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Connection between quark-model eigenstates and low-energy scattering
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We propose a new method of analyzing low-energy hadron-hadron scattering designed to reveal internal
quark-gluon eigenstates. Our method is a modification of the Wigner-Eisenbud formalism suited to the case
of confining boundary conditions. We have identified a matrix function of the energy (which we call P)
whose poles and residues correspond to the masses and channel projections of quark-gluon eigenstates
calculated with spherical bag boundary conditions. To illustrate the formalism we apply it to the low-energy
S-wave scattering of pseudoscalar mesons. We find from the data clear evidence of internal states
corresponding to quark-model predictions of Q 'Q' states at 0.69 and 1.04 GeV in the I = 0 channel, at
0.96 GeV in the I = 1/2 channel, at 1.19 GeV in the I = 3/2 channel, and at 1.04 GeV in the I = 2
channel. We believe the I = 3/2 and 2 internal states to be the low-energy exotics long predicted by quark
models.

I. INTRODUCTION

In this paper we study the general relation be-
tween the discrete states that one would calculate
in simple confined-quark models and low-energy
hadron-hadron scattering. Our method of analyz-
ing two-body reactions makes contact with bag-
model calculations of both ordinary' (QQ and Q')
and multiquark' (Q"Q" with n+ m &3) hadrons. We
shall illustrate our discussion with the S-wave
scattering of pseudoscalar mesons but our tech-
niques apply also to higher partial waves and other
two-body systems such as meson-nucleon and
nucleon-nucleon.

We have identified a dynamical quantity —which
we call the I' matrix —which seves as a link be-
tween the discrete states of the quark model and
the scattering states in which quarks do not ap-
pear Quark-m. odel eigenstates, suitably defined,
correspond to poles in I' with approximately cal-
culable residues. The P matrix, in turn, is sim-
ple related to the S matrix and so may be extracted
from measured phases and elasticities. Its poles
may be compared with quark-model predictions.
We find that the P-matrix description of S-wave
meson-meson scattering is close to simple con-
fined-quark-model expectations. Specifically, we
find clear internal states (corresponding closely
to the predictions of two-quark-two-antiquark- bag
calculations') in the I=O, 2, —,', and 2 8-wave
meson-meson channels, even though none of these
"states" generates conventional resonant behavior
in the phase shift.

The problem in identifying the discrete "states"
of the bag model from scattering amplitudes is
that these "states" are in general calculated with
an artificial boundary condition which confines
color-singlet as well as color-nonsinglet quark

states. The "states" of Refs. 1 and 2 are in fact
eigenstates of an approximate quark-gluon Hamil-
tonian which does not distinguish between colored
and uncolored subunits. This is perhaps a realis-
tic description of the QQ and Q' systems, which
possess only colored channels, but is not neces-
sarily a good approximation for higher color-
singlet configurations such as Q'Q' which must
have unconfined color-singlet subunits. "

In the real world only the colored channels are
confined. The color-singlet channels are uncon-
fined and in fact constitute the objects in whose
scattering we are interested. It can therefore
happen that the discrete "states" are effectively
created by the artificial barrier, in which case
they may have a somewhat indirect relationship
to the observed scattering, and the question of
whether they should or should not be identified as
"particles" in the Data Tables' becomes in the
extreme cases a matter of taste. This does not
mean that bag calculations of quark systems with
color-singlet subunits are unpredictive. Quite
the contrary, we find a reasonably precise
although indirect relation between these discrete
states and low-energy scattering, The discrete
internal states are indeed present in the true
scattering state in the sense that they provide a
good approximation to the internal-region wave
function over a significant energy range of the
scattering.

This situation must be contrasted with the stand-
ard resonance physics in which there is a gepuine
physical barrier or weak coupling inhibiting the
decay of the state. For example, the familiar,
fairly narrow meson resonances presumably have
their main components in the QQ sector of the
Hilbert space (where the confining barrier is real)
and hence tend to be weakly coupled to the open
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QQQQ channels. In addition, the decay of the
lowest-lying unstable QQ states is suppressed by
an angular momentum harrier. Our description
of low-energy scattering must (and will) reduce
to this familiar picture for narrow states.

We have written "states" with quotes to empha-
size the distinction between our objects and or-
dinary resonant states. To preserve the distinc-
tion it is convenient to give them a name of their
own. Henceforth, we shall refer to eigenstates
subject to perhaps artificial confining boundary
conditions as primitives.

The connection between theprimitives and the
scattering can be illustrated in nonrelativistic
potential theory. Consider a weak square-well
potential of radius b and strength V = -U/2m. It
is clear that there are no physical states or res-
onances created by this potential. However, if
one imposes a boundary condition requiring the
wavefunction to vanish at x = b one creates an in-
finite set of internal states at

b(k„'+ U)'~'=nz, n=1, 2, , . . .

