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Isospin-violating effects arising from a nonvanishing quark mass difference m„—m„are discussed, in

particular for the m+-n" mass-difference question and for q' —+3m and X~A + e + v decays. The role of
the strong anomaly is emphasized, and exploited to bring out certain relations among heavy-quark, light-
quark, and gluon operator matrix elements. The anomaly suppresses isospin-violating effects that might
otherwise be substantial for the Bjorken electroproduction sum rule.

I. INTRODUCTION

The color gauge theory of strong interactions'
should provide a complete description of these
interactions in terms of a very limited set of
parameters: One dimensionless coupling constant
and a "current" quark mass for each quark flavor.
The coupling constants, via dimensional transmu-
tation, ' can alternatively be represented by the
mass scale M„characteristic of the strong inter-
'actions. One can identify M„with the mass of a
typical hadron made up of light quarks (up, down,
strange), e.g. , the nucleon or p meson. This is
based on the idea that the properties of these had-
rons are largely unaffected by the influence of . -

heavy guarks (c, b, t, . . . ) and, at the same time,
insensitive to the values of the light-quark-mas-
ses [i.e. , chiral SU(3) X SU(3) is a good symmetry
which is spontaneously broken by the strong inter-
actions]. Alternatively, given our present in-
ability to deal quantitatively with hadron masses,
one might identify M„asthe renormalization
scale parameter, which can be determined ex-
perimentally from corrections to scaling in deep-
inelastic scattering and which is related in a pre-
cise fashion to the strong coupling constant.

The pattern of quark masses determines the
(approximate) character of flavor symmetry of the
strong interactions. This is the chiral symmetry
SU(N)z && SU(N)s, where N is the number of guarks
with mass significantly smaller than M,t. Thus,
the observation of approximate SU(3)~&&SU(3)~
symmetry reflects that the strong interactions are
flavor independent and that the up, down, and
strange quark masses are much smaller than M,t.
In the present stage of our ignorance about the
unification of strong and weak interactions, the
number 3 in SU(3)& SU(3)—i.e., the fact that three
of the quarks are light, the others heavy on the
hadron mass sgale —is without explanation. One
could well imagine a world in which all the quarks
would be massive on the scale of M„.We simply

have no idea at present how to relate N, t to the
various dimensional parameters which character-
ize the weak and electromagnetic interactions.
The quark masses reflect the pattern of breaking
of weak and electromagnetic gauge symmetry. In
the present theoretical' framework (i.e., the
Weinberg-Salam model) there is no understanding
of the pattern of quark masses.

As to the actual values of the quark masses,
matters are simplest for the heavy quarks. Here
one can extract the masses, roughly, from know-
ledge of the masses of hadrons that contain them
(e.g. , the charm mass is, roughly, half the mass
of J/g). Much more difficult is the determination
of light-quark masses. Estimates of mass ratios
have been attempted on the basis of analysis of
pseudoscalar-meson masses, baryon masses,
and q--3m decay. ' The results obtained from
these sources are roughly consistent, but con-
siderable theoretical uncertainties are involved
in the analyses. Knowledge of light-quark mas-
ses is of interest from many points of view.
These masses set the scale, at large momenta,
for the onset of instanton effects4; they are nec-
essary inputs for calculation of, e.g. , the P-n
mass difference; the possibility that I„=Qis of
interest in connection with the issue of natural
P and T invariance in the strong interactions';
and perhaps most important, one would like to
know these parameters in order to be able to look
for interesting patterns in the overall spectrum
of quark and lepton masses. Finally, as an im-
mediate issue, one would like to know whether the
high degree of validity observed empirically with
respect to isospin invariance reflects a true sym
metry [(m~ —m„)/(m~+m„)«l]; or rather, as in
the case of chiral SU(2)&&SU(2), an "accidental"
symmetry, where

(m~ —m„)/(m„+m„)- l

but where ms„and m~ are both negligibly small on
the scale M, , of strong interactions. It is the lat-
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ter alternative that we would in fact expect within
our present understanding of the weak interac-
tions, where isotopic symmetry has no reason to
be natural. We have no reason to expect that
(m„-m„)/(m~+m„)is any smaller, say, than
(m, —m, )/(m, +m, ). It would be a great surprise
indeed if isospin were anything like an exact sym-
metry.

