this he conj ectures
that in a general spaeetime a K =K, slice mustinter-
est 8' in some special kind of cut, e.g. , in a good cut
(agood cut" is a croes section of 8', such that the
shear of the ingoing normal null geodesics vanishes

through order r') '7.

Conjecture 2.8: In a vacuum globally hyperbolic
spacetime with n different asymptotically flat in-
finities, which is a maximal Cauchy development,
a sufficient condition for the existence of aQ +0
asymptotically null slice (for given Ko) is the ex-
istence of good cuts. In particular, for Ko&0 (re-
spectively, &0) any good cut on each 8', (respective-
ly, 8,) can be freely given as the boundary of the
slice.

Since a two-parameter family of good cuts ex-
ists" for axially and reflection symmetric space-
time (e.g., collapse of an axially symmetric non-
rotating star, head on collision of two nonrotating
black holes), K =Ko slicing probably can be used
in such a spacetime.

This finishes our review of known theorems and
possible extensions to vacuum spacetimes. One
would like to develop more powerful techniques
which allow one to prove existence for even wider
classes of spacetimes.

There are so far two main approaches to solving
these global problems. One stated by Choquet-
Bruhat, Fischer, and Marsden is to try to extend
the notion of spacetimes being "near" a fidicual
spacetime to the notion of spacetimes being "con-
nected by a curve of spacetimes" to a fidicual
spacetime. However, we have examples of space-
times which physically seen infinitesimally near
each other, in which one spacetime has aE =Ko
slice and the other does not. Therefore, even if
such a globalization could be proved, the "curve of
spac time" might be very restricted in its physi-
cal content.

A different approach is to characterize intrinsi-
cally a class of spacetimes, say by giving their
allowed singularity structure Then .one attempts
to prove existence of K=0 or K=K, global Cauchy

. time functions in such spacetimes. If such a the-
orem can be proved, then the physical content is
answered by studying how broad is this class of
singularities. Recently, Tipler and Marsden' have
made significant progress on this question by show-
ing that under certain restrictions maximal slices
avoid a ciass of singularities called "strong curv-
ature singularities, " so that existence of a ma'ximal
slice can still be proven provided all singularities
are of this class. For the necessary restrictions
see Theorem 3C of Marsden and Tipler.

We have adopted a different approach to char-
acterizing singularities, which is the subject of
the next section.

D. Crushing singularities and avoidance theorems

To discuss the behavior of g =0 or & Ko time
functions in general globally hyperbolic manifolds
M, one must devise a characterization of the future
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'boundary" ofI which is adapted to questions of
time slicing. The definition should include both
Cauchy horizons and nontimelike singularities. In
model spacetimes we noticed that such boundaries
are uniformly approached by the "natural time
functions" in those spacetimes, e.g. , v = constant
in Friedmann (singularity) and r = constant in
Schwarzschild (singularity) or Reissner-Nordstr5m
(Cauchy horizon). On such slices, K-~ uniformly
as the boundary is approached (see Sec. III below).
Therefore, we have selected out this feature as
essential and defined its generalization: the
n"ushing singular'i ty.

Definition 2.9 A future crushing function f on a
globally hyperbolic-neighborhood N is a Cauchy
time function on N with some range c&f&0 (c&0 is
a constant), such that the convergence K of f obeys
IimK =~ as f -0, uniformly. Similarly a past
crushing function h on N is a Cauchy time function
on N with some range 0&h&d (d &0 is a constant),
such that the convergence K of k obeys ling = -~
as h 0', uniformly.

From now on we shall generally assume that a
neighborhood N, as well as a spacetime M, is
globally hyperbolic. Furthermore, we shall just
treat the future case, and leave the past case im-
plicit as an obvious dual.

Definition, 2,10: We shall say that a spatially
compact spacetime M has a future crushing singu-
laHty if there is a neighborhood N in M, such that
N contains a Cauchy slice of j/I, and such that N
admits a future crushing function.

Definition 2.11: We shall say that an asymptotic-
ally flat spacetime M has a future crushing singu
larity if the interior intS of all black holes, con-
tains a neighborhood N such that N contains a
Cauchy slice of int, and such that N admits a
future crushing function.

That there are incomplete timelike curves in M
at a crushing singularity follows immediately
from

Theorem 2.12 (Haauking and Ellis, P. 274): If
a spacetime M
(1) obeys the strong energy condition;
(2) has a Cauchy slice S;
(3) has K&k&0 everywhere on S, where K is the
convergence of S and 4 is a constant,
then no future-directed timelike curve from S has
proper length greater than 3/k.

Proposition 2.18: If a globally hyperbolic and
either spatially compact or asymptotically flat
spacetime M obeys the strong energy condition
and has a future crushing singularity defined on a
neighborhood N, then no point pE'M —N lies in the
chronological future I+(N) of ¹

Proof, Compact case: Assume p exists; there
is a timelike curve C leaving N and passing through

p. However, by Definition 2.9, C will cross Cauchy
slices in N with K&k for arbitrarily large constant
k, so the proper length of C to the future of N must
be less any constant 3/k greater than 0 by Theorem
2.12, which is a contradiction. AsymptoticaQy Qat
case; replace M by int and proceed the same way.
Q.E.D.

Therefore, without loss of generality, we can
take N =JI/I in Definitioq 2.10 and N = int in Defin-
ition 2.11. For any smaller N, we can extend f to
the past easily, and we need not extend it to the
future at all. Any neighborhood N appearing in
these definitions could be considered a neighbor-
hood of the singularity. Crushing functions are
not unique; if a spacetime I admits one crushing
function it will admit many. This makes it easier
to guess a crushing function for any given I, and
therefore to establish that I has a crushing sing-
ularity; see examples below. %e hope that a
crushing function is in some sense "asymptotically
unique" so that if me mere to buiM a singularity
structure on the future causal boundary of M, this
structure would-be independent of choice of crush-
ing function.

There is an important issue that we will not ad-
dress in this paper. One would like to view a
"singularity" as a point set which is constructed
as a topological boundary on spacetixne. Can a
crushing singularity be viewed in this way? And
if so are its properties independent of the choice
of neighborhood, Cauchy slice and crushing func-
tion? The answers seem to be "yes" to these
questions; we shall return to this issue in a future
paper.