Further, the phase shift &(k) does nothing dramat-
ic as k varies from 0 to ~; it starts at zero, goes
to an extremum &„=w/2 —k b at

k b =[(m/2)' —Ub']'~' (1 2)

and wiggles gently back to zero. '. Nevertheless,
we ean precisely identify the primitives from the
scattering by considering the quantity

1' =—k cotikb+ &(k)]

whose poles occur at the zero's of sigkb+ 5(k)].
Since sin[kb+ 5(k)] will have a. zero when the true
wave function vanishes at x = &, these zeros wiLL

precisely give us the roots k„of Eq. (1.1). Indeed,
for the square-well example, since

P= q coty',

with

q= (k'+ U)'~',

we see that the poles of P are found at the zeros
of sinqb, or at q„b = nm in a.greement with Eq. (1.1).
Thus, the primitives calculated with the imposed
boundary condition can be unambiguously identi-
fied with the poles of P. The primitives may be
artificial, as in the ease we have just considered.
If, however, there is a physical boundary which
genuinely confines the system, as in the case of
the low-Lying pseudoscalar and vector mesons
where the major QQ component of the wave func-
tion is confined by color, the primitives will cor-
respond closely to conventional long-lived reso-
nant states.

It is particularLy instructive to pursue our

square-well example to the extreme case of no
interaction: U =0, &(k) =0. In that case

P= k eotkb,

and the primitives —the poles in P—are at k„'
= n'm'/b' with residues 2n'w'/b'. Now consider an
arbitrary internal potential V(x) which vanishes
for r & b, and suppose it happened to generate a,
primitive at one of these momenta, say

(1.7)

Then the scattering wave function at k = k, will be
identical (for x ~ b) to the case of no interaction,
and the phase shift, &(k,) will be zero. Further-
more, if the residue of the actual primitive is
approximately 2w'/b', then the scattering wave
function will resemble the noninteracting ease
for a wide range of k near k„and the primitive
will have negligible impact on the scattering. We
call this phenomenon "compensation" and refer to
E(k, ) = E, as the "compensation energy. " If the
potential V(r) generates a; primitive at E, &E, the
primitive signals an attractive interaction and
will show up as a positive phase shift. If the ener-
gy of the primitive is greater than E, it signals
repulsion and will show up as a negative phase
shift. Of course, if the residue of the pole in P is
small enough, indicating some physical barrier,
there will be a nearby pole in the S matrix and a
narrow peak in the cross section whatever the
energy of the primitive. Otherwise the proximity
of P-matrix poles to the compensation energy
provides a useful qualitative measure of their
effect on the phase shift.

One expects a continuum of situations ranging
from "natural" confinement —such as the p, Q,
and K*—associated with truly resonant phase
shifts, to "unnatural" confinement —such as the
exotic I= 2, 0" primitive which we shall find at
1.04 GeV —associated with a slowly falling n'm'

pha, se shift (!), with intermediate cases —such as
the I= 0, 0" primitive found at 0.69 GeV and the
S = 1, I = &, 0 primitive found at 0.96 GeV —asso-
ciated respectively with slowly rising mm and vA

phase shifts. All of these diverse effects, how-
ever, show up as clear poles in P.

In Sec. II we develop the formalism for trans-
lating information about the internal system into
information about the scattering. In Sec. III we
specialize to the bag model and techniques for
casting its predictions into the form necessary
for our analysis. In Sec. IV we apply our methods
to the I= 0, —,', 2, and 2 pseudoscalar meson-
meson S-wave system in the GeV and sub-GeV
region.

It is clear that if we really understood hadron
dynamics this kind of analysis would be unneces-



19 CONNECTION BET%EEN QUARK-MODEL EIGENSTATES AND. . . 2107

sary. Thus, in our square-well example, there
is no need to give special consideration to the
poles of P; one could simply solve Eq. (1.2) for
the phase shift 6(k). In the four-quark, meson-
meson problem, however, we do not have a dy-
namical model that we can use to calculate the
scattering directly from first principles. There-
fore, we make a somewhat arbitrary division be-
tween an inside, within which we believe we can
calculate quark-model primitives, and an outside,
where the interaction between mesons is negli-
gible, and attempt to join these regions by con-
tinuity. The joining process can then be used to
construct the quantity analogous to P, Eq. (1.3),
whose poles are the energy eigenvalues of-the
internal problem.

II. THE P MATRIX

We assume that outside a relative separation b

in the center of mass the n-channel two-meson
system is free and that continuum channels are
unimportant. We may then choose n independent
I = 0 wave functions (see Appendix A for the deri-
vation of P for higher partial waves):

ytI yfl

iJ ij ~2 g 2&
fI fl'

(2.4)

(b) It is symmetric.
(c) It has no two-body threshold singularities,

and hence has only multiparticle and left-hand
cuts, as well as essential singularities at ~ in-
troduced by the finite radius b. However, the
importance of the finite plane singularities is
expected to be drastically reduced compared to
the case b=0. This is strongly suggested by our
analysis of the left-hand cuts generated by poten-
tial scattering summarized in Appendix B. Poten-
tial scattering (e.g. , a consequence of p, &u, o

exchange) occurs only for r & b, and is suppressed
by a factor e "'«1, where M is the mass of the
exchanged quantum. In nucleon-nucleon scatter-
ing pion exchange is important. We have esti-
mated the effect of p exchange on mm scattering
and found it negligible.

