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Pole-dominance model for nonleptonic charm decays

E. Sezgin
Institute for Theoretica/ Physics, State University of ¹ur York at Stony Brook, Stony Brook, ¹mFork 11794

(Received 17 November 1978}
f

Two- and three-body nonleptonic weak decays of D and F mesons are discussed. Current-field identities
are used in the quantum-chromodynamics-corrected Hamiltonian. With a reasonable choice of strong
Hamiltonian the resulting pole model gives rise to vector-axial-vector dominance in two-body D decays,
vector-pseudoscalar dominance in two-body F decays and p dominance in D —~K m+m' decay. The K*
contribution to D ~ Km@ decays is found to be small, which is consistent with experiment.

I. INTRODUCTION

The quantum-chromodynamies-corrected stan-
dard charm model' implies an exact ~I=1 rule
and an approximate AV=O rule for Cabibbo-
favored nonleptonic charm decays. The b I= 1
rule by itself leads only to sum rules. It does
not explain, for example, the experimentally ob-
served large ratio I'(D'-K w'm')/I'(D' K w'm'),
although it does not exclude that possibility. Soft-
pion theorems, on the other hand, are doubtful to
be applicable to charm decays since the pions are
not soft. Inclusion of final-state interactions may
be quite significant' but a comprehensive analysis
in this direction is yet to be done.

As another approach, quark-line rules emphas-
ize the approximate ~V=0 rule aspect of the Ham-
iltonian. It is assumed that charm decays are the
decays of the charmed quark into ordinary quarks
or the annihilation of the charmed quark with the
accompanying ordinary quark. This approach leads
to inclusive semileptonic and nonleptonic decay
rates. However, as far as individual decay modes
are concerned it neglects symmetry-breaking ef-
fects and gives only relative magnitudes of two-
body decay rates in terms of quantum-chromodyn-
amics (QCD) factors y .4 Ii provides even less
information on three- and more-body decays since
they involve more than one type of unknown amp-
litudes. '

In order to obtain more detailed information on
charm decays, for example, understand some ex-
clusive decay modes, we consider a phenomeno-
logical model in which the current-field identities
are used in the QCD-corrected nonleptonic weak
Hamiltonian. The QCD correction implies a very
specific pattern in charm decays such that
(D'] ~ ~ „„-fK')~ ~ „„transitions are suppressed
whereas (E')~ p v „-JLw')~ ~ v „transitions are
enhanced. We also consider a strong Hamiltonian
which describes vertices containing only three

particLes. With reasonable assumptions for the
symmetry-breaking parameters, calculations of
the two- and three-body charm decays show that
two-body D decays are dominated by vector and
axial-'vector poles whereas two-body I' decays are
dominated by vector and pseudoscalar poles; the
p-meson contribution accounts for a significant
percentage of the observed rate for D'-& m'm'

whereas the K* contribution, in spite of being the
dominant pole contribution in O' K'm'm and D'

K m'i' decays, accounts only for 15-20/g of the
observed rates, which implies that the direct-
channel contribution is important for these modes.
These results are considerably different from
those obtained in Ref. V and are consistent with
the experiment. '

In the following we discuss two- and three-body
decays of charmed mesons. At the end we examine
the application of the present model to ordinary
meson decays.

II. MODEL

A similar mode1. to the one we shall describe
below was considered by Borchardt et al. ' They
have taken the short-distance enhancement factor
for the 20-plets part of the nonleptonic weak Ham-
iltonian for charm decays to be the same as the
one for the octet part of the Hamiltonian for or-
dinary meson decays, and they have calculated
pseudoscaiar (P) and vector (V) poles for two-
body decay modes of charmed mesons. They have
found that this model predicts large values for PV
contributions to PPP three-body decays. How-
ever, there is strong evidence that the enhance-
ment factor for charm decays is much smaller
than the ohe for ordinary meson decays. ' We take
this fact into consideration; also, we consider the
axial-vector contributions as well, and calculate
two- and three-body charmed-meson decays. ' The
nonleptonie weak Hamiltonian is given by
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where JB„=V~ +A~8„(n, P = 1, . . . , 4) and f~ are
short-distance factors. Us„and A~„are 15=plets
of vector and axial-vector currents. n, P denote
the quark flavors. . Following Cabibbo et al.' we
adopt the values

f,= 2.15,

f =0.68.