If isospin is really an accidental symmetry in
the above sense, then there might be special situ-
ations where the underlying asymmetry contri-
butes noticeable effects. ' In most circumstances
the measure of observable isospin violation will
be set by the ratio (m~ —m„}/M„.However, the
spectrum of 5'ambu-Goldstone bosons, where
masses arise solely from explicit breaking of
SU(3) X SU(3) symmetry, could depend more criti-
cally on (m~ —m„)/(m~+m„); correspondingly,
processes involving these pseudoscalar mesons
might be especially sensitive to the underlying
isotopic asymmetry. The situation would be es-
pecially striking if axial-vector U(1), in addition
to chiral SU(3)XSU(3}, were a good symmetry of
the strong interactions. In that case we would ex-
pect large vio1.ations of isotopic-spin symmetry,
of order (m~ —m„)/(m~+m„},in the pattern of
pseudoscalar-meson masses. In the absence of
axial-vector baryon-number conservation, the
violations of isospin symmetry become much
smaller here, or order (m~ —m„)/m, . Even so,
if (m~ —m„)/(m, +m„)is of order unity, the mass-
difference effects can still be larger than those
arising from electromagnetic influences —an in-
evitable contribution to isospin violation —in cer-
tain situations.

In this note we analyze three cases where iso-
spin violation arising from light-quark mass dif-
ferences might produce significant effects: Two
of these cases involve the pseudoscalar mesons
directly, namely the v' —m mass-difference
problem and the decay process q'-3m; the third
deals wi. th Z' A+e'+ v decay. For the pion-mass-
difference question we find that light-quark mass
difference can contribute significantly, of order
20% of the observed pion-mass difference, if m„
=0 and m~/m, -0.05. Unfortunately, standard es-
timates of the electromagnetic contribution may
well be. uncertain by a similar amount, though,
as we shall note, the corrections to the latter are
likely to run in such a direction as to rule out too
small a value. for m„. As for the g'- 3m and
~-A+e+v process, the tests we discuss here may
involve rather demanding experimental measure-
ments.

In the course of our discussion we will take into
account the anomaly in the divergence of the axial-
vector baryon-number current. ~ It is the existence

of this anomaly that destroys U(1) invariance of
the strong interactions, thereby reducing isospin
violations to order at most (m~-m„)/m, . Fur-
thermore, consideration of the anomaly, taken
together with Sutherland's theorem, ' will lead to
certain formal identities between gluon and quark
operator matrix elements and mill show, among
other things, that isospin violation for the Bjorken
sum rule is only of order (m„-m„)/M„.

(uu) =(dd)o =(ss)0=—o .

In this situation the theory produces an octet of
Nambu-Goldstone bosons, identified with the
pseudoscalar-meson octet. In the absence of non-
vanishing current-quark masses, the pseudo-
scalars are strictly massless. Conversely, the
actual pseudoscalar masses are therefore sen-
sitive to the values of the current quark masses. '
Indeed, let us associate the axial-vector current

A. q =qy~y, 2~ q, a=1, 2, . . . , 8 (2)

to the Goldstone boson states Gs, according to

The meson mass matrix can then be calculated by
standard PCAC (partially conserved axial-vector
current) techniques. Ignoring terms of nonleading
order in quark masses, one has

(4)

where

X =X + m„uu +m„dd+ m, ss

is the Hamiltonian density and K, is SU(3)„
x SU(3)~ symmetric. It then follows that