(d) For a system satisfying a relativistic wave
equation with a scalar potential, provided the in-
teraction vanishes outside b, P can be expanded
uniquely as a sum of poles with factorizing resi-
dues and a single matrix subtraction constant:

g, ,(r,)~&;&cosk, (r, —b)+ . " sink, (r, -b. ) (2.1)

(where the first index on g labels the state, the
second the channel) so that a pole of P corresponds
to a state whose wave function vanishes at r= b,
and hence to the kind of boundary condition on the
internal wave functions which we wish to impose.
We make contact with the S matrix by noting that

where E'=rn'+ k' and where the E„are the eigen-
values of the internal Hamiltonian subject to the
boundary condition g = 0 at r = b This i.s quite
analogous to the case of the R matrix' where, how-
ever, no subtraction constant is required. Thus
we expect P to be a slowly varying function of
energy except for poles. In our square-well ex-
ample Eq. (2.4) becomes the well-known expansion

(, ,(r, ) = Q --'
[&,, exp(-ik, . r,.) -8, , exp(ik, r, )J (2.2)

oo

xcotx=1+ 2x' P,
=

x'-n'r'
tI=].

(2.5)

for some matrix A. Solving for S,

,.„1—(i/v'k)P(1/Rk)
1+ (i/Pk)P(1/Vk )

(2.3)

In the one-channel case, of course, P reduces to
k cot[kb+5(k)].

Note that P = 1/R, where R is the matrix intro-
duced by Wigner and Eisenbud. The extension of
the Wigner-Eisenbud type formalism to particle
reactions was proposed earlier by Breit and
Bouricius and by Feshbach and Lomon. ' The
Feshbach-Lomon E matrix is essentially our P
matrix, although the physics motivation is quite
different. In the rest of this section, we give a
list of useful formal properties of the P matrix.
Many of these have already been discussed by
Feshbach and Lomon, but we collect them here
for convenience.

The matrix P has the following properties:
(a) It is real for real energies.

Of course, the interaction does not vanish exactly
outside b, so that exchanges with range 1/M & b

must be taken into account as described in (c)
above.

(e) P depends on b according to the equation

P2 Q2
6$ (2.6)

so that a pole in P= r(b)/[s -s,(b)] at s =s, (b) has
a residue which satisfies

or

-r(b) &s, r'(b)
[s -s,(b)]' sb [s -s,(b)]'

~(&)=(-,&")0

(2.7)

(2.8)

with g' = Q. Here s is the usual channel invariant.
Thus the residue of the pole is proportional to a
projection operator which, in the absence of de-
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generacy, will be given by a single vector $, that
is~

(2.9)

with Q,.(,'=1.
This factorization can be seen directly. Con-

sider S = e'"'Se'"'. This unitary matrix has eigen-
functions q" with eigenvalues e"~. Hence

(2.10)

and

channels. Thus, the original pole has dissap-
peared, and a displaced pole with a modified
residue has appeared in its place.

Finally, we note that the only theoretical limita-
tion on the range of application of this formalism
is its inability to parametrize multibody channels.
In meson-meson scattering multibody channels do
not appear to become important until energies in
excess of 1.5 GeV. Practical application of our
formalism is handicapped by lack of good data, ,
profusion of two-body channels and the large num-
ber of P-matrix poles expected in quark models
well before this theoretical limit.

(2.11)
III. CONNECTION TO THE BAG MODEL

Barring accidental degeneracy, only one of the
eotangents will have a pole, with residue given by
Eq. (2.9) and

(", = v A,.(i lr]"). (2.12)

1P- = &00 -P.c PCO 0«cc+ ~cc
(2.13)

where o and & represent open and closed channels,
respectively. Here ~„=-ik„and is real and
positive. Thus, we shall see in Sec. IV, a pole
in P seen below the opening of a channel will be
at a different energy from the true pole in P
which can be observed above the channel thresh-
old. This can be illustrated most clearly by
specializing Eg. (2.13) to the case of a single
factorizable pole in P at s„plus a background
that is diagonal in the closed channel:

A, A,P„.=a, , + s —s0
(2.14)

where a„,= a,&„. The closed-channel P matrix
is then

Pcc ac~ cc ' +
s —s 0

(2.15)

The closed-channel inverse of I'+ ~ is easily cal-
culated and substituted into Eq. (2.13). We find .

~ aqua-c
~J 4J

c c

(2.16)

where d, =a„+a„and i and j represent open

Note that the channel space, labeled by i, includes
only physical, open scattering channels, not con-
fined (e.g. , [(QQ)' —(QQ)']') or closed channels.