Proposition 2.13 can be reworded in a more in-
teresting form:

Corollary 2.24: A spacetime M that obeys the
strong-energy condition and has a future crushing
singularity is a maximal Cauchy development into
the future of any one of its Cauchy slices S, i.e.,
there is no larger spacetime M'&M with I'(M, M')
nonempty, and with S a Cauchy slice of M'.

The usual proof" of the existence of a maximal
Cauchy development assumes Zorn's Lemma,
equivalent to the axiom of choice, to which some
pragmatic relativists object. ' Corollary 2.14
provides a constructive sufficient criterion for, at
least, deciding if a given spacetime is a maximal
Cauchy development.

Conjecture 2.15: A globally hyperbolic, spatiaQy
compact or asymptotically flat, vacuum spacetime
that is a maximal Cauchy development and has a
singularity has a crushing singularity.

Corollary 2.14 is likely to be useful in the prac-
tice of numerical relativity. If one succeeds in
constructing a spacetime with a demonstrable fu-
ture crushing singularity, for example by the use
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of space slices of constant mean curvature K and

by the demonstration that the computer can evolve
the spacetime to as large a coordinate time Rp as
one likes, so that one's time coordinate is itself a
crushing function, then one has achieved the goal
of constructing the maximal Cauchy development of
the initial data.

A globally hyperbolic spacetime M with a future
crushing singularity has future-incomplete time-
like curves which terminate at the future causal
boundary. However, M stiO might be smoothly
extendible .across this boundary into a larger
spacetime M', such that the initial Cauchy slice S
of M fails to be a Cauchy slice of M'. So a future
crushing singularity implies either a true space-
time singularity, oz a Cauchy horizon; both cases
wiQ be illustrated below. In particular, physical
objects may or may not be actually crushed at the
boundary; it is our coordinate system based on a
Cauchy time function that is hypothesized to be
crushed. In this sense our definitions are a mod-
erate abuse of the usual terminology. For in-
stance, if one were to try to extend the definition
to the spacetime D(S) where S is the unit hyper-
boloid contained in the future light cone of the or-
igin of Minkowski spacetime (which is neither
spatially compact nor asymptotically flat) one
would conclude that this subset of Minkowski space-
time has a past crushing singularity, even though
the spacetime is perfectly well behaved. However,
a crushing singularity is always a singularity in
numerical relativity, because the three metric of
the time slice is always singular as the crushing
function approaches 0.

Now we shall show that the avoidance of crushing
singularities by maximal slices, and slices of con-
stant mean curvature, follows trivially from the
definitions. The particular form of Definitions
2.10 and 2, 11 that we need is:

Corollary 2.16: Given N and f as in Definition
2.10 or 2.11 (future case); given any constant
Ko&0. There exists a unique neighborhood N(K, )
CN, of the form +EN~ f(p) &b) for some constant
5, c&b&0, such that K&KO on N(Ko), and finally
such that N(KO) is the largest neighborhood with
these properties.

Since f restricted to N(K, ) is still a crushing
function, N(K, ) itself suffices to define a future
crushing singularity for M.

Theorem 2.27 (Choquet-Bruhat"): Let a spatially
compact spacetime M have a future crushing sing-
ularity. Then no Cauchy slice of constant-mean-
curvature Ko on M intersects the neighborhood
N(K, ) of Corollary 2.16.

Theorem 2.18: L'et an asymptotically flat space-
time M have a future crushing singularity. Then
no partial Cauchy maximal (K =0) or constant-

mean-curvature (K =K,) slice in M intersects the
neighborhood N(0} or N(KO), respectively, of
Corollary 2.16.

Proof: Let S be a Cauchy slice of ~. Then $QB
is contained in a compact set in S, with boundary.
The boundary of SOB lies to the past of any Cauchy
slice of intB, hence-it can be neglected in the ar-
gument of Choquet-Bruhat. Q.E.D.

Therefore, a future crushing singularity has a
neighborhood N(KO) which all Cauchy slices of con-
stant-mean-curvature go uniformly avoid. We ex-
pect that most of all of the present existence the-
orems which depend on the absence of singulari-
ties, or on the hypothesis that singularities are
of Robertson-Walker type' or are strong-curvature
singularities, ~' can also be pushed through under
the hypothesis that spacetime has a crushing sing-
ularity.

For instance,
Conjecture 2.19 (J. A. . Wheeler ): Let M be a

spatiaQy compact, globally hyperbolic, spacetime
having both a future and past crushing singularity.
Then there exists a Cauchy constant-mean-curv-
ature time functions onM such that its time slices
cover M and wrap up around the singularities uni-
formly.

This is a different version of Conjecture 2.3.
Here we allow any matter or vacuum content. In
Conjecture 2.3 we expect vacuum to lead to space-
times with crushing functions. Here we restrict
ourselves to cosmologies that have them. J. E.
Marsden and F. J. Tipler (private communication)
have proved a theorem similar to Conjecture 2.19
using their methods (cf. Ref. 4).

HI. STATIONARY BLACK HOLES

The avoidance behavior referred to in Theorem
2.18 was first noted for spherical maximal slices
of the Schwarzschild black hole by Estabrook et al. '
It has since been observed in a variety of other
contexts. In this section, we review these particu-
lar results and use our avoidance theorem to ex-
tend these to general results.

ExamPle 3.1: Complete Schwarzschild metric.
The whole two-parameter family of sPheHcal/y
symmetric maximal Cauchy slices has been con-
structed and studied by Estabrook et a/. , Reinhart,
and Brill. The main result is that no such slice
intersects the region r&3M/2 inside the black hole
8 (here r is the Schwarzschild radial coordinate)

PxoPosi tion 3.Z: The complete Schwarzschild
metric has a future crushing singularity.

Proof: The radial coordinate r is a Cauchy time
function for the region (r&Kg}, i.e., for the inter-
ior of the black hole int. The convergence of this
time function is
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K =(3M —2r)/[r'(2M/r —l)~'] .
Therefore r is a future crushing function on int.
Q.E.D.

Corollary 3.3: No maximal Cauchy slice of the
Schwarzschild metric intersects the region r & 3M/2.

Proof: K &0 on P(0) = (r& 3M/2); appeal to The-
orem 2.18. Q.E.D.

Corollary 3.3 was already known to hold true, by
explicit constructions, for the special case of
spherically symmetric slices." This extends the
result to the whole eight-parameter family of slices
postulated in Conjecture 2.7; most of these slices
are "boosted" and hence not spherically symmetric.
It is not known if these slices actually exist. 4 Thus
for maximal slicihg there will exist ave limit sur-
face which forms all of the future boundary of
d'(S) for any 8 in the slicing. This result also
holds for constant mean curvature slicings.