We use the current-field identities given by

2

Vq„'=&2 fop„+ v2f~B„S,

2" q8„+Key, 8„P,
A

(2)

(3)

where Q, S, g, P are 1,0', 1', 0 15-plets of SU(4)
respectively and f»» ~ are the proper coupling
constants. From the m )p decay,

f, =93 MeV.

Following Kandaswamy et al. ' we use

fff~f~=1 2

F»/f, = 1.7.

(4)

(5)

f ~
obtained from this relation agrees fairly well

with experiment. Now considering that a certain
final state may be created by the Fierz-trans-
formed form of the Hamiltonian, from Eq. (1)we ob-
tain

We will postpone the discussion of the scalars
for the moment. As far as f» „is concerned, al-
though f,f„~ appear in the amplitudes, (f» „),„
appear only as g»/f» where g» „are strong-inter-
action coupling constants which we will discuss
later. For f &

and fr~ we will use the KSHF re-
lation"

iltonian, that will certainly affect the results. We
choose the following Hamiltonian which describes
strong vertices containing three particles" ".
X„,=ig Trp&PB&P+ig Tr(g&$&P Pp—&le&)

+Zsf z TrSPP +its»» TrSApkp

+il~s TrkpP AS 3 iR'»»» Tr&pvfpf'v &
(8)

where we have ignored interactions with dimen-
sion higher than four for simplicity. The fourth
and sixth terms contribute only to UU modes and
that contribution is proportional to y, therefore
we neglect them. On the other hand, the third
term contributes to PP and PPP modes and the
fifth term contributes to PPP modes. However,
the dominant contribution (i.e., o.y, ) to PP modes
is proportional to m, '/(m~'-m» ), therefore it
can be easily neglected, and the contribution to
PPP modes which involve two pions is only through
K pole (Fig. 1). The status of ff is somewhat doubt-
ful. It is not a Breit-Wigner resonance and it is
very broad. We prefer to ignore this contribution.
It can be shown that this will amount to ignoring
the diagrams of the type shown in Fig. 1. We may
expect future experiments to clarify this question.
Thus, the only relevant terms in Eq. (f) are the
first two terms which imply pseudoscalar, vector,
and axial-vector poles for the processes under
consideration. As far as the strong coupling con-
stants are concerned, gp..and gr*K appear ex-
plicitly in the amplitudes which we will consider,
whereas g„»~ g»~ alld (g»» „~)h appear only
in the ratios X» = g»»/f» and -X»„=g„»~/f„. Fo-r

pp p and g~+«, using the obs erv ed widths and Eq.
(8) we obtain

g pm'= 6.0,
gK*K~ = 5.6.

(9)

For the other needed coupling constants we use
the first Weinberg sum rule (saturated with vector,
axial-vector, and pseudoscalar mesons) and the
KSRF relation in the formulas obtained in Ref. 13
by using current algebra and pole dominance to
obtain

2
SZ p

~V ~ 22.m Q

6c =Bs=-1)eff t c c(X+ ff3 Pl X- PS Jll
s/ 2

+colored part+H. c.),

where y =(2f,sf )/3. Since we are interested in
color-singlet final states we will not need the
colored part. As to the choice of the strong Ham-

where U and A have the same quantum numbers
except the parity. A,„~and Xz ~~ obtained from
Eq. (10) agree with experiment within 15%; how-
ever, A.

~ and Az~ are off by 25%. For more ac-
curacy in our numerical evaluation we will use Eq.
(9) which with Eq. (6) implies X~ =Xr~ = 1 and hope
that Eq. (10) is reasonable for the other coupling
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FIG. 1. Scalar pole contribution to D—K» decay
mode. K has I(J ) =2(0').
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constants within 15-25/o. As we will see, even
this level of accuracy will be enough to draw cer-
tain conclusions about charm decays. Finally, for
the masses, following Fakirov et al."we use mD
= 1867, m~ = 2030, m»= 2200, m»= 230o, rgD~
=2010, m~+=2140, all numbers in MeV.

III.. DECAY RATES

r '/r"=2. o. (12)

(a) PP modes. The relevant diagrams are shown
in Fig. 2. For example, A(D' K v') and
A(D"-K'm" ) are given by

A '=2x.x~~f, (ID'-~. ') -2x xr~fD(mr'-~. '),
A"=2X,X~*f,(~&' —m~')+2X kg*fr(mD'-m, '),

(11)

from which we obtain

FIG. 2. Vector pole contributions to some PP decay
modes. The dashed lines denote the poles.