(f) The effect on P of nearby closed channels
is to produce an effective open channel P matrix
P given by

One approach would be to view the matching
radius, b, as a parameter and to extract the P
matrix from low-energy scattering data for arbi-
trary b (providing b is outside the interaction
region). However, we wish to make contact with
confined-quark-model calculations which can
predict the values of s0 ~ and the projection op-
erator (,g&. We shall relate Ws, to the mass of
the primitive as calculated in&he bag model, & to
its radius, and g; to its components on channel
wave functions (e.g. , sv, qq, KK, ete. ). The data
also determine the residue -ds, /db which we can
relate only qualitatively to bag-model calculations.

We make the connection firstly by assuming
that a primitive of the spherical bag model with
radius A corresponds to a pole in the P matrix,
P(b), with b = b(R). By this we imply (a) that the
bag boundary condition on a quark state —which
says that hadronic matter ends at A —is to be un-
derstood to require the vanishing of the meson-
meson wave functions at some relative separation
b(R); and (b) that there is no significant interac-
tion between color-singlet meson constituents out-
side the radius b. To estimate the relation be-
tween b and A, consider the four-quark density
function p(r„r„r„r,) inside a spherical Q'Q' bag.
p(r„r„r„r,) is different from zero only inside the
bag. Therefore, the effective two-body density,

p(r r )= d'v d'x d'rd. 'r I! ' '- ' ' —i)c 1 2 3
' 4 2 2

r, +r, +r, +r,X
4

—r, p~r„r„r„r,~,

(3.1)

will vanish strongly as the relative separation ~
approaches twice the bag radius, 2R.' This may
be seen in Fig. 1(a), where we have plotted p(r)

Jd3r,p(r—, r, ) for the lowest 8-wave bag wave
function. We associate the strong vanishing of
p(r) at 2R with the P-matrix boundary condition
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FIG. 1. (a) The density for the meson-meson separa-
tion in the ground-state spherical Q Q bag (Hef. 18).
{b) The density for a free meson-meson wave function
with its first zero at r=b. b is chosen so that the rms
radius of this wave function matches the rms radius in
Fig. 1(a).

at b We es.timate the matching radius b(A) by
equating the mean value of r' obtained from Eq.
(3.1) and the S-wave functions:

(r') = f dr d'r dr@'r r +r r +r
4 2 2.

x p(r„r„r„r,) (3 2)

where

(r, ') = f a' r*)(',(r)l'r (3.3)

[where f,(r) is the lowest S-wave bag eigenstate
wave function] with the mean value of r' obtained
from a free n)eson-meson wave function g(r)
which vanishes at x=b, i.e. ,

1 si

nrem/b

(2vb)'~2 r (3.4)

The resulting relationship is
b= 1.4Z. (3.5)

This procedure is displayed graphically in Fig.
1(b).

We expect the energy of the P-matrix pole in
question to be closest to that of the calculated bag
primitive when Eq. (3.5) is used to determine b. .

A bag-model virial theorem relates A to the mass
(M) of the primitive:

/ 3M = 5~ GeV (3.6)
y 1bmB

for M in Gev. Equation (3.6) holds exactly only
for massless (u and d) quark systems but is ap-
proximately valid for systems containing strange
quarks. Combining Eqs. (3.5) and (3.6) we obtain

b =b(M) =7M" GeV-' (3.7)

for% in GeV.
To proceed further and predict (; andi s, /db,

we must make a more detailed model for the
channel couplings of the bag states. The Q'Q'
primitives of Ref. 2 were given there in a QQ-QQ
basis. The QQ subunits are color singlets or
octets with the flavor and spin quantum numbers
of the familiar pseudoscalar and vector mesons.
For example, the lowest-mass Q'Q' primitive, a
scalar isosinglet at 650 MeV, is written as"

l
C (9)0")= 0.64lvm) -0.37l7(.v) + 0.19lnq&

-o »ln q&+0 29lw&-0341k ~&

+0.16l(()(()) —0.20l(L) &u)+ . ~ .
(3 6)

One is tempted to identify the components of the
Q'Q' primitive in this basis as the components of
the vector F„But .this is wrong, since $; cannot
have components in confined channels. Our for-
malism requires no significant interaction for
r & b. Therefore, the channel space of g( can con-
tain. only physical open scattering channels.

