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We calculate the O(a,) corrections to the Drell-Yan model for pp —p*p™X in quantum chromodynamics.
We find in agreement with previous work that the infrared and mass singularities can be consistently
absorbed into the quark structure functions. The remaining finite terms are negative and rather small for the
initial-gluon graphs but positive and about equal to Drell-Yan term for the final- and virtual-gluon graphs.

I. INTRODUCTION

The Drell-Yan model' is generally successful in
describing the mass and longitudinal-momentum
distributions?® of high-mass lepton pairs produced
in hadronic collisions. However, the model does
not explain the rather large average transverse
momentum observed experimentally.® Altarelli,
Parisi, and Petronzio* and Fritzsch and Minkow-
ski® have suggested that this transverse momen-
tum could arise from higher-order processes in
quantum chromodynamics (QCD) such as quark-
gluon scattering and gluon emission. In this pa-
per we consider the O(a,) corrections in QCD to
the integrated cross section do/dQ? for a lepton
pair of mass @2

Our calculation is based on a generalization of
the parton model suggested by Politzer® and ex-
tended by several others.”® We treat the quarks
and gluons as if they were free particles, calcu-
late their interactions using QCD perturbation the-
ory, and fold the resulting cross sections with
quark and gluon distribution functions for the in-
cident hadrons. Outgoing quarks and gluons are
assumed to fragment into jets of hadrons with unit
probability. In this picture final states in which
the gluons carry a finite energy and are not col-
linear with other constituents are clearly distinct.
Processes involving soft or collinear gluons are
not distinguishable, however, and it is precisely
these which produced infrared and mass singular-
ities® as the gluon mass X and the quark mass m
respectively approach zero. The infrared singu-
larities are removed by the Bloch-Nordsieck me-
chanism,'® but the mass singularities still re-
main, leading to powers of logQ?/m? which inval-
idate the use of perturbation theory.

Politzer’s® essential observation is that the mass
singularities for at least the lowest-order correc-
tions to deep-inelastic scattering and to lepton pair
production are simply related, so that these singu-
larities can be consistently absorbed into univer-
sal, @*-dependent quark distributions. He conjec-
tures that this can be done to all orders, so that
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the corrections to the Drell-Yan model can be cal-
culated perturbatively. Since with this prescrip-

. tion the integrations over phase space converge as

the gluons become collinear, the problem of

double counting is resolved, at least asymptotical-
ly. Amati, Petronzio, and Veneziano® have shown
that Politzer’s result can be obtained from general
theorems on mass singularities plus Ward identi-
ties. They have also argued that the result can be
extended to other processes and to the leading loga-
rithms in all orders of perturbation theory. How-
ever, the cancellation of all mass singularities in
this way has not been proved.

If the conjectured concellation does occur to all
orders, then the lepton pair cross section is given
by the Drell-Yan term expressed in terms of the
(nonscaling) quark distributions measured in deep-
inelastic scattering plus additional finite correc-
tion terms. In this paper we calculate the part
of these correction terms coming from the O(a,)
graphs for lepton pair production and for deep-in-
elastic scattering. A complete calculation would
also require summing nonleading logarithms from
higher-order graphs. For example, if the cancel-
lation of nonleading logarithms in higher order oc-
curred only if one chose different scales, say @2
and cQ?, for their arguments, then our result
would be modified by log ¢ terms. However, the
cancellation of the logarithms would seem to have
simple physical interpretation only if the effect of
the higher-order graphs is essentially to build up
the running coupling constant a(Q®) and the quark
distributions g(x, Q®) with the same scale in both
processes.

Assuming that this is so, we find that initial glu-
ons, except for the scaling violations which they
produce in the quark distributions, so not make a
large contribution even though they carry 50% of
the momentum of the proton. The contributions of
final and virtual gluons must be considered togeth-
er to remove the infrared singularities. We find
that they give a correction term which is positive
and about equal to Drell-Yan term up to quite high
masses. The cross section contains an unexpec-
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FIG. 1. Initial-gluon graphs for lepton pair production.

tedly large numerical factor which comes from in-
tegrating over the region § ~Q2% where § is the
quark-antiquark invariant subenergy. Unfortunate-
ly, this is just the region in which there is a prob-
lem of double counting, so the interpretation of the
result is unclear. The theroretically interesting
conclusion that the Drell-Yan mechanism domi-
nates at large enough @2 is of course unaffected.
Another potentially important process is quark-
quark scattering by gluon exchange with the emis-
sion of a lepton pair. We do not consider this pro-
cess here because it is higher order in ag, but it
might be large because it can involve only valence
quarks.