This is consistent with experiment if I'(D )
= I (D'). However, if we take the central values of the
observed branching ratios, Eq. (12)suggests I'(D')
&r(D') which is reasonable since D' K'* tran-
sitions- are doubly Cabbibo suppressed whereas
D' K'~ transitions are not. Dominant Pp modes
are listed in Table I. The suppressed modes are
those which are proportional to (x )'. Comparing
our results with those of Ref. 15 we observe that
although the suppressed modes are the same, we
predict larger I'(D'-K x')/r(D'-K'v') and
r (F'- qx).

(b) PV modes. The relevant diagrams for
A(D' K p') and A(D' K'*m') are shown in Fig.
3. For example, neglecting m„'/(m~' -m„') terms
we obtain

A(D' K p') =[2X &o fz& —4 X&—z*m~ /f p(1 —m~ /mz )+2X~~zrf~fz/(I m~'/m~-')]q~ E',

A(D'-K'*~') =[2X,&~„r~f, —4X &D*m~*'/f„*(I -mr*'/m~*')] q~

A(E' K'*K') =[2X,g~gr„f~f„—4X X~grnrg'/f„g(l-m~w'/mD+')+2X, & p, *o]qp. &.

We note that the 0 contribution is small for D de-
cays yet it can be dominant for E decays because
the F' Qm' transition is enhanced. Comparing our
results (Table II) with those obtained by Maiani in

Ref. 15 we observe significant differences. For
example, in our model F' - pm' is suppressed
whereas ~ —gp', K*+K', g'*K' are not,
which is opposite to his. result. Also, in our

TABLE I. PP decay rates. The suppressed modes
are proportional to (X ) .

Decay mode
Decay rate
(10~o sec ~)

pO P

Do K z'
Do Ko~
Do Ko„o
Do-Xog
F+
F+ —E.Eo

17.8
8.6

suppressed
suppressed

21.2
suppressed

QO
K

p+

FIG. 3. Vector and axial-vector pole contribution& to
some PV decay modes.
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TABLE II. PV decay rates. The suppressed modes
are proportional to (g )2.

Decay mode
Decay rate
(10~0 sec ~)

pO

FIG. 4. Axial-vector pole contribution to a VV mode.
D+ Kop'
D+ K *Orat+

D K. 7t

D -K-p'
Do -K*o~o
Do Kopo

K 0otc~

D Koch
F+ Q 7r'

F' gp'
F -K*'K'
F' KG*K',

24.6(F*contr = 21.1)
8.0
5.6

32.6(F*contr = 21.1)
suppressed
suppressed
suppressed
suppressed

2.2
18.6
19.5
24.0

model B(D' K p')/B(D' K*'«') = 2.46 and
B(Do-K p') = 5.82 whereas he finds 1.35 and 0.85
respectively. We note that we have used the ex-
perimental input B(K )(') = 2.2% and B(K'v") = 1.6%
here. On the other hand, all of the PV rates we
have obtained are much smaller than those of Ref.
7.

(c) VV modes. Pseudoscalars do not contribute
to VV modes. Also our simple calculations show
that vector contributions are negligible. There-
fore we have axial-vector dominance in VV modes.

For example, A(D' K *p ) is given by (Fig. 4)

a(D'-K *p')

=[2y, x««*mF'/fF(1-mF'/m« ')]e' *'&'F'.

(14)

Results are tabulated in Table III. They are smal-
ler than the predictions of Ref. 15. D K *p is
suppressed in both models and this is consistent
with experiments.

(d) PPP modes We .consider A(Do-K 7(')(o) first.
y, -enhanced pseudoscalar contributions are pro-
portional to m '/(m«' -m ), therefore they can
be neglected. Vector and axial-vector contribu-
tions are shown in Fig. 5. For simplicity, we
shall neglect the graphs which are proportional to

from here on [Fig. 5(d)]. The contribution from
Fig. 5(a) has been calculated to be an order of
magnitude smaller than the other contributions.
Therefore the relevant diagrams are only Figs.
5(b) and 5(c). We obtain

~&X+g««+«&«„«+f
A(D'-K v'«') =

2 2 [(1—&) q+' q —(1+&) q- ' qo] (F g. o(b ))
(q() qy) m«4 +Lm«4I «4

2W2&+X«g)(om«j m o
I 2 2tI 2 2 F 4 [(q() q«) (q+ qo)] (F(g 5(c))