To identify E; imagine carrying out a static bag
calculation for various radii. For small radius
confining forces are unimportant, quantum chro-
modynamics (QCD) does not appear to distinguish
between uncolored and colored subunits, and quark
kinetic energies dominate. As the radius ine-
ereases, confining forces become more impor-
tant —represented by the bag energy BV. For sys-
tems with no color-singlet subunits (e.g. , QQ) an
equilibrium radius, A, is fixed by the balance of
quark kinetic and bag energies. For systems
with color-singlet subunits, the spherical-cavity
approximation breaks down. It predicts an equi-
librium radius in this case also, whereas we ex-
pect that the physical system can continue to lower
its energy by expanding into the unconfined chan-
nels. We will assume that the confining forces
are such that the .onfined components of the prim-
itive disappear by a radius A' only slightly greater
that the static cavity equilibrium radius A, and

that the relative strengths of the various uncon-
fined-channel couplings do not change significantly
between A and A'. We assume the same to be true
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of ordinary closed channels. Thus, for the bag
primitive at 650 MeV described by Eq. (3.8), we
treat the pp channel, which is 1 GeV closed, the
same as the p p channel which is permanently
closed, i.e. , confined. We estimate then that the
unit vector g; is given by

0
~o (1 Q g 2)1/2 0 (3.9)

a=a, (R) -A-', ~I8R-, (3.10)

where Bs(R) is the Hamiltonian of the spherical
bag approximation for the four-quark system, and
A is the projection onto the open channels. B is
the bag constant, B' 4= 145 MeV. Our previous
calculation of the location of "primitives" chose 9
at the minimum of H~(R); therefore, the deriva-
tive, ds, /db, is completely given by the second
term in (3.10)

where (g;} are the coefficients in the static cavity
wave functions as in Eq. (3.8), and the subscripts
denote open (o) and confined or closed (c) channels.
Our example of Eq. (3.8), the 650-MeV isosinglet,
becomes trivial. Only the nw channel is open, so
8„,=1. For systems with more than one open
channel, the results are not trivial. This prescip-
tion is clearly a crude approximation. To im-
prove upon it one must study the dynamics of bag
deformation and fission, perhaps in the manner
already suggested by DeTar (see Ref. 4).

In order to estimate the slope ds, ldb, and hence
the residue of the P-matrix pole, we assume that
the spherical-cavity bag approximation is a good
one for sufficiently small b. The successful bag--
model phenomenology of the conventional two- and
three-quark hadron states makes this a reason-
able starting point, since we do not expect the
separation of color-singlet components to be sig-
nificant until these components can themselves fit
comfortably into the allowed volume. As we in-
crease the constraining radius, the true four-quark
system will begin to expand into its open channels.
We attempt to take this into account by removing
the bag pressure in the open channels. Thus, the
Hamiltonian of the system, constrainted. to the
radius A, is chosen to be

It must finally be the case that b is large enough
so that the component particles are substantially
free for x& b, since otherwise our analysis con-
necting the P matrix to the S matrix will not be
valid. A first criterion is that the volume of the
system be larger than the volume of its separated
components. Since the volume is proportional to
the mass, this criterion is equivalent to demand-
ing that the mass of the primitive be larger than
the masses of the components. This is modestly
satisfied for the two-pion system in our calcula-
tions, but not at all for the KE system. Hence,
we should be more suspicious of the residue cal-
culation in that problem than we are in the two-
pion system. A second criterion can be obtained
by explicit calculations of the effect of final-state
interactions on our analysis. As noted in the pre-
vious section, we have carried out such calcula-
tions for p exchange in the m-n system and found
only very small corrections (see Appendix B).

The projection onto open channels is determined
by the coefficients (g, ) in the bag wave functions
such as Eq. (3.8). Thus,

(A)= g g, ', (3.14)
0

where (o) denotes open channels and the sum over
all channels Q, f is unity. Thus, for example,
we predict (A) = (0.64)' for the 650-MeV scalar
isosinglet.

We must reemphasize the crudity of this model
for the residues. We have assumed that inside b

the system ean be described by the spherically
symmetric bag, that outside b it can be described
by the noninteracting particles, and that for r
near b the transition may be described by simply
turning off the bag pressure in the open channels.
If all this came within 50% of the correct residues
of the E-matrix poles we would be delighted.

At the same time, we also reemphasize the gen-
eral validity of our discussion of P-matrix poles,
and of the approximate calculation of their loca-
tion by the spherical bag model. A possible esti-
mate of accuracy is given by the correction to the
Hamiltonian in Eq. (1):

(3.15)

db db
'=(A&4waR' (3.11) Thus, we expect the location of primitives to be

within 10-20% of the original calculation, and
generally somewhat lower.

1 dE, 3( )
1dR

bodb 4 @ db

by the virial theorem, so that

1 ds, 3(A)
bodb 2 b

(3.12)

(3.13)

IV. P-MATRIX ANALYSIS OF LOW-ENERGY S-WAVE

MESON-MESON SCATTERING

To illustrate the formalism of the preceding
sections we shall study the S-wave pseudoscalar
meson-meson P matrix at low energies. The 0"
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FIG. 2. (a) m. I=2 (exotic) S-wave phase shift (Ref.
19). (b) ~x I= 2 S-wave P-matrix element. The arrow
marks the P-matrix pole.
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channels have been the source of some confusion
in recent years. The data show a variety of en-
hancements, few of which are clearly resonant.
Bag calculations lead us to expect Q'Q' configura-
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I@ax'ks th8 P5 Niatx'tx pole.

tions to be important at low mass and to obscure
the usual Qq resonances. We believe these com-
plexities can be sorted out (at least at low ener-
gies) by constructing the P matrix and studying
its singularities.