Corollary 3.4: No R =K, partial Cauchy slice of
the Schwarzschild metric intersects the region
r&r„. where 0&r„. &2M is the solution of equation
(4) with K =Ko.

Proof: Same as for Corollary 3.3.
Notice that the limit surface is closer to (further

from) the singularity than the limit surface for
maximal slices if Ko&0 (Ko&0). The other main
point to remember is tPat the g =K, slices end up
on 8+ (8 ) depending on whether Ko&0 (Ko&0}.

Example 3.5: Maximal asymptoticaQy flat Cau-
chy development in the Reissner-Nordstr5m met-
ric, for e&M. This is the region outside of the
inner or Cauchy horizon, r & x& ~, where ~, =M
a( M' e')~ ,3in-the usual coordinates. The spheri-
cally symmetric maximal slices here have been
given by Duncan. ' We find that f=(r r) is -a
crushing function for the whole region r & r& r+
inside the black hole int.

P~oPosition 3.6: The Reissner-Nordstr5m met-
ric has a future crushing singularity, for e&M.

This is a case where the "singularity" is actual-
ly a Cauchy horizon in our definition.

Corollary 3.7: No maximal Cauchy slice of the
Reissner-Nordstr5m metric intersects the region

r& r „=3M/4 (9M+'/l6 /. 2e)"'. -(5)
I

The spherically symmetric special case of this
was shown by Duncan. 4 The external case e ='M

seems special here.
-, Corollary 3.8: No K +0 partial Cauchy slice of

the Reissner-Nordstrom metric intersects the re-
gions'&~& where ~ &r„. &r, is given by the solu-
tion to the equation

K, =(3M —2r -e'/r)/ [r'(2M/r - 1 -e'/r') '] . (6)

Example 3.9: Maximal asymptotically flat Cau-
chy development in the Kerr metric, for a&M.

This is the region outside of the inner or Csuchy
horizon, r &r&~, where r, =M+(M2 —a') '2, in
the usual coordinates. We find that f=(r r-) is a
future crushing function for the whole region ~ & x
& x, inside the black hole int, so that:

ProPosition 3.10: The Kerr metric has a future
crushing singularity for a& M.

Here again the "singularity" is actually a Cauchy
horizon.

Corollary 3.4l: No maximal Cauchy slice of the
Kerr metric intersects the region

r&r = '(M +Q-S'+[M'+(-'a'-M')']"']"'
+ QS'- [M'+('-a'-M')']"')"') (V)

this follows by a straightforward calculation of g
for the Cauchy time function f.

The situation is different here in that no slice
~ = const inside a Kerr black hole is a maximal
slice, 4~ in particular the limit surface r = r „. of
Corollary 3.11 is not itself a maximal slice. Cor-
ollary 3.11 is a conservative estimate, and the
true limit surface for maximal Cauchy slices must
lie somewhat to the past of the slice r= r„.„,. We
conjecture that this limit slice is a maximal Cau-
chy slice for int S.

Corollary 3.29: No K =Ko partial Cauchy slice
of the Kerr metric intersects the region x& r„.„, ,
where r &x„. &r, is the solution of the equation

K, = min, K(r„},
where the minimum over 8 is taken since K =K(r, 8)
in Kerr.

We see from the above examples that the interior
of a black hole, which is noncompact, is in many
ways like a spatially compact solution. Rather than
families of maximal slices there seems to be only
one. In fact, the interior of Schwarzschild is
isometric to a vacuum Kantowski-Sachs- Thorne
cylindrical homogeneous cosmology. 4' It thus
seems reasonable that an analog to Conjecture 2.3
also holds for black hole interiors, stationary or
nonstationary:

Conjecture 3.13: Any vacuum black hole 8 con-
tains a unique maximal Cauchy slice for int.
More generally, it contains one Cauchy slice for
int of constant curvature K, for each value of +0.

We have been able to prove this only for the
ease of the Schwarzschild black hole. 4' Additional
support for the maximal slice case comes from
numerical evolutions of dynamic nonspherical
black holes, such as the collisions of black holes'
or nonspherical star collapse. 44 In these cases,
the maximal slices seem to "wrap up" around a
unique limit maximal slice inside the final black
hole.
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ds' = dt'+2m~(r—, t)d&'+Y'(&, t)dQ, (9)

where dQ' =d0'+sin'Odg' is the two-sphere metric.
The Einstein equations become

(10)

IV. TOLMAN-BONDI SPACETIMES

A. Review of the Tolman-Bondi (TB)metric

To study the problems discussed in Sec. II on
selecting Cauchy time functions in numerical rel-
ativity, we turn now to the main examples of this
paper, the Tolman-Bondi' (TB) spacetimes. Our .

emphasis in this paper will be on the marginally
bound dust cloud universes. In later papers we
will treat bound collapse and closed universes.
The great advantage of discussing the TB space-
times is that one knows the explicit form of the
entire spacetime metric. Thus one can use it as
a laboratory to test maximal and constant-mean-
curvature time functions in the presence of space-
like singularities, Cauchy horizons, and naked
singularities. From our-analysis in Sec. II, it
seems likely that the spherical restriction will
not unduly restrict our results. The experience
of numerical relativity in the nonspherical space-
times containing colliding black holes and stellar
collapse bears out this judgement.

Many well-known solutions of the Einstein field
equations are spherically symmetric with either
dust or vacuum matter content, e.g., the: Schwarzs-
child black hole, the homogeneous Friedmann uni-
verses, the Oppenheimer-Snyder star collapse,
inhomogeneous universes with delayed cores or
black holes, etc. These can all be grouped under
one family of exact solutions, the Tolman-Bondi
spacetimes, with metric

W(r) =1, 0&r&~. (15)

Equations (10) and (11) then immediately integrate'
to give

\

X/3

&(~, t)=t M2 . [ t (~) t]'. -

x(~, t) =(M'(r) [t,(~) —t]+2M(r) t', (r)}

x(6M'(r) [t (r) —tj} ' '

(16)

(17)

where t,(r) is an integration function. Since the
area of the matter shell at r =constant goes to
zero when Y(r, t) =0, we see that t=to(r) is the
proper time when. the matter shell hits the physi-
cal singularity. The range of coordinates is thus

of constant areal radius Y(r, t) =constant. At any
time, the three velocity v" relating these two tra-
jectories is just Y. The relative binding energy
of the shell r, in the field of the mass M(r) within
it, is given by the function W(r). If W(r, ) = 1 the
shell x = r, is marginally bound; if W(ro) is greater
(less) than one, the shell is unbound (bound). As
Bondi' describes, Eq. (11) is thus the general rel-
ativistic generalization of the Newtonian energy
equation. Finally, to avoid hiving fo treat "shell-
crossing singularities, " in which matter shells
cross each other, we will always require

(13)

This together with an assumption of positive mass
density, p(x, t)&0, implies that mass increases
with coordinate r:

M(r) &o.