)(Q ppg
p

+2fg pT p)
(15)

where x=(m« -m ')/m«~' and q=qo —q . This
amplitude must be numerically integrated over
the Dalitz plot. For j' decays pseudoscalar con-
tributions are again appreciable. Results for some

TABLE III. VV decay rates. The suppressed modes
are proportional to (X )2.

of the PPP modes are given in Table IV. We ob-
serve that the K* contribution to I'(D' K v'((') and
I'(D' K')('v ) is 15-20% of the observed rate
whereas the p contribution is practically absent.
This is consistent with experiments. On the other
hand, the p contribution to I'(D' K )(')(') is quite
sizable B(D' K. )F')(o) = (9 v 5)% implies

Decay mode

D'- K *'p'
D —K -p'
D K p
Do ~ KOW~

F -K*'K*0

Decay rate
(10~0 sec ~)

4.2
4.2

suppressed
suppressed

4.8
suppressed

(p contribution)~o «-,+ „o= 40"„o%. (16)

(K* contr/p contr)~o «- ~+oo= 7% (17)

from Table IV. The idea of p dominance inD'
K n'n' is yet to be verified experimentally.

This is approximately the p contribution alone,
since
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0

0

Qj)'~ Fa

+ FR.
Decay mode

Decay rate
(10~0 sec ~)

Branching
ratio

TABLE IU. PPP decay rates and branching ratios.

0
u

C
+ F.R.u

D" -Z-W7
Do -Xo~ ~-
Do -Z- e~'
D'-X '~'~'
F+ m+7r 7r'

4.3
4.2

29.6
29.6
38.4

0.8%
0.5%
3.7%
5.4%

(b)

0 +K=+
C

ld

(c)

+1K ~%' + K

F.R.

u, d
d

I'IG. 5. Vector and axial-vector pole contributions to
the + K &'~ decay mode. FR stands for Fierz re-
arrangement. The dashed lines denote the poles.

IV. , DISCUSSION

The numerical results obtained above certainly
depend on the choice of H„, and coupling constants
such as g„~J„etc. However, even the order of
magnitudes as crude estimates show that

(D' K g'm')/1'(0"-K 7t'm') may indeed be expect-
ed to be large since the p contribution is yngch.

larger than the K* contribution. It has been dis-
cussed in Ref. 5 that p dominance may be respon-
sible for large 1 (D' K n'n')/I'(O' K w'm+). (See
also Ref. 18.) Within a simple model we show that this
is indeed the case. As far as the missing part of the
branchingratios is concerned (see Table IV), a
possible explanation might be that the type of
diagrams shown in Fig. 6 are significant and they
are approximately equal for each Kvm mode (within
obvious symmetry factors). Then, for instance, a
contribution of about 3 /o to each Kmm mode would
bring our results to very good agreement with ex-
periments. What is needed is, then, a more com-
prehensive phenomenological model which would
preserve our results but also explain the direct-
channel contributions through vertices containing
more than three particles. "

As to ordinary-meson decays, it can be shown
that the present model gives the correct K-m7t
rates provided that the QCD factor y, is larger
than theoretically expected. ' However, it has
been shown that" strong interactions not only mod-
ify various pieces of the bare Hamiltonian but also
give rise to new structures of the type

&X~,=, =C cosmic sin9c [sip„d~(u~ z, u~+d r„sd„+& x„Rs )+RH. c.] .NL 2Qy
ac:—o ~2

Now in the present model this would give rise to

(X&."= i)„,= a(K~+' s„K')(y,„+-s,q') + f [(K'+K')(a m )+(K'+K—')-(v' —m')],

(18)

K

X r'+

I'IG. 6. Direct-channel and vector and axial-vector pole contributions to &-&~7( decay modes where the strong verti-
ces contain four particles. The dashed lines denote the poles.
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where we have used the Fierz transformation on
quark terms to obtain the effective Hamiltonian.
We observe that the new terms do not give rise to

mw decays through pole diagrams of the type
shown in Fig. 2. However, let us note that they
can give rise to different types of contributions
such as (m) J )0) (m ~8'~K) and these have been ar-
gued to be significantly large. " Yet the calcula-
tion of the new contributions is a subtle. problem
and it requires further investigation in order to

solve the octet enhancement problem completely
in a satisfactory way.
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