II. INFLUENCE OF THE STRONG ANOMALY

We shall work within the framework of quantum
chromodynamics (QCD). Here, with neglect of the
masses of the u, d, and s quarks, the strong in-
teractions possess an SU(3}~&& SU(3)„chiral sym-
metry. The apparent axial-vector baryon- number
symmetry of QCD is removed by the strong an-
omaly. Chiral symmetry is spontaneously broken
by the dynamics of the strong interactions. We
assume, however, that SU(3) is not spontaneously
broken, so that the massless quark vacuum is
characterized by the vacuum expectation value
equalities
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M2o„o2=M2, 2+ ———
2 (m„+m»)o',

i

1 1
, (m„~m,)cr, M»o»o'=, (m2+m, )v,

1 (m„—m„)

m„+m„+4m,
f 2

These expressions, valid to lowest order in
quark masses, can now be used to estimate quark
mass ratios. We neglect the mixing of g' and n'
(a small effect here, to be discussed below).
Also, to remove electromagnetic c'ontributions
to the pseudoscalar masses, we follow Weinberg's
analysis' "by invoking Dashen's theorem. This
theorem asserts, again to lowest order in quark
masses, that the electromagnetic contributions
to M ', M ', M ' and M, ' —M, ' all vanish.
One then deduces that

This isoscalar state will mix with g; and in the
presence of quark masses the spectrum of neutral
pseudoscalar mesons will contain a Goldstone q'

and two light Goldstone particles corresponding
to zzo and zl. To lowest order in (m„+m„}/m,we
find from the nonet mass matrix

2~s
2 3 f 2 f 2 (8}

or by M, o„o'/Mo„'is small, of order (tq, —m„)/m, .
This would not have been the case if the strong in-
teractions were invariant under chiral U~(3)
XUzz(3). In this situation, for the limit of small .
quark masses, there would exist a ninth Goldstone
boson (zi'). Although this extra symmetry is in
fact removed by the strong anomaly, it is amusing
to pursue a bit further the situation that would
prevail if this were not so. Introduce the ninth
axial-vector current Ao„=qy„y,(2'yo) q and the
corresponding state G'(P), with

m&+m 2M 0

M +M —MS z+ ~+

m„—tri„Mp —M +'+M, ,2 —ill, o'

m„+m„M~o2

and

I 2 tn„-m~
2 f 2(f 2~2f 2)

3 2

2 + 0

(9)

The first of these equations we may regard here
as reliably fixing the ratio (m„+m„)/m,. The
second involves small differences of large quanti-
ties, so we take it as only indicative of the size of
(m, —m„)/(m, +m„}.The further tests in Sec. III
deal with alternative ways to get at this quantity.
One also finds the modified Gell-Mann-Okubo
mass formula

4 M~, +M~0 2M, —Mo

This last relation yieldsM„= 566 Me V, to be compared
'with the experimental -value of 548 MeV. The suc-
cess (to within -6%)of this formula supports the view
that the strange quark mass m, can indeed be regard-
ed as small compared to M„.In any case it is the
above evaluation ofquark mass ratios that indicates
that (m, —m„)/(m, +m„)is not so very small, a
conclusion that is also indicated by the necessity for
a substantial uu —dd tadpole term in estimates of
baryon mass differences" and in attempts to ac-
count for q-3n decay.

We note that the violation of isospin in the above
mass matrix, as measured by

( M»+2 —M»o')/( M», ' + M»o')

For the isospin-conserving case m„=m„,this yields
the familiar Weinberg" bound M„'~ 3M~'. If
(m2 —m„)/(nzz+m„)is not small, one encounters
substantial isospin violation as well. For example,
with f, =f„,the isoscalar states would exhibit "magic
mixing": The mass eigenstates of the neutrals would
be pure, each containing only one quark flavor pair,
uu, dd, and ss, with corresponding masses
2nz„o/f„2,2m~v/f„2, and 2m, v/f, 2.