Sufficient data exist for us to construct the I'
matrix for the I=0, 2, 2, and 2 0" channels over
a range of energies. The absence of any phase-
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TABLE I. P-matrix poles found in the analysis of
single-channel S-wave meson-meson scattering data.

Vl
C0
U
U

CV

%0
GQ

0

(a)

0,5
I

IQ M „(GeV)

Channel'

~g i/2
7t-7r2

~z3/~

Pole location (GeV)

0.69
0.98
0.96
1.04
1.19

Residue (GeV3)

0.064
0.009
0.079
0.21
0.22

(b) ~ We use the notation MM to distinguish between pos-
sible total isospins.

C9
p

Al~0
0

I

0.5 ~ . tl.O M „(GeV)

-2—

shift analysis of mq- mq precludes a similar treat-
ment of the I= 1 channel, When pnly one channel
is open, P may be constructed from Eq. (1.3).
When several channels are open, the analysis is
more complicated. Below we will illustrate the
two-channel problem in the I= 0 mn and KK chan-

-l2

FIG. 5. (a) 7).K I=
~

(nonexotic) S-wave phase shift
(Hef. 19). (b) mKI= 2 (nonexotic) S-wave P-matrix ele-
ment. The arrow marks the P-matrix poles.

nels.
First, let us study the one-channel systems.

The phase shifts b, (k) and the associated P,(k) are
shown in Figs. 2-5. Our analysis is not sensitive
to the exact value of the matching radius b or its
functional dependence on N within wide limits. We
will discuss the important of b in more detail
below. In Figs. 2-5, we used the bag-model esti-
mate for b = b(M) given in Eq. (3.7). The striking
features of Figs. 2-5 are the clear poles in I' in
all channels. The pole locations and residues are
summarized in Table I."

The bag model predicts primitives in all these
channels. For an immediate comparison with
Table I we record in Table II the masses and resi-
dues of the lightest bag primitives in the o" chan-
nels obtained from Ref. 2 (see especially Table IV
and Fig. 6) and Eqs. (2.8), (2.9), (3.13), and (3.14).
These are all Q'Q' configurations. The QQ-0"
primitives are heavier and outside the region we
have analyzed, with the exception of the mw'chan-
nel at energies greater than 1 GeV. Their possi-
ble importance in this channel is discussed below.

Rather than discuss these results channel by

TABLE II. Predicted masses and residues of the lightest bag-model 0" primitives.

Name ' gPIc Channels "
Predicted mass

(GeV)
Predicted residue '

(GeV )

cO(9)
cS(9)

cE(9)

c;(9)
E„(36)
E E(36)

E«(36)

0'0'
0+0+

0'—1
2

0'1
0'2'