For this paper, we shall restrict ourselves to
the marginally bound case

0 ~& r( 00 & t & t,(r)—.

r
+2 W(V )M'(r)H

0

In order to prevent shell crossing, Eq. (5) must
hold, :restricting t,(r) by

M'(~) = 4n p(r, t )x(~, t ) Y'(~, t ),
t',(r) &o. (19)

where the dot signifies s/st and the prime signifies
s/s~. Let us examine the invariant meaning of this
coordinate representation-.

The time slicing (t = constant) has been chosen by
the demand that the normala to the'slices lie. along
the trajectories of freely falling test particles.
That is, r = constant labels a matter shell with t
measuring the proper time elapsed along. its geo-
desic path. The total proper mass of the matter
within this shell M(r) is independent of time since
the r coordinate is comoving with the matter.
However, the proper area of the shell, 4vY'(r, t),
is time dependent. Thus the mass shells r =con-
stant are moving with respect to the trajectories

ds' = -dt'+( t'/9)"2'( ~'dr'+dA'),
I

which is just the marginally bound (k =0) Fried-

(20)

Having specified W(r) by Eq. (15), it appears that
we still have two freely specified functions to(r}
and M(r) of t. However, since r only serves to
label spherical shells, we still have the coordinate
freedom to relabel by any functjon of r, so that this
freedom can be used to fix either t0 or 3f. . Finally,
we demand M(r} constant as r ~ so that space-
time is asymptotically flat.

,The two, simplest choices lead to well-known
spacetimes. Suppose we choose to(r) =to(r) =0.
Then we use our coordinate gauge to set M(r) = ~'.
Evaluating (16) and (17}yields the line element
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mann solution. On the other hand, settingM'(r) = 0
and choosing to(r) =r,

4mds'=-dt'+ (r t) ' dr'. 3

+ (r —t)' dQ',
2

which is just the Eddington- Finkelstein patehof
extended Schwarzschild spacetime, written in
Lemaitre coordinates. " If we sew these two
spacetimes together along x =1, we obtain the
Oppenheimer-Snyder4' solution of a homogeneous
collapsing marginally bound dust cloud.

B. Causa1 structure

Two of the most important hypersurfaces in col-
lapse spacetimes are the apparent horizon and the
event horizon. 4' The apparent horizon (ah) was
defined by Hawking to be the outer boundary
of the region of trapped surfaces in a given slice.
For our purposes in this paper, we shall general-
ize the definition of the apparent horizon to the
boundary of the region of trapped two spheres in
spacetime. To find the boundary of the region of
trapped two spheres, we search for two spheres
F = constant whose outward normals are null,

VP. Vr = -r'+X 'r" =0. (22)

Inserting Eqs. (10) and (11) for the case W(r) =1,
leads to the condition

y'(r, t) =2M(r),

a simple gerieralization of our experience in
Schwarzschild spacetime. Using Eq. (16}this
can be written as

t,„=t,(r) ', M(r)-.-

(23)

(24)

So the apparent horizon precedes the singularity
t=t, (r) by an amount of comoving time 4M(r)/3
The induced metric on the apparent horizon is [us-
ing Eqs. (16), (1V), and (24)]

0&t', &—', M' (past timelike), (26a)

M'(r) &0, 0&t,' = —', M' (past null), (26b)

0&—', M'&t', (spacelike). (26c)

In the case of vacuum, M'(r} =0, the apparent
horizon is future-pointing null and coincides with

ds' =4M'(r) [t',(r) —,'M'(r)]dr'+4M'(r) dQ'. —

(26)

In view of the inequalities (14) and (19), we see
that portions of the apparent horizon can be past-
pointing timelike, past-pointing null, or spacel&e
if

the null event horizon of the Schwarzschild space-
time. In our Friedmann example above (26a) ob-
tains and the apparent horizon is timelike for all
r. In the Oppenheimer-Snyder spacetime the ab-
rupt change from past-directed timelike to future-
directed null occurs because the density p does not
fall off smoothly to zero as the surface of the star
is approached.

The event horizon, in contrast, is always future-.
pointing null. A radial future-pointing null geodes-
ic in the general line element (9) satisfies

=X(r, t).dt
(2V)

Even for W(r) = 1 this equation cannot be solved in
closed form except for very special cases such as
our three examples. It can be numerically inte-
grated in genera1 as described below. Before
giving details we shall summarize the causal struc-
ture of the marginally bound, asymptotically flat
TB spacetimes in the form of Penrose-Carter'
diagrams. There exist past and future null infin-
ities of the usual sort described in Sec. II. The
curvature singularity at t=to(r) is spacelike every-
where except at the origin. A delicate situation
occurs in general at the origin on the singularity,
r =0. If limto/M =0 as r 0', then the singularity
is spacelike at r =0, and the causal structure is of
the familiar form, Fig. 1(a). The Oppenheimer-
Snyder model belongs to this case. Here the "sing-
ularity grows faster than the speed of light" after
the initial collapse of the dust at the origin, and
no light rays can escape the growing singularity.