Thus, if axial U(1) were a, good symmetry and
if (m, —m„)/(m2+m„)were appreciable, one would
have not only a light isoscalar particle g but also
substantial violations of isotopic spin, the latter
even though (m'2 —m, )/m, «1. That is, the zz'-zzo

mass difference would be substantial, and
nuclear forces, for example, dominated as they
are by light-meson exchange, would show no evi-
dence of isotopic spin symmetry. As it is, how-
ever, axial-vector baryon number is not con-
served in QCD, owing to the triangle anomaly
and the existence of vacuum-tunneling mechan-
isms that render a nonzero value for the zero-
momentum-transfer limit of matrix elements of
the anomalous divergence. " This eliminates the
unwanted fourth light Goldstone meson and re-
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duces the degree of isospin violation from order
(m, —m„)/(m, +m„)to the order (m~ —m„)/m, .
At this latter level, one has mixing between the
(isotopically pure) "mo" and "q" mesons. In the
diagonalized mass matrix the physical m and q
will respectively dominate the divergences of the
axial-vector cul rents cos ~ A ~ + sin~A p and
cos~A'„—sin~A'„, where the mixing angle is given
by

Although this mixing is small, it might neverthe-
less be significantly larger than the contribution
from electromagnetic effects, especially since the
electromagnetic contribution to M„,o' vanishes in
the PCAC approximation. Possible observable
consequences of this mixing will be discussed in
the following section.

We now turn to a discussion of the matrix ele-
ments of the axial-vector currents and their di-
vergences. If m~ /m„ is substantially different
from unity, the "naive" divergences will be ap-
preciably asymmetric with respect' to isospin,
and, at first sight, one might expect correspond-
ing asymmetries in the matrix elements. Thus,
for example, the divergence of the formally iso-
scalar axial-vector current

-uy y u+dy y d,

whose nucleon matrix elements are measurable
via the Bjorken sum rule, is naively given by

e&A~&=o -—2i(m„uy,u+ m, dy, d)

for spin-dependent electroproduction, one encount-
ers the nucleon matrix elements of A„='and the
aboveresult would imply a substantial degree of
isospin violation in this sum rule if (m~ —m„}/
(m~+ m„)were non-negligible.

However, the above analysis has not allowed for
effects of the anomaly in divergences of the axial-
vector currents. Indeed, in the absence of the
anomaly we would. have full U~(2) x Us(2) symmetry;
the g would be about as light as n', it would mix
with no, and it could no longer be neglected. I et
us therefore reconsider the above analysis, in a
generalized version, with allowance for the
anomaly. We will find that the naive divergences
indeed exhibit substantial isospin violation, as
above, but that the anomaly (g'/8m'} TrGG does
likewise, in such a way that the combined effects
conspire to render all matrix elements of the ax-
ial-vector currents free of large isospin violation.

Consider the axial-vector current q (x)y„y,q(x},
where q is some quark field. In addition to its
naive part, the divergence also contains an
anomaly term

e "[qy„y,q] =2im, qy, q+ (g'/8m') TrGG .

I et us now consider the matrix element of this
divergence, taken between the vacuum and a state
containing an isoscalar (yz} and isovector (yv)
photon, the current carrying momentum P (see
Fig. 1):

e" " yes ~" q y„y,q

=i(m„+m„)(uy,u + d y, d )

+i (m„—m~ )(uy, u —d y, d) .

On the other hand, via PCAC the ~' interpolating
field is related to the divergence of the I=I axial-.
vector current by

. U "fp duped

uy' U+dy d

+crossedVgq

f, NI, ' g, o = e „A~„'=i (m„ym~ )(uy, u —d y,d)

+i(m„—m~ )(uy, u+dy, d) .