0+ 3
2

0'1

~~~, zoo, gg
~g O, (7t71o) ', gq

~Z«' qx
ZX', ~q

0.65
1.10

0.90

1.10

1.15

1.35

1.55

0.04
0 07e

0.07

0.10

0.11

0.15

0.19

'See Ref. 2.
"The open channel(s) in which the pole is expected to be seen is (are) underlined. Only

pseudoscalar-meson channels are listed.
'-dsp/db See Eq. (2.8).

The coupling of this state to ~7t is forbidden in the OZI limit.
'The residue is calculated assuming KK and 7|7t. are the open channels, and is not to be

compared with the single-channel residue of Table I.
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channel we prefer to make a series of general
comments illustrated by reference to specific
channels. First, we discuss exotics and suggest
a solution to the long-standing exotics problem in
the quark model. Then we turn to the nonexotic
channels. In addition to the results presented in

'

Tables I and II we analyze the two-channel mm and
KK isosinglet S wave near and slightly above KK
threshold. We discuss the implications of our
analysis for the so-called scalar mesons. Third-
ly, we construct the P matrix for the nv P wave
at low energy in order to show that we obtain a
satisfactory description of familiar resonances
such as the p meson. Finally, we discuss the
dependence of our results on the prescription for
the matching radius b(M).

A. Exotics

into the residue via Eq. (3.13) is 0.41 for the
spherical exotics of Ref. 2. To obtain agreement
with experiment, (A)-1 is required. Apparently,
the physical primitives are even more strongly
coupled to the open channels than the model of
Sec. III led us to suspect. This should not be sur-
prising. Our model is very crude —in particular,
it treats all channels equivalently at the equilibri-
um bag radius A. Cpnsider, for example, the
I= 2 channel. Since the pion is very light we would
expect correlations which make the primitive look
more like two pions to be energetically favored.
However, the simple model of Sec. III places all
quarks in the S wave and consequently forbids cor-
relations in which pionlike lumps separate. We
therefore expect the physical primitive to be less
massive and more strongly coupled to wm than S-
wave spherical primitives.

We have found a resolution of.the exotics prob-
lem in the bag model:

(a) The usual bag calculations predict exotic
"states" at low energies in mm and mZ channels
(see Table II).

(b) The data show no exotic resonances at low
energies.

(c) Facts (a) and (b) are consistent. In fact, the
falling phase shifts in exotic channels require P-
matrix poles at masses very close to those pre-
dicted by the bag model.

Exotic channels are the cleanest from our stand-
point. Ignoring continuum multimeson production
the exotic channels are one-channel systems until
well above 1.5 GeV (until pp, pK* and K*K*
thresholds). There are no QQ primitives and only
two predicted Q'Q' primitives in each channel'—
the one listed in Table II and another about 0.65
GeV heavier. Therefore, a simple pole approxi-
mation to the P matrix is expected to be valid
over a wide range of energies.

In the bag model, exotic primitives are made
heavier by color magnetic interactions. This is
at the root of the negative phase shifts seen in
exotic channels. The connection is obvious when
the compensation energies for the exotic channels
are calculated. Using b, = rib(M) with b(M) given
by Eq. (3.8), we find compensation energies of
E,(wm) = 0.95 and E,(mls) = 1.08 for nw and mK, re-
spectively. In each exotic channel the bag-model
primitive is heavier than the compensation energy;
it therefore signals repulsion (see Sec. I) and a
negative phase shift. In other words the negative
phase shifts of Figs. 2 and 3 are direct exPeri-
mental evidence for the rePulsive color magnetic-
interactions predicted in exotic channels by QCD.

The predicted residues are too small. The pro-
jection onto open channels, (A), which figures

B. Nonexotic channels

Both the mm' and mK' ' phase shifts show broad
enhancements in the 500 MeV above threshold.
The resonant nature of these bumps have been
debated for many years. These attractive phase
shifts result in P-matrix poles at 0.69 and 0.96
GeV, respectively. As before, the behavior of
the physical phase shift can be understood by com-
paring the location of the P-matrix pole with the
compensation energy, E,. Because of attractive
color-magnetic forces the z&0 and &Ki/2 primi
tives are both lighter than the relevant compen-
sation energies —hence, the positive phase shifts
in these channels. Once again low-energy S-wave
meson-meson scattering provides experimental
evidence for color magnetic forces, this time in
attractive, cryptoexotic configurations.

Sufficient data exist to perform a two-channel
analysis of the isosinglet mm-KK system up to qp
threshold (1100 MeV). This is of more than aca-
demic interest because of the presence of a nar-
row effect very close to KK threshold —the so
called S* meson. We see the S* in two different
ways: First, in Fig. 4 we see a narrow pole in the
mn' P matrix right at KK threshold. Its mass is
0.98 GeV and its residue is 0.009 GeV', nearly an
order of magnitude less than the lower pole in the
same channel. Because of the proximity of KK
threshold, this must be regarded as a pole in the
reduced P matrix, as discussed in Sec. II(f). Its
residue is not indicative of the true P-matrix
pole, but instead is given by Eq. (2.16). Second,
we expect to see a pole in the full two channel P
matrix at a mass greater than 0.98 GeV.

The two-channel P matrix can be extracted from
the two-channel partial-wave S matrix
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S=i
i(1 q2)i/28&Cey+a2)

j(1 q2)1/2gCC61+62)

I]g2i~2

GeV
(a)

GeV
(b)

where 6, is the phase of n~- mn, and 5, is the
phase of KK-AA:

P»=~[g sin(8, —8,) —sin(8, + 8,)]=N»-/D, (4.2)
k

I ~S +l I . j 0

(GeV) ].of, „) ~
' (GeV)