II. INITIAL GLUONS

In this section we consider the production of lep-
ton pairs by the first-order graphs with initial glu-
ons shown in Fig. 1 and the corresponding correc-
tions to deep-inelastic scattering shown in Fig. 2.

FIG. 2. Initial-gluon graphs for deep-inelastic scat-
tering.

We shall calculate these graphs treating the exter-
nal quarks and gluons as being on the mass shell.
Then we must give the quark a nonzero mass m;
Politzer’s result® implies that the limit m ~ 0 ex-
ists for the final answer expressed in terms of the
corrected structure functions. Since these graphs
have no infrared divergence, the gluon mass can
be set equal to zero.

The graphs in Fig. 1 are identical to those in an
Abelian theory except for an overall factor of %
from the color average. The calculation is greatly
simplified by using the conservation of the color
and electromagnetic currents at the beginning.
Then summation over the lepton spins and inte-
gration over their moments yields

ez

0,,(q)= -5 <ngw - q,,m) (2.1)

and the ¢,q term does not contribute, while the
gluon spin average gives —3 &uy,- The remaining
spin sums and the integration over the quark-gl-
uon center-of-mass scattering angle are straight-
forward. The result for the quark-gluon cross
section is'!

éd—g—zzalzgs eqzé{Z[(l—?)2+;z] ln[%‘(‘l‘%ﬂf]+(l+7?)(1_?)}’ o -
where

§=(p'+q")?, @=¢°, T=Q¥3,

(2.3)

e, is the quark charge in units of e, a=e*/4n, and a,=g?/4nr. Terms which vanish as m -~ 0 have been

dropped.

We introduce bare quark, antiquark, and gluon distributions g(x), g(x), and g,(x) for the incident had-
rons.'? These will be modified by interactions which produce both @? dependence singularities as the quark
mass approaches zero. Under the usual parton-model assumptions the quark-gluon cross section, Eq.

(2.2), leads to a hadron-hadron cross section

do t 2 _
Eé-z- = Z J; dx,dx,0(x,2,8 — Q ){[‘Io(xl)"' ‘Io(xx)]go(xz) +(x,— xz)}

dé

Q¢ (2.4)
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where d6/dQ? is evaluated at
§=x,%,8 (2.5)

and the sum is over quark flavors. Note that do/dQ? contains the expected InQ?/m? term.
The first-order corrections to deep-inelastic scattering involving initial gluons come from the graphs
shown in Fig. 2. For these graphs we define a tensor

Wy 3 (&l ankad|d, |eX2n) S p 1" ~q -4, (2.6)

states

where the factor of 3 comes from the two gluon helicities. A straightforward calculation yields

. A2 4 Py
BV = 2 $°+Q ( S )
g'vwW,, = -2a.e, GYLE lnm2 1 (2.7
and
'“qwﬁ,uv’: aseng ’ (2.8)
where now
§=(q+q¢")?, Q%=-¢*>0. (2.9)

Terms which vanish as m ~ 0 have been dropped.
The corresponding tensor W,, for proton-photon scattering is a function of ¢4 and the proton momentum -P.
Its form is

1 P+q P:q

Wyp= - (quv - q;g») wy(x, %) I (P =4y ?)( P,—-q,—% P ) Wix,Q% (2.10)
with i

v=Prq, Q®=-q*, M?=P?, x=Q%2v. (2.11)
From the usual parton-mohel prescription'® '

d

Wuv 41TM f —zg(l(y) uv’ (2-12)
where

a,=yP,, $=(y/x-1)@°. (2.13)

Putting together Eqs. (2.7)=(2.13), we find that the initial-gluon graphs give

= Q@)= T gr el | tdy qo(y){[( -§>2 (y) ]m[iz (-_1>] 1+8§—8§;}. (2.14)