(12}

(a)

For the nucleon matrix elements, if we neglect the
contribution of the q pole and retain only the r'
contribution, we would then find that

where the subscript I =1 on the nucleon matrix ele-
ments denotes the difference between proton and
neutron matrix elements. In the Bjorken sum rule

FIG. 1. (a) Triangle anomaly graph useful in analyz-
ing symmetry breaking. (b) Saturation of triangle graph
by Nambu-Goldstone bosons.
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Sutherland's theorem implies that this matrix
element (with the kinematical factor removed)
vanishes as P -0. This is typically used, in con-
nection with the electromagnetic anomaly, to de-
rive a chiral-symmetry theorem for the m'-2y
amplitude. Here we use it to derive a theorem
for the matrix element of the strong anomaly
TrGG. First, suppose that q is neither an up nor
down quark field. Saturating the above matrix
element with the ~' pole, we then find that

(01»m qy, qI n'&(0I (g'/8n')TrGGIrro) =0 .
(14)

Onthe other hand, applying the above reasoning to
the current uy„y,u + d y„y,d, we derive

i (OI (m,„uy,u +m~ dy, d)I n')

+(OI(g'/8n') TrGGIn') =0 . (15)

Applying the PCAC reasoning of Eqs. (11) and (12)
to the first term of Eq. (15), we have

2i (OI (m„uy,u +m„dy, d)In )

Furthermore, Eq. (16) shows that the n' is
"contaminated" by heavier quark components, in
violation of a naive application of Zweig's rule.
In particular, the strange-quark contribution

provides an alternative derivation of the mixing of
n' and r}0 given in Eq. (10). This is useful, since
the previous derivation involved the use of PCAC
for the g meson.

To summarize, we have seen that the anomaly
eliminates the U(1) symmetry that would have
produced major isospin violation in the pseudo-
scalar mass spectrum. Moreover, it is just the
large isospin violation of the anomaly operator
that serves to essentially cancel corresponding
isospin violations for naive divergences, thereby re-
storing isospin symmetry to matrix elements of the
axial-vector currents. Thus, in QCD the largest
source of nonelectromagnetic isospin violation that
can be expected arises from the mixing of states, say
n' and q', that would otherwise be unmixed; in
amplitude these effects are of order (m~ —m„)/m, ,

= —2(ol(g'/8n')TrGG In')

=i(OI m, sy, sI n') =i(OI m, cy, cIrr')

=i(0I m, t y, f
I

n ).. . . (16)

We have ignored the contributions of the q pole in
this discussion. Its contribution in Eq. (13) is
again proportional to ~„—~„;but whereas the a'
pole is located at a value proportional to m„+m~,
the q mass is proportional to 4m, +m„+m~: The
q contribution has a different analytic form and
must vanish separately. Returning to the main
point, we have learned from Eq. (15) that in the
chi.ral limit

(0I & "(uy„y,u +d y„y,d)I n') =0 .
Therefore, even if (m, —m„)/(m~+m„)-1, the
isospin-violating corrections to Bjorken's sum
rule, as more generally to all matrix elements
of the axial-vector currents, are of order (m„
—m„)/M„and thus very small. We have learned
that the nucleon matrix elements of the anomaly
term (g'/8n') TrGG are far from isoscalar, and we
have learned the value of the one-pion matrix ele-
ment of this operator. These extra pieces of in-
formation appear to be of little value, however,
since we have no independent way of measuring
these matrix elements.

III. APPLICATIONS

A. The m-'- m'0 mass difference

The effect of a nonvanishing light-quark mass
difference m~ —m„on the pion mass difference
M, -M o can be read off directly from Eq. (5).
The n -q' mixing term in the mass matrix serves
to reduce the n' mass relative to that of ~'; to
leading order in (m„+m,)/m,

(m~-m, PM+ —M~o =
( )

M„,

One sees here a formally interesting point. In the
chiral limit, where all the quark masses, hence
the pion masses, go to zero, the etio of m' and
n o masses reinains sensitive to the quark mass
ratio and sensitive therefore to isospin breaking
at the quark mass level. Of course we do not know
the quark mass ratios; but, for example, with
m„=0, one would have &M„-=M,~ —M, o= 1.4 MeV,
a 30frr contribution to the observed mass difference
(&M, ),„,=4.6 MeV. For the quark mass ratios
of Eq. (5}—which rely on the use of PCAC riot

only for pions but also for kaons —the contribution
reduces to 4M, =0.12 MeV.