On the other hand, if limt0/M =~ as r 0', then,
surprisingly, there is a piece of past-null singu-
larity at the origin, and the causal structure will
be as shown in either Fig. 1(b) or 1(c). Note that
in either of these cases a Cauchy horizon exists
for any regular partial Cauchy surface. The choice
between Figs. 1(b) and 1(c) depends on the details
of t 0 and M for x well away from 0 in a complicated
way; specific examples will be given below. In this
case the "singularity grows slower than the speed
of light" after the initial collapse, and light rays
can escape its immediate vicinity. For Fig. 1(b),
a11 these escaping rays are eventually trapped with-
in the final black hole, so that there is no naked
singularity visible from infinity, but we do have a
local breakdown of predictability inside the black
hole, i.e., a locally naked singularity as discussed
in Sec. II. For Fig. 1(c), the black hole grows
more slowly, and some of the escapirig rays reach
future null infinity, so that a global naked singu-
1arity occurs. We shall eall either of the, se a
shell focusing singu-larity. In the critical case
limto/M =finite const, all these three cases oc-
cur, as will be discussed below. We can find C"
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(b)

FIG. 1. Penrose-Carter diagrams of the three possible
causal structures for inhomogeneous marginally bound
dust-sphere collapse. The line with short dashes to the
left is the center of the star. The shaded region is
where T» &0. The infinities are labeled by I' (future
timelike), 8' (future null), I (spacel eke), 8 (past null),
and I (past timelike). The jagged line is the singular-
ity. Note that points along lines SS'S" all map into the
single coordinate point (t,M) = (0, 0). The horizontally
striped region is the globally hyperbolic region access-
ible to numerical relativity. The three types of causal
structure are (a) generalization of Oppenheimer-Snyder
collapse, (b) locally naked singularity, (c) globally naked
singularity. The line with long dashes is the absolute
event horizon. For causal structures {b) and (c), a
Cauchy horizon exists (dot-dash line).

spacetimes which exhibit a11 three kinds of causal
structure.

It is not very surprising that there exist inhomo-
geneous gravitational collapse spacetimes with a
breakdown of global hyperbolicity near the singu-
larity, or even with a global naked singularity. It
is a bit more surprising that these phenomena oc-
cur in the family of Tolman-Bondi spacetimes,
which are thought to be well understood. Two gen-
eral ideas have been discussed to avoid naked sing-
ularities: (1) to forbid matter fields, such as dust,
that can form density singularities even in a fiat
background spacetime4'; (2) to allow such density
singularities and describe them as distributions
("5-function singularities" ) in the spacetime
curvature. 4' Our Tolman-Bondi examples with
"shell-focusing singularities " demonstrate that
idea (2) does not work in general; for a Tolman-
Bondi spacetime with the causal structure of Fig.
1(c), there is a density singularity along the past-
null singularity which is partially visible from
future null infinity, but it seems that the spacetime
cannot be extended to a larger distributional space-
time, or any other spacetime that is stably causal,
in which the past-incomplete null rays from 8' end

up at 8 . The familiar "shell-crossing" singulari-
ties'0 can be handled by either idea (1) or (2). Of
course, idea (1) gets rid of our "shell-focusing

' singularities" as well.
To be precise, the nonextendibility property of

our spacetime is as foOows: No spherically sym-
metric spacetime 3f with the causal structure of
Fig. 1(c) can be extended to a larger spacetime
M' such that (1)M =M' in some neighborhood of
infinity 8'UI U8; (2) in M' each past-directed
null geodesic from 8' has a unique extension until
it reaches 8; (3) M' is stably causal; (4) M' is
spherically symmetric. For assume 3f' exists.
The family I' of past-incomplete radial null geo-
desics g' from 8+ in 3f is a three-parameter fam-
ily (indexed by a retarded time and two angles; we
identify geodesics which differ only in parameter
along the curve). Each g' in E' must extend to a
complete radial null geodesic in 3f', and therefore
must eventually link up with- a member of the fam-
ily g of future-incomplete radial null geodesics
g from 8 in M. But no such g can be i@complete
at the future singularity [line SI+ in Fig. 1(c)j be-
cause the extension of g to such a g would des-
troy stable causality (as can be seen by introducing
a Hawking time function}. Then the only available

g are the two-parameter subfamily of E, which
are incomplete at 8"; but this subfamily can never
cover the three-parameter family E'. This con-
tradiction means M' with properties (1)-(4) cannot
exist. We believe that hypothesis (4} of spherical
symmetry could be eliminated by an argument
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which uses detailed information about the null
geodesics of Tolman-Bondi spacetimes, but we
have not completed such an argument.

Our examples show only that shell-focusing
singularities occur in spherical dust collapse.
%'e believe it possible that they also occur for
perfect fluids with pressure, e.g., equation of
state p =p/3, in the case of imploding spherical
shocks, but this remains uninvestigated. Deviation
from spherical symmetry, or deviation from per-
fect-fluid behavior, seem likely to 'eliminate these
singularities. Therefore we do not bebeve they
will occur in nature. Their main utility is as
counterexamples to definition or possible theorems
about cosmic censorship.

C. Maximal and constant-mean-curvature time functions

We have described the Tolman-Bondi spacetimes
in geodesic, or Gaussian-normal, coordinates. In
general such a coordinate system breaks down be-
cause of focusing of the time lines, ' according to
the Landau-Raychaudhuri equation. In our case we
have thrown away all those solutions, "shell-cros-
sing singularities, ' " in which breakdown of the
coordinates occurs before the spacetime singular-
ity. Even so, t is not a Cauchy time function be-
cause the slices t = const intersect the singularity
for t~ to(0). We seek to change zu and S so that
d (S) will remain nonsingular while including the
domain of outer communications of any black hole
formed. In particular we have devised a method
to generate maximal and constant mean curvature
time functions for any TB spacetime.

For any spherically symmetric metric,

ds2 =g (Xc)dx"dx~+Y (Xc)dQ (A, fI, C =1, 2),

(28)

the spherically symmetric maximal slices can be
obtained from the variational principle"

gence of a shee is

2YIz=x(x'- t")-'~' -t"+, t"+~2 —+2—X'Y X y

+ 2 t' X' +2—

dt
dr

—(1-T')"'xz„ (32a)

(32b)

The boundary conditions for this system are the
following: At r =0, exactly one free parameter
may be given, t (0); the value T(0) must be 0
(otherwise the slice will have a. cone singularity;
the point r =0 is a singular point of the system).
The boundary condition as r is free; the slice
must cross spatial infinity I for K =0, or the
slice must cross null infinity 8' for Ko~&O. There-
fore, for each Ko, the solutions form a one-param-
eter family. Some solutions of these equations will
run into the singularity instead of getting out to
infinity; these solutions should be discarded.
Equations (32a), and (32b) are readily integrated
numerically by a standard fourth-order, adaptive-
step, Runge-Kutta algorithm.