We define the quark distribution functions in the proton by their relation to vW,:
Wilx, Q)= 3" e’xa(x; Q) +7(x,@%]. (2.15)
L4

Clearly gluons contribute equally to the quark and antiquark distributions for all low-mass flavors. Hence

qlx, Q2)=qo(x)+§: :éyg go(y){[(l —%)2+(§)2]1n[;§: (% - )] -1+8§_8§}. (2.16)

The Drell-Yan term for lepton pair production is

% = 41!'9(1 €, Q4 J.dxldxza(xﬂlz -T) [qo(x1)‘Io(x2) + QO(xl)qo(xz)] s _ (2.17)
where

T=Q%s. (2.18)
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We must reexpress this in terms of g(x, Q%) defined in Eq. (2.16) and add the contribution from quark-gluon
scattering in Eq. (2.4). To O(a,) the InQ*/ m?® terms all cancel in agreement with Politzer’s result.® The

remaining parts can be written as

do do.(DY) do-(l)

@A A

(2.19)

where do‘P¥/dQ? is given by Eq. (2.17) with g4(x) replaced by g(x,Q?, and

do‘? ola
L - __g.ﬁ Jo
ae - Q

X

This is the desired O(as) correction term from
initial gluons.

It should be noted that we have chosen Q® as the
momentum transfer at which to evaluate the struc-
ture functions and a,. While this seems plausible,
it is not necessary to make the InQ%/m? terms can-
cel: any mﬁltiple of @2 would do. The correct
scale is determined by the cancellation of non-
leading logarithms in higher order.

1t is instructive to consider the behavior of do‘¥)/
dQ? as 7~ 0 for fixed @2 In this limit the integral
is dominated by small x, and x,. Suppose that for
x%,~0 and x,~0

3 etlg (1, @)lalxz Q)+ 7(xz, Q)] + (1= x2)}

~ £ (221
1%,

Then the integrations are elementary and yield

do'? afag 1 2C
Q@9 ¢
It is not surprising that perturbation theory breaks
down in this limit. Also, do‘?)/dQ? is evidently
negative both for 70 and for 7~1, for which the
logarithm in the integrand dominates. We shall
see in Sec. IV that it is negative for all 7.

=~ 1lnT, 7-0. (2.22)

III. FINAL AND VIRTUAL GLUONS

The contributions from final and virtual gluons
are separately infrared divergent and so must be
considered together. The infrared singularities
can be regulated in any convenient fashion. Since
QCD is essentially Abelian to this order, we have
chosen to give the gluons a nonzero mass X and to
renormalize on the quark mass shell. Then self-
energy corrections to external lines need not be
considered, and the infrared and mass singulari-
ties are clearly separated. We shall first let A~ 0

T {[( ST >2 ( T
1- +
X%y XXy X Xp

4r dxldng(xlxz - T){g(xu Qz) [Q(xza Qz) + a(xz’ Qz)] + (x].“ xz)}

2 - 2
)]1n(1_T >+§_5T 9—(’) .
X%,/ 2 X1y "2 X%

(2.20)

r

and then m - 0.
We first consider the final-gluon graphs for lep-
ton pair production in Figs. 3(a) and 3(b). We have
$=(p+p")?, @*=¢°,
f=m 2 2py0+ Q%+ 2|B| |q | cost, (3.1)
fi=m? - 2p4qo+ Q> - 2|9'| |d | cost,

where in the center of mass is the scattering angle
and

po=1=2(8)/2,
|B]=15]=28-4m?/2,
$+Q2-22 S+ _@?

Do=—307F » D= HETE (3.2)
-_*,_[(§—Q2+>t2)2—4§7\2]1/2
- - 2(§)1/2 .