The bulk of the pion mass difference effect
presumably arises from isospin-violating electro-
magnetic contributions. Insofar as these could be
brought under theoretical control, Eq. (18)—which
describes the quark-mass-difference contribu-
tion —would provide a measure of the quark mass
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ratios of interest here. Since the n'- m' mass
difference is a 4I =2 effect, one expects that the
electromagnetic 'contributions are dominated by
low-mass intermediate states. The celebrated
PCAC analysis of Das et al."expresses (bM, ),
in terms of an integral involving the difference of
vector and axial-vector spectral functions. Sat-
urating with the p and A, meson resonances, with
parameters determined by appeal to the Weinberg
spectral sum rules, " they find

(aM, ), =5.0.1VfeV.

This result was based further on the use of a
narrow-width resonance approximation and the
use of the Kawarabayashi-Suzuki-Riazuddin-
Fayyazuddin formulate for g& the coupling of the

p meson to the electromagnetic current. On using
the present experimental determination of o'z 'and

allowing for finite width of the p resonance (but
otherwise following Das it al. with respect to p,
A, saturation and use of the Weinberg sum rules),
we fi.nd 'that the PCAC prediction should be cor-
rected upward to (b,M, )', = 6.1 +0.8 MeV. This is
not an authoritative best-fit analysis; but it does
suggest an uncomfortable discrepancy with ex-
periment. Moreover, estimates of the correc-
tions to PCAC, as analyzed by Langacker and

Pagels, "indicate that the corrections are of order
15% of the observed mass difference, in a direc-
tion that increases the discrepancy; and finally
any contribution from a quark mass difference,
see Eq. (18), can only further increase the .

troubles. It may be, for the electromagnetic
contributions, that one has to go beyond satura-
tion with p and A„allowing for non-negligible
contributions from other perhaps fairly low, mass
resonances (asymptotic freedom guarantees that
the spectral sum rules converge rapidly once one
gets to the high-mass region).

B. q', ~ 3p decay

This reaction is interesting because it is for-
bidden by isospin (G-parity) invariance and is thus
sensitive to symmetry violation. The dominant
decay mode for q' is g'-q+2m. This process
feeds the q'-3m reaction via q -r' mixing. The
mixing angle has already been given, in Eq. (10).
We allowed there only for effects arising from the
light-quark mass difference m„-m„.In the PCAC
limit electromagnetism cannot contribute to
q'-m' mixing and so must enter into q'- 3m decay
only in a more indirect fashion. Insofar as q'-m'
mixing is the dominant mechanism, as it might
well be if (m, -m„)/(m„+m,) is appreciable, it may
be reasonable to neglect electromagnetic contri-
butions althogether. One can then easily relate the

where the numerical factor (16.8) is the ratio of
phase-space volumes. For m„=0, &= 2.0~&; for
the quark mass ratios of Eq. (6), r= 0.18%. These
are small effects but not obviously beyond experi-
mental detection. The present experimental upper
limit in r is -5%.