(k,k, )
'/'

P„=P„=—' ' (1- r)')' '= N„/D-, (4.3) GeV
(c) Nip

GeV
(d) Npp

with

(4.4)

P»= —~[@sin(8, —8,)+ sin(8, + 8,)] =N»/D-,

s ~ ~ f ~ ~ ) '~ ~ I 0 I, I

I.O (GeV) ~ ~, ~ f t (GeV)

D = cos(8, + 8,) —q cos(8, —8,) (4 6)

and

8] =k;b+ 5; . (4.6)

P'~- S —80

at Ws, -1.04 GeV with a residue r -0.10 and coup-
lings („„-0.8 and g~~ -0.6.

Appa, rently, the true p-matrix pole correspond-
ing to the S* has a residue comparable to the resi-

Although it is not obvious, P;,. has no threshold
singularities as k, -0. This provides an explicit
example of the general. result quoted in Sec. II.
Because of this it should be possible to separate
out the underlying S* effect from the complexities
introduced by the proximity of EE threshold. In
principle, one should (a) construct the full two-
channel P matrix; (b) locate the pole if there is
one, (c) parametrize it according to Eq. (2.14).
Then (d) construct the reduced P matrix accord-
ing to Eq. (2.16) which finally should account for
the narrow S* effect seen in the nm channel below
EE. threshold.

Available data are not precise enough for us to
carry this through completely. We a,re able to
construct the full P matrix and find the 8* pole,
but we can only crudely corn'piete steps (c) and (d).
Phase shifts from the most recent high-statistics
measurements" of mn scattering have not been
published. We have used older" and lower-statis-
tics" data. Measurements of the KE. phase are
very difficult. We have used an analysis by Esta-
brook giving 5, + 5, above 1 GeV." The resulting
P-matrix elements ax'e shown in Fig. 6. Because
the errors are large, we have plotted the numer-
ators of Eqs. (4.2)-(4.4) separately from the com-
mon denominator D. We see fairly convincing
evidence for a pole in P (a zero in D):

FIG. 6. P-matrix elements for x7t and KK I= 0 S wave
for 1.01&vs &1.11 GeV. m data were taken from Refs.
13 (solid circles) and 14 (crosses), KK data came from
Ref. 15. Reference 13 did not assign errors to the elas-
ticity g. We assumed (somewhat unrealistically) no er-
ror in g. For notation see Eqs. (4.2)-(4.5).

dues of the other low-mass nonexotic primitives
(see Table I), not withstanding the fact that the
reduced P-matrix pole is very narrow. This shift
must be a consequence of the reduction procedure
which also shifts the pole from -1.04 GeV down to
-0.98 GeV. To find these pole and residue shifts
we require the constants a«and a,~ in addition
to the vector (g„,$«) already quoted. a~, and
a«depend on the slopes of the functions E» and

E» which are not well determined by the data. It
is also necessary to know the curvature in D near
its zero, which we cannot reliably estimate from
Fig. 6. So the crude data vaailable to us are not
sufficient to extrapolate P below AE threshold
and look for the pole in P "The ratio. of the S*
(the 1.04-GeV primitive) coupling to vm and to KK
presents a problem. The bag primitive predicted
at 1.1 GeV has quark content ss (uu+ dd) and
should not couple to mm in the Okubo-Zweig-Iizuka
(OZI) limit. We know of at least three mechan-
isms which could generate this coupling for the
S*(1.04), but not effect our other results. First,
the bag primitive does couple to gg and that
threshold is nearby. According to Eq. (2.16) a
nearby closed channel can generate a new coupling
in the reduced P matrix. Second, the QQ 0"
primitives are expected at energies in this range.
Mixing of these nearby primitives may generate
large QZI-rule violations. Finally, there are
other Q'Q' primitives —brothers of the exotic
E, „(36)—predicted in this energy range' with
which the S* may mix. Clearly the I= 0 mm, EA. ,
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gq system deserves further experimental and
theoretical study.

To summarize we have found clear evidence for
three nonexotic scalar-meson primitives, two in
the isoscalar channel and the. third with I=--,' and

strangenesS +1. The masses of these primitives
correspond closely to the masses expected of the
Q'Q' nonet as discussed in Ref. 2. The remaining
member of the nonet is the E= 1 nonstrange object
expected in the KK and nq channels. We know of
no measurements of mq —n'i~ so-we cannot construct
the P matrix in this channel. However, we ex-
pect that the fair'ly narrow enhancement seen in
the nr~ mass spectrum and known as the 5(970)
will complete the nonet. Very likely the situation
is similar to the l = 0 channel: The P matrix has
a pole above KA. threshold which is reflected in a
narrower pole in the mrI-reduced P matrix below
KK threshold.

Of course, an entire extra nonet of scalar me-
sons from the QQ configuration is expected at en-
ergies in excess of 1 GeV. These must show up
as P-matrix poles and, if narrow, may resonate.
There is already evidence for these states
[c'(1300),6'(1300), ~(1450)f as summarized by
Martin. " As already mentioned, we expect mix-
ing between the heavier Q'Q' and lightest QQ prim-
itives.

3
0
U0

{a)

0.5
I

LO

I

M~~ (GeV)

(b)

I ~

0.5
I

Io ..
I

IVI~7f (Gev)

FIG. 7. (a) 7tvr 1=1 P-wave phase shift showingthe p-me-
son resonance (Ref. 21). (b) m I= 1 P-wave P-inatrix
element showing the p pole.

C. The p meson

The mv P-wave phase shift is plotted in Fig. 7(a).
In Appendix A we show how to construct the P ma-
trix for arbitrary partial waves. From Eq. (A8)
we extract the ww P-wave P matrix which is plotted
in Fig. 7(b). As promised the rapid variation in
the phase generates a nearby pole in P. Though
the phase goes through m/2 near 770 MeV the P-
matrix pole is at 788 MeV. The difference may be
regarded as the relaxation of the primitive into
the open mm channel. Notice that it is the primi-
tive mass, not the mass quoted in the Data Tables,
which should be compared with quark-model cal-
culations, e.g. , in calculations of p-~ mixing.
The residue of the p-meson P-matrix pole is 0.03
GeV'. From Eq. (3.13