There is an energylike quantity E which is useful
for locating the limit slices discussed in the last
section,

(31)

Upon setting K =0 this becomes a second-order or-
dinary differential equation in t(r) whose solutions
are the maximal slices; or, setting K=K, =const
gives slices of constant-mean-curvature K, . It is
convenient to introduce a new variable T in addi-
tion to t, and rewrite this equation as two first-
order equations:

dT 2
2Y' (X Y

d
'

Y iX Y
=(T' —1) T+X

i
—+2 —.

0 g Y4 (28)
E =-I"(T+Y)(1—T') "'-~K Y'

It obeys the equation
In fact this is identical to the variational principle
for timelike geodesics of the unphysical two-di-
mensional Lorentzian metric

dv2=-Y4g~dX dX~ .
Now specialize to the marginally bound, asymp-

toticaQy flat Tolman-Bondi spacetime. A spheri-
cally symmetric slice can be described by a func-
tion t(r), so.that the slice is the level surface m=0
of the function so= f- t(x} in spacetime, restricted
of course to be a time function near ac=0. Then
from Eq. (3) of Sec. II, or from the variational
principle for the special case K =0, the conver-

z' =ms'T(I —r')-"' (34)

Therefore, when the slice emerges from the dust
cloud into vacuum (M' =0}, Z becomes conserved
along the remainder of the slice. Using the fact
that, along a limit slice r„„=r„. of Corollary
3.4, Y' =0, one can show that

S„. = r,', (2M/~„—1)"' —,'If, ~,', . (.35)

Therefore for each K =Ko slice one can compute
E, and the limit slice is the one that has E =E„.
in the Schwarzschild exterior.

The main question we shall address is under
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what conditions on t,(r) and M(r) do nonsingular
maximal slices completely cover the region of
spacetime outside the black hole, i.e., the domain
of outer communications? Just as for causal
structure, the key issue is the behavior of to/M
as r 0'.

Case I: limto/M =0 as r-O'. In this case we
have a proof that maximal slicing always works.
(See Theorem 4.1 below. ) The essential point is
that

(36)

can be shown to be a crushing function on some
neighborhood N of the singularity. The computa-
tion of the convergence K [Eg. (3)] of f to prove
this fact is straightforward and we omit it.

Case 2: limto/M =~ as r-0+. In this case there
is always a "shell-focusing singularity" at the or-
igin, which may [Fig. 1(c)] or may not [Fig. 1(b)]
be visible from infinity. The singularity is never
a crushing singularity. If the singularity. is global-
ly naked [Fig. 1(c)] then maximal slicing always
fails to cover the doc because the region outside
the absolute event horizon is not even globally
hyperbolic. If [Fig. 1(b)] the singula, rity is locally
naked then maximal slicing sometimes works and

sometimes fails, as we have found by numerical
examples, to be discussed below.

Case 3: limto/M =f =const&0 as r-O'. In this
critical interrbiate case, behavior dept:nds on the
value of P.

Case 3a: 0&p&p, =[(1921+533Ji3)/72)'J'
=—V.3056. By tedious and boring calculations it
can be shown that the singularity is a crushing
singularity, the causal structure is Fig. 1(a), and

therefore maximal slicing always works following
Theorem 4.1 (see below).

Case 36: g~&g&g, = —,+5 t 3 =—1V.3269. Here
the singularity is never a crushing singularity,
but the causal structure is still Fig. 1(a). Maxi-
mal slicipg sometimes works and sometimes
breaks down. These examples are important be-
cause they show a "nice" causal structure, Fig.
1(a), is not sufficient for maximal slicing to work.

Case 3c: &,«& . The singularity is never a
crushing singularity; it may or may not be naked.
Maximal slicing does not work. The case for
mean-constant-curvature slices can be similarly
analyzed. We reserve this for the section on nu-
merical results. Let us now turn to the global
existence theorem for maximal slices for the TB
spacetimes of Case I.

Theorem 4.2: In a marginally bound Tolman-
Bondi spacetime M (as described above) with to(r)
and M(r) continuous, nondecreasing, and piece-
wise smooth on 0 ~ r& ~; if

(1)M(r) = const =MD outside of some radius, r&R

t(r, e) =maxft(r), to(r) —ef, (37)

where t(r) describes the slice S and t(r, e) de-
scribes the slice S(e). If e is small enough that
the two-sphere labeled by (to(r) —e, r) lies for all
r in the neighborhood N(0) of the crushing function

f, then it follows by a short computation that 1.(e)
is strictly increasing in ~. Therefore any slice S
which intersects N(0) cannot achieve the global
maximum of L, and the true global maximum

(hence spacetime is the vacuum Schwarzschild
solution for r&B);

(2) limto/M =0 as r 0'; then any point p outside
the absolute event horizon lies on a unique spheri-
cally symmetric maximal Qauchy slice.

Proof: We use standard methods which are re-
viewed in Sec. 6.V of Hawking and Ellis, ' and will
just sketch the proof. Define a two-dimensional
manifold-with-boundary M, with coordinates (t, r),
-~&t &t,(r), 0 & r& ~, and define the spacetime
(M, , dv') from Eq. (30). The set of all compact
spherically symmetric C' slices S in (M, ds') that
span the two s-phere on which p lies, becomes the
set C'(p) of all C' timelike curves from (t(p), r(p))
to r =0 in (M„dv'). Under the Co topology, C'(P)
forms a closure C(p), the space of all Co causal
curves from (t(p), r(p)) to r =0. The length func-
tional I, = J dv is upper semicontinuous on C'(p)
and can be extended by continuity to C(p). A seg-
ment of a curve running along the singularity then
has zero length. Now C(p) is compact in the Co

topology, and therefore the upper semicontinuous
functional I. achieves its maximum value. This
maximum must be achieved by a curve which is
C' and which is a geodesic of dv'. As discussed
above [Eg. (30)] this curve then corresponds to
a C~ maximal slice S in (M, ds'). If S intersects
the axis r =0 in the regular part of spacetime, it
must be smooth there or it will not be maximal.
Also, S can be smoothly extended through and
radially outward from p. During this extension,
S cannot intersect the singularity, because p is
outside the absolute event horizon, S is spacelike,

,and there are no naked singularities from hypoth-
esis (2). Therefore S can be extended outward
until r&B, at which point it must match onto one
of the explicitly known maximal slices of the
Schwarzschild spaeetime. All these latter slices
are known to reach I', so S can be extended to I .
At this point we are nearly done; the only thing
which could go wrong is that S might hit the sing-
ularity, and perhaps run along it for a way, inside

p, and therefore fail to be a Cauchy slice in

(M, ds'); the crushing function f helps us to ex-
clude this possibility. Given a slice S which cor-
responds to a maximum of L,. Define a one-param-
eter Co deformation S(e), with S(0) =S, by
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avoids the singularity and thus is a Cauchy slice
of (M, ds'). Finally, uniqueness follows from the
mixed energy condition, e.g., as in Brill and
Flaherty. ' Q.E.D. .