C. Z'- ~ A + e'-+ v P decay

In this subsection we are interested in a differ-
ent kind of mixing and its implications, namely the
mixing between ~ and A . This will be induced
by a light-quark mass difference m~ —m„, as of
course also by electromagnetism, The former ef-
fect is dealt with easily. The SU(2)-symmetry-
breaking terms in the Hamiltonian can be written
&,u, + e3 „where &, and &, are expressible in
terms of quark masses and where &, and &, are
scalar quark densities, members of the same oc-
tet. For the effective baryon mass matrix one
finds the off-diagonal terms

=2 5 " " MeV, (20)

where, in the last equality, we have used the first
of Eqs. (6). This off-diagonal effect implies that
the physical ~' and A' states are mixtures of the
"ideal" (i.e, , isotopically pure) states &', , A', :

~' = cosp ~', —sinpA, ,

A' =sinp ~, +cospA, ,

where

sinp =0.033
mg +mg

(21)

Mixing between ~' and A' is of course also gen-
erated by electromagnetism. But we believe this
is a much smaller effect [provided (m~ -m„)/
(m, +m„)is not too small], for an interesting rea-
son. Once the high-frequency parts of one-photon
exchange are absorbed in quark mass renormali-
zation, the remaining effects are presumably well
described by the Born terms (Fig. 2). This is the
basis of the successful calculation of electro-
magnetic mass splittings carried out by Coleman

q'-3m and q'-'q+2n amplitudes. Supposing that the
amplitudes are essentially constant over phase
space (as seems the case experimentally for q'- q + 2 w decay), one finds
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g» -=E,(0) = v 2 sinp . (23)

Z Z A

(a)

Z A A

FIG. 2. Contributions of the Z and A intermediate
states to Zo-A mixing through electromagnetisrn.

+E,(q') " u(A),
Z+ A- (22)

In the overall amplitude (after contraction with
the lepton current matrix element), the form fac-
tors I'", and G, are multiplied by the electron mass
and so make negligible contributions. As for the ',

form factor I"„if isospin were an exact symmetry
this would have to vanish (linearly in q') as
q'-0. A nonvanishing value of E, (0) therefore
signals and is sensitive to the isospin-violating
effects of mixing. One finds

and Schnitze. r." In ~'-A' mixing there are two

graphs to be considered, involving, respectively,
intermediate &' and A' particles. In the SU(3)
limit the two contributions cancel, since the ~
and A' form factors are equal and opposite in this
limit. " Since, in general, one-photon exchange
generates self-masses of order 1 MeV, this added
suppression suggests that the electromagnetic con-
tribution to ~'-A' mixing is very small. We shall
neglect it, therefore, and adopt the mixing angle
of Eq. (21).

Dalitz and Van Hippel" have discussed the phy-
sical implications- of ~', -A' mixing for hypernu-
clear forces. The effects are rather difficult to
separate from the other, symmetry-conserving
forces. Mixing also has implications for ~'-A
+e'+ & P decay. This reaction proceeds through
coupling of the leptons to the weak vector and

axial-vector currents, V& and A„;and one en-
counters (say for Z, decay)

For the remaining form factors, as also for
E, (q') —E, (0) =q'(sE, /sq')„we can ignore the
small mixing effects and appeal to standard SU(3)
estimates, or experiment. The "charge radius"
term (BE,/Bq')o, which might obscure the mixing
effect, can be related by SU(3) considerations to
the electromagnetic charge radius of the neutron.
The latter is known to be very small. In good ap-
proximation, therefore, we can set E, =M2 sinp,
independent of q'. This is the term of interest.
The form factor analogous to G, for ordinary
neutron /3 decay can arise there only from second-
class currents, which are not part of the theo-
retical framework under discussion or indicated
by experiment. In ~-A+&+V decay, a G, term
can nevertheless arise, in principle, through
SU(3)-symmetry-breaking effects; but it seems
reasonable nonetheless to suppose that it is negli-
gible. For the remaining form factors I', and G,
we may, for rough purposes, ignore their p' de-
pendence. Since I', appears with a cofactor of
order q/M it is kinematically suppressed, so that
the decay process is dominated by G, =G, (0)—=g„.
From the ~' -A+e'+ & decay rates one infers"

G, (0) —= g„=0.61. (24)

The "magnetic" transition quantity E,(0) is not
known experimentally, but SU(3) considerations
relate it to the magnetic moment p,„ofthe neu-
tron and thus serve to indicate the expected mag-
nitude

1/2
E,(0) = p, = — — p„=2.3. (25)

The quantity of interest, g~, is small compared
to the dominant parameter g„;but not hopelessly
so if (m~-m„)/(m~+m„) is of order unity. In this
extreme limit g»/g„ is about 8%.

Our essential prediction is for the quantity E,(0)
=—g»=v2 sinp, where sinp is given in Eq. (21),
together with the observation that E, (q') =E, (0)
should be essentially constant over the small range
of q' involved in &-A+e+ v j3 decay (q' is the
square of the four-momentum transfer to the lep-
tons). For the rest, a full experimental analysis
should leave open the remaining form factors as
functions of g'. The full decay spectrum in all the
variables of the process (electron and neutrino
momenta, parent and daughter hyperon polariza-
tion) is very lengthy but can be straightforwardly
worked out when the time comes. Here, only to
indicate the kinds of effects one will have to deal
with experimentally to get at g~, we shall make
several reasonable approximations. We ignore
the form factors E„G,and G, and treat the others
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as constants, independent of q', with the notation
E, (0) =g„,G, (0) =g„,and E,(0) =i'. Moreover, we
treat g„assmall, as it surely is, so we retain g~
only where it interferes with the dominant g„;and
we ignore terms quadratic in p. since these are ac-
companied by kinematic suppression factors. Fin-
ally, we work only to first order in E/M, where
E is the electron energy and M=-,'(Mr ™„);and
we neglect the electron mass.

For unpolarized ~ hyperons, the decay spectrum
in the ~ rest frame has the structure2'

dI'= W(E —E)'E'dE dQ dQ
(2m)' e

where

W=f (E)+f (E)P k+f (E)f(P k)' —sl
A A

+f,(E)&~ f'+f, (E)P 'k &~ &

+f,(E)o~ k+f, (E)p ko'k.

Here E. is the e1ectron energy, E, its maximum
value, P and. & are unit vectors along the momenta
of electron and neutrino respectively, and oA is
the A particle spin operator. The spectrum sum-
med over A spin is just 2TrW (i.e., the above ex-
pression without f„f„f,); the expectation value
of A polarization, P is

Tr WoA

TrW

With the approximations noted above, one finds

2E 2E,
(g~ +&~V)+ M (5g~ +2gzP),

2E„2 4Ef = —g' +
M (g+g i) —M('~g +g p),

3E

f4=2g.gv'2 gx 2M (g~ + g.P)

+2M (5g. +3g.&)
E

f8=2g.gv+2 g. —
2M (2gx +2gxi")

+
2M (7g„+3g„&)

The upper (lower) signs refer to ~ (~ ) P decay.
The wanted g&g„interference term appears in

the correlations described by f, and f,. Each is
dominated by a kinematically unsupressed g„'con-
tribution. However, this dominant effect cancels
in the sum f, +f,: In the sum, in addition to the

g&g~ term, one meets g„'and g„p,both multiplied
by the small factors E/Mor E,/M. The sa, me
thing happens for f, and f, separately if one sums
either for both ~ and ~' decay. One sees also
that f, depends only on g„'and that g„'and g„p,
enter on a comparable footing (same kinematic
suppression factors) in f, .

It is of course a pity that none of the above cor-
relations arises exclusivelyfrom g„g~interfer-
ence. With polarized ~'s, a much richer structure
arises and there is now one correlation in particu-
lar that doesdepend exclusively on g~g~ interfer-
ence: namely, among the complete set of addition-
al correlations, one encounters the term in W

+2gvg"g' tPEX (~XP)) y

where P~ is the ~ poIarization. This correlation
is distinguished from all other spin-spin corre-
lations in that it is antisymmetric under P

It is evident from all of the above that experi-
mental detection of the (at best) small vector cou-
pling coefficient g~, by one means or another, will
be very demanding.
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