The color average produces a factor of % Carry-

FIG. 3. Final- and virtual-gluon graphs for lepton
pair production.
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ing out the spin sums and the integrations over phase space, we find

_c_i?___lGazase 21 [ §2+ @ ln( 21’040—Q2+2|ﬁl |(-1.'> —(3-9? 2m?Q® ] (3.3)
aQ® 21 T 3%Q* l4pyq,—2Q°  \2p,qo—-Q*-2Ip |1q | T 2p0do-Q*—2IP 111G | ’
up to terms which do not contribute as A -0 and m -~ 0. The infrared singularities arise from the region
§= Q% For §>(1+€)Q? where € is an arbitrarily small number, we can simply set A=0. For (Q+\)2<$§
<(1+ €)Q? we can treat § as a constant when integrating over the quark dlstrlbutlons In the limit A - 0 the
§ integral becomes simple:

(1+¢)Q2 *i‘i _ 322 a 21 1 Q) Qz <Q2)
j;omz ds 0w e, o [ln< ln<——,) -ln< )+f1 ] (3.4)
where
[x+(x2—1)1/2]2
fl(Z) [m——] . (3.5)
From the Appendix,
fi(z2)~=%ln*z+In2lnz+c,, 2~ , (3.6)

where ¢, is a constant which we have not bothered to evaluate because it cancels out in the final answer.

We must add the interference term between the.virtual-gluon graph shown in Fig. 3(c) and the lowest-
order graph., The color average gives a factor of i;-. Subtracting the vertex function at ¢g®*=0, we find for
A - 0 . .

:i% = —H;-g—,:—aﬁ e, Lz 55 -@% [111(Q—2> ln(-’%-> —ln(%::> -%m(%) o 2+2Ref2<f-r§: -—i€>:l, (3.7‘)

where
‘ I [+ (x%+ 1)2/2] 2]
fdz)= '[, (x2+1)1/2 ln{ x4z : (3.8)
From the Appendix
f2(2)~—41nz—12 , 2=, o o (3.9)
Thus for Q2/m?~« the sum of the final- and virtual-gluon cross sections is
dé _1601201s 2 . [( +Q4> ( “) <§3+Q“>J
265— o7 q azQz e(S (1+€)Q ) Qz In - w
16 2 . 2 2 2 :
o0 o eqzz’;§ 5(8 - Qz)[(Z Ine+ 3) m(%) - 2lne+ - -2+ 201] , (3.10)

which as expected has no singularity as A= 0. The corresponding hadronic cross section is with the usual
parton-model assumptions

do _
d@* sz :

We must cons1der the corresponding corrections to deep-inelastic scattering, which we use to define the
quark distribution functions. The variables for the final-gluon graphs shown in Figs.-4(a) and 4(b) are

§=(P+q)2, Q2= -q2 ’
f=2m? - 2ppt+2|p | | 97| cosé, (3.12)

f d, dx,0(x,%,8 — Q) [go(2,)qo( %) + (4, — xz)] (3.11)

z'2=m2+>t2—2p0q3-2|'§| ch’] cosé,

where in the center of mass 6 is the scattering angle and
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_SemPr@? §-@-m® . . [(§+Q2—m2)2+4m2Q2]”2
Po"W; 9= 3(3)/2 s |Pl=|q|= R s

(3.13)

L SemPonE | e om® e,y [8-mP A2 —4mAP]/2
bo=—53irE > D=z o Ip’|=ld"|= TSR

Defining a tensor ﬁ’w for these graphs in analogy with Eq. (2.6), we find

. 8a ( § 2Q2 ) <2poqo_x2+2|pllq |>
By =S p2 1n
W, e{ T+ @ T Tom?) \gpgl —nE-2Ip 1q']

Ip’ 1 [4Q2-4p0q{, 4m2Q? 4m2Q? | 12]} (3.14)

(5)1/2 [ +(§—m2)2+(2p0q(,—7t"’)2—4|§|2 g

and
v 0 —_ Zas A 2 ’
PHPWu =57 8+ Q%) (3.15)
up to terms which do not contribute as A~ 0, m - 0. In this case the infrared singularities arise from §

=m? TFor §>€Q® we can set =0, while for (m+21)2<$§<€Q? we can ignore the variation of the quark dis-
tributions. Then as A -0 we find

eQ? N 2 2
f zié"g“"WM:8;‘s ef{Zln(%j)ln(%) 21n< >+ln <Q >+(21n€ 41n2—2)1n(Q )

(m+)?

+2fl<—7§;> —lnze—%ln€—2§(2)+2] , (3.16)

where f,(z) is the function defined in Eq. (3.5) and £(2)=7%/6 is a Riemann ¢ function.
The virtual-gluon graph shown in Fig. 4(c) contributes only for §=m2 It gives for X ~0

g“"ﬁ/“,=_8§‘sefa(g_mZ)QZ[zm(%’-:)m(%) 21n< ) 31n<Q2>+4f2<Q2>+4], @

where f,(z) is the function defined in Eq. (3.8), and

PP W,,=0. (3.18)
The total coefficient of 8(8 —?) is obtained by adding Eq. (3.16) and Eq. (3.18), and in this sum the Inx
singularities from the infrared divergences all cancel. The InXQ?/m?) terms also cancel because we have

chosen the upper limit on § in Eq. (3.16) to be €@ Defining the quark distribution by »W, as we did for
initial gluons, we find for Q%/m2—»

o @)= 20 [ By, ){[ﬁ] ] ;(;Vy_%)i;f}

2
2 golx) [(2 Ine+ %) ln(%> -In*¢-Zlne-% + 201] (3.19)

where ¢, is the constant in Eq. (3.6).

According to Politzer’s prescription, the complete correction term from final and virtual gluons is ob-
tained by reexpressing the Drell-Yan term, Eq. (2.17), in terms of g(x, @%) and adding the contribution
from Eq. (3.10). The result can be written as

do do‘®Y) dgif?
&
where do‘®Y’/dQ? is again the Drell-Yan term with ¢,(x) replaced by g(x, Q%), and

(3.20)
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d""’_zlﬁa % oo f ey 0,0, = (1 + ) gy, @7 (35 @) + (1, )]

2
xL.f_l_(Mﬂ_

X1 %2 1 XXy \ XX =T

)[nle-55)-1)-5 (2227 )5
X% 2 \x %, =T X)X

16a? 1 1 _ 2
+ Z ‘2!7 2e ef? J; dy, do,(x, %, — T)[g(x,, @Dy, QD) + (x, —2x,) ] T (lnze + %ln€+2l +%> . (3.21)
'

3

As for the initial-gluon case, we have assumed here that the appropriate momentum transfer for the struc-

ture functions and a, is @7,
in higher order.

and this assumption can be verified only by considering nonleading logarithms

To remove the artificial parameter €, we carry out an integration by parts!® on the first integral in Eq.

(3.21). Then the ln€ terms all cancel, leavmg

dc‘f’ 8a? a ‘
= "Z 2 e’ Q4 f doxy A, 0(%,%0, = T)

{ — [x,q(x,, @® )]q(xz,Q2)+q(x1,Q2) [xzq(xz,Q )] +(x1*~xz)}

x{w( =)

3 7T 312

BT as ( 22 1) do‘PY)
2 noxs 4w ny ™\ 3 sz ’

where the last term comes from integrals contain-
ing a 8(x,x, - 7). This term involves a surprisingly
large numerical factor,

2
210 1483,

3 -1 (3.23)

coming from the constant terms which remain after
the logarithms have canceled. Because of this fac-
tor, there is a large contribution from x,x,=7,
which unfortunately is just the region correspond-
ing to soft gluons for which perturbation theory is
not reliable.

FIG. 4. Final- and virtual-gluon graphs for deep-in-
elastic scattering.

2
o) 2 (1- )] -5
x1x2 Xy X2 X1 X2

(3.22)

I
IV. NUMERICAL RESULTS

In the previous sections we have found that to
O(a,) the cross section for lepton pairs is given
by the Drell-Yan term plus two correction terms,
all of which depend on the quark and gluon distri-
butions at the given Q2. Scaling violations in these
distributions have been studied by several au-
thors.'* The equations are somewhat complicated,
and the scaling violations are rather small at mod-
erate values of x. Since we are interested mainly
in the size of the correction terms relative to the
Drell-Yan term, we shall therefore greatly simp-
lify the numerical calculation by ignoring the @2
dependence of the quark and gluon distributions.'®
This will of course distort the shape of the cross
section as a function of @, but the shape is also
sensitive to the antiquark distribution, which is
poorly known.

For the quark distributions we use the paramet-
erization of Peierls, Trueman, and Wang,'®

w(x)=1.79(1 = x)3(1 + 2.3%)/Vx+ s(x) ,
dx)=1.107(1 = x)**/Vx+s(x) , (4.1)
s(x)=u(x)=dlx)=5(x)=0.15(1 —=x)"/x.

Little is known about the gluon distribution excepf
that it should satisfy the energy sum rule,

1 1
Z f dxx[q(x)+§(x)]+f dxxg(x)=1. (4.2)
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FIG. 5. Lepton pair production cross sections for (s)* =27 GeV and n,=5,7. Dashed curve (----- ):Drell-Yan term.
Chain-dot curve (- - — - ): Magnitude of negative initial-gluon term, Eq. (2.20). Chain-dash curve (- -—-): Final- and
virtual-gluon term, Eq. (3.22). Solid curve (—): Sum of Drell-Yan term and O(c;) corrections.

Intuitively, however, we expect it to be peaked at
low x like the antiquark distribution. We therefore
take

g(x)=0.483(n,+ 1)(1 - x)"g/x , (4.3)

where the coefficient is fixed by the energy sum
rule. The Brodsky-Farrar'’ counting rules sug-
gest n,=5, but we have also tried other values.
Finally, we use for o the running coupling con-
stant for four quark flavors,'®

lr 1

25 In(Q%/u? ’

analysis of scaling violations gives'®
pu=0.5 GeV. (4.5)

Using these distributions we have calculated nu-
merically for V's=27 GeV the Drell-Yan term, the
initial-gluon correction term from Eq. (2.20), and
the final- and virtual-gluon correction term from
Eq. (3.22). In Fig. 5 we show the results both for
n,=5, the canonical value, and for »,=7, matching
the sea distribution. For both values of », the cor-
rection term from initial gluons is negative and
rather small, while that from final gluons is large.
Since this large value results mainly from the

a(Q%)= (4.4)

large numerical factor in the last term of Eq.
(3.22), the final-gluon term should have a similar
relative magnitude in 7*p—I*I"X and pp -~ I*'I"X.

We have already remarked that this term may not
be reliable because the main contribution comes
from x,x,=T7, which is the soft-gluon region. Nev-
ertheless, it will be interesting to look for devia-
tions from the Drell-Yan model as better data on
the proton sea-quark distribution or on pp—I*I"X
become available.

Note added. After this work was completed, we
received papers by R. K. Ellis et al.,* and by
Libby and Sterman® arguing for the factorization
of mass singularities to all orders. We also re-
ceived papers by Abad and Humpert®? and by Al-
tarelli, Ellis, and Martinelli®* calculating the
finite parts of the O(a,) graphs.
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APPENDIX

In this appendix we analyze the functions f,(z) and f,(2) introduced in Sec. III. Equation (3.5) defines
f1(2) as an analytic function of z with a cut along the negative real axis. Since the constant term cancels
in the final result, we need only calculate the logarithmic terms as z-~«. For any z>4 we have

dx%+z -4

o= [ i (g )o [Tk mfler G0

Letting x=x(z —4)/2 in the first integral gives

1 d"l l< 4572 ) ¢
) mprn ™7 I\ ) 000

=..1n2|:(—z-_—a—)—1-/—2-j| —2ln21n[(?:t—)lﬁ] _£

/(e=a)t/2

EYad 2]2}' (A1)

dx'-}%; In(1+ 4x’%) + const. (A2)

As z—+= the integral in the last line has a finite limit, so we obtain Eq. (3.6). .
Equation (3.8) likewise defines f,(z) as an analytic function of z with a cut along the negative real axis.
We need its behavior including the constant term as z -, Letting

dx’ dx
x'=x+(x2+1)1’2, —J;I—W , (A3)
we obtain
w© 1 ( xlz > J-no 1 [ 1 ]
= el — ) = — |,
fA2) J; dx o In e A dx 7 In 1+x’2(x'2+z =3 (A4)
The second integral vanishes as z —~«. Substituting x’=x"(z — 2)*/2 in the first integral gives
1 1 x'2 ) fao 1 ( ”n2 )
~ " "
fA2) ~[1/(,..2)1/2dx Py ln(x' 7,1t X dx o In |
= _lnz[ 1 ] —2fldx”L In(1+x"?%)
(Z - 2)172 0 xll
~—%n% -$1(2), (45)

where £(2)=7%/6 is a Riemann ¢ function. This asymptotic formula is valid in the cut z plane.
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