Hypothesis (1) is a restrictive form of asymp-
totic flatness, and presumably could be weakened.
Hypothesis (2) guarantees that "shell-focusing
singularities" are absent; as seen above many
counterexamples exist if this is dropped. Theorem
4.1 shows in particular that the Oppenheimer-
Snyder model admits a unique spherically sym-
metrical maximal Cauchy slicing, which covers
all. of spacetime outside the black hole.

D. Numerical results

We constructed a large store of numerical solu-
tions to the slicing equations, Eqs. (32a) and (32b),
in the following representative family of dust col-
lapses:

M(~) =r', t,(~) =rr', for 0&r &1 (38a)

M(r) =1, t,(r) =r' —1+g, for 1&r& ~ (38b)

where g &0 is a constant and p &'1 is an integer.
The region 0 &x &1 is a dust collapsing core, in-
homogeneous unless g =0 (when we have Oppen-
heimer-Snyder); the region 1& r&.~ is the Schwarzs-
child exterior solution. For p~4, Theorem 4.1
applies, and maximal slicing is guaranteed to
work. For 1 & p &3 we determined by numerical

search when maximal slicing works and when it
does not. The results are summarized in Table I.
Note that the degree of differentiability of the met-
ric is high, even C". [The metric is actually one
lower degree than given when expressed in comov-
ing coordinates (f, r); as usual one must go to non-
geodestic coordinates, e.g. , minimal-shear coordi-
nates, ' to see the full differentiability. ] We showed
above that if a TB solution has a crushing singu-
larity, then maximal slicing works. However, the
converse is not true. Even in the case when the
singularity fails to be crushing, maximal slicing can
sometimes work. It would seem that, as argued
by Smarr and York, ' it is the inhomogeneity of the
density distribution which determines if maximal
slices converge to a limit slice before hitting the
singularity. If p ~4 the singularity is "broad" and

maximal slices, generated in numerical relativity
by elliptic equations' on each slice, "feel" the
curvature mounting soon enough to halt evolution
in the strong field region. If p&4, the singularity
is too "pointy" and the elliptic equations do not
"feel" the curvature until it is too late.

We finish this section by exhibiting several ex-
amples generated by numerically integrating Eqs.
(32a) and (32b). First, we examine maximal slic-
ing. In Fig. 2 we slice the M = 1 Oppenheimer-
Snyder solution. We show [Fig. 2(a)j the interior
of the star (0&r &1) in the TB coordinates. The
choices of t, the value of the TB time coordinate

TABLE I. This is a classification of the causal structure of a two-parameter family (4,p) of Tolman-Bondi dust-
collapse spacetimes {~=1).The parameter p determines the differentiability class of the metric. For p &4, the causal
structure |Penrose-Carter diagrams in Fig. 1(a)-1(c)]is determined by 0 which characterizes the degree of inhomoge-
neity of the collapse. The singularity is described by the properties discussed in the text. Maximal slicing works if a
family of Cauchy maximal. slices exists which covers all of the spacetime outside of the black hole, i.e., the domain of
outer communications.

Singularity

Diff erentiability

Penrose-
Carter

dlagr am
Crushing

?

Totally
'

Globally
spacelike naked

? ?

Maximal
slicing
work

?

3
(Self similar
case)

g4

(Oppenheimer-
Snyder)

C

C

C (p even)
C& (p odd)
C 00

0 & g & 2.4532
2.4532 & f & 6.3084
6.3084& 4&~
0& 4&3.6453
3.6453 & 4 &9.0307
9.0307 & C&~
0& K&7.3056
7.3056 & 0 & 7.4

-7.4 & 4 & 17.3269
17.3269 & 4 &~

p& g&oo

f=p
Interior
pity&1

t ( )=~y'
M(y) =y'

(b)
(b)
(c)
(b)
(b)
(c)
(a)
(a)
(a)
(c)

(a)

(a)

No
No
No
No
No
No
Yes

?
No
No '

Yes

Exterior
1 ~(y& oo

t, (y) =y'-1+ 0

m(y) =1

No
No
No
No
No
No
Yes
Yes
Yes
No

Yes

No
No
Yes
No
No
Yes
No
No
No
Yes

No

No

Yes
No
No'
Yes
No
No
Yes
Yes
No
No



2254 DOUGLAS M. EARDLEY APED LARRY SMARR 19

0.0
to-o singular ity

~PPoj'e~:.]:..:'-.,'. :.~ .

N (0)
12.0

9.0

-2.0 6.0

3.0
V

0.0

-4.0—
t revent

horizon

-60—
O
CJ

-70—O

0)

0)

O
CJ

V0
0)
O
O

cA

—3.0

—6.0

— 9.0

—12.0
0,0

I I I I

3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0
U

(b)
-8.0

0.0
I

0.2
I

0,4
I

0.6 0.8 I„O

(a)
8.0

70-

6.0—

5.0—

z"'

3.0—

2.0—

1.0—

0.0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

R

(c)

FIG, 2. Maximal slicing of Oppenheimer-Snyder collapse. (a) The dust cloud inter ior in TB coordinates (t, r). The
left side is the center of the cloud r=0, the right side is the surface of the cloud r=1. The singularity is at t=tp(r) =0.
The apparent horizon (see text for our definition) and event horizon are labeled. In the special case of tp= 0, the loca-
tion. of the event horizon can be analytically determined (Bef. 53). The maximal slices have been chosen so that they are
evenly spaced in t~ as r ~. Note that these slices approach a l. imit slice. Furthermore, in this homogeneous case,
the slices are self-similar inside the cloud. The region between the limit slice and the singularity is the neighborhood
~(0) of theorem 2.18. (b) The maximal slices in the vacuum exterior to the cloud shown in (a). %eplotthese slices inthe
Kruskal diagram. The surface of the cloud is shown and the shaded region below this curve is to be thrown away. The
spacetime inside and outside the surface are matched along(the surface. Note the Limit sl. ice (rs+= ~M) avoids the
singu ari y u a ow1 't b t allows all events in the domain of outer communications to be covered by the maximal slices. (c Iso-
metric embedding diagrams of the maximal slices. The dotted line labeled surface of cloud separates the dus rom e
vacuum. Note that the limit slice approaches the r~=~ (3M) cylinder.
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at t'=0, were made so that the slices would be
equaDy spaced in time (ht„=2.1M) at spatial in-
finity. This is unnatural in our scheme, but natural
in numerical relativity. As the slices leave the
dust filled interior, they emerge into an Eddington-

Finkelstein patch ofI= 1 Schwarzschild spacetime.
We represent this in Kruskal coordinates [Fig.
2(b)]. Note that the maximal slicing fills the
spacetime exterior to the black hole (the doc).
The slices wrap up around a "limit slice" which

IO.O
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0.0 I,O 2.0 3,0 4,0 5.0 .6,0 7,0 8.0

R

(c)
FIG. 3. Maximal slicing fails if the collapse is too inhomogeneous. (a) The interior with the singularity t= to=10m .

The slices are integrated out from the center for values of t~~ approaching t&n=0, note that no trapped surfaces exist
on any of these slices even though the last slice hits the singularity. (b) Even this last slice t&,=0 escapes to spatial.
infinity. Therefore a targe portion of the doc is left uncovered by the maximal sl. ices. Note that the path of the sur-
face of the star is different than-in Fig. 2. The causal structure of this spacetime is the. same as Oppenheimer-Snyder
[Fig. 1(a)]. (c) The isometric embedding diagrams for these slices. Note that the surface of the star is still. outside of
the black hole (rs«M) when the center of the maximal slice hits the singularity.
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avoids the interior singularity by a wide margin
(f = -1.66304) and asymptotically approaches the
r =33&5/2 limit slice of Schwarzschild exterior.
The isometric embedding diagrams of these slices
are shown in Fig. 2(c). Note that the star always
remains concave upward (no "neck" forms)" and
the exterior approaches the r =3M/2 cylinder
discussed by Estabrook et al.'

That maximal slicing can fail is shown in Fig. 3.
Here t, =10r' and the causal structure is as in
Fig, 1(a). Spacetime is globally hyperbolic, the
singularity is totally spacelike, the strong-energy
condition holds, and still maximal slicing fails.
As seen from Fig. 4(c), the surface of the star is
at r„h =—5M when the failure occurs and the event
horizon is still inside the star [Fig. 3(a)]. This
example indicates theorems on avoidance of singu-
larities by maximal slicing are going to be very
difficult to prove without further hypotheses, such
as- our hypothesis of crushing singularities.

%e turn to K =Ra&0 slicing. Here the slices
should be asymptoticaBy null and the limit slice
should be even further from the singularity than
for maximal slices. In Fig. 4, a R'0 = -I slicing
of Oppenheimer-Snyder we see that indeed this is
the case. The limit slice has t,.„=-2.8. As one
increases the inhomogeneity of the collapse the
limit surfaces of K =K, get progressively pulled
into the singularity. As long as the causal struc-
ture is as in Fig 1(a) o. r 1(b), one can turn lKO l up
high enough that the associated K =g, slicing will
fill the doc. However, once the collapse is so in-
homogeneous that a globally naked singularity
forms, then even g~ - will not avoid the singu-
larity. This is because for a globally naked sing-
ularity a Cauchy horizon forms which hits 8' at a
finite value of null time. Thus there is no way to
extend a E' &0 slicing to arbitrarily large null
time without crossing the Cauchy horizon. This
is demonstrated in Fig. 5 where aZ, =-10 slicing
of a to= 10r' spacetime is shown. From the dia-
grams one sees that the surfaces are almost null.
Even so, the last slice, which hits the singularity
at r =0, escapes in the doc. As mentioned above,
this failure can be turned around to be a new test
to use in numerical relativity to show that a global-
ly naked singularity has formed.

Finally, we consider K =&0&0 slicings. Since
these slicings are asymptotically null to 8 and
have limit surfaces closer to the singularity than
maximal slices, it would seem that these slices
are useless for gravitational waves. However, it
is hoped they will prove useful for using numeri-
cal relativity to study singularity structure. We
calculated a K = -2/t„slicing" of Oppenheimer-
Snyder collapse. This particular form of K was
chosen because it yields the slices of constant

t =0 sin gul grit Y

o o
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0

FIG. 4. Ko ———1 slicing of oppenheimer-snyder. (a)
The singularity, apparent and event horizons are as in
Fig. 2. Note that the Eo —-- 1 slices are much steeper
inside the cloud than maximal slices. The neighborhood
of avoidance, N(-1), is larger than N(0). (b) In the
vacuum exterior the slices become asymptotically null
very quickly. The Ko-——1 slices approach 8' while the
maximal slices (Fig. 2) approach I .
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I 0.0

8.0

choice of boundary conditions, the slices could be
made to wrap up around the Schwarzschild singu-
larity also; we hope to return to this question in a
future paper.

6.0 V. CONCLUSIONS
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Under what conditions is maximal, or constant
curvature, slicing guaranteed to work? Our ex-
amples indicate that merely imposing one or an-
other of the usual energy conditions is far too
weak. It is a tempting conjecture that imposing
the vacuum Einstein equations is strong enough.
However, to prove this conjecture would require
far more detailed information about the nature of
the Cauchy evolution process than is available in
currently known theorems.

As an intermediate step in analyzing this diffi-
cult problem, which partakes of much of the en-
tire singularity problem in, general relativit, y, . we
have proposed the definition of the "crushing sing-
ularity. " This definition and its coroQaries have
proved extremely useful to us in making sense out
of the widely assorted collection of.examples and
counterexamples that we have presented.

Our advice to numerical relativists is to go ahead
and use maximal slicing, but to be aware that
there is no theoretical guarantee that it will not
fail.

Note addedin proof. As a further example in
favor of conjecture (2.15), we have shown that all
Gowdy T' cosmologies [cf. B. K. Berger, Ann.
Phys. (N. Y.) 83, 456 (1974)] have crushing singu-
larities; these models are vacuum and spatiaQy
compact.

ACKNOWLEDGMENTS

—9.0

0.0 3.0 6.0 9.0 I 2.0 I 5.0 I 8,0 2 I.O 29.0
U

FIG. 5. Ko=-10 slicing of a global naked singularity.
(a) By choosing the singularity t =to= 10m the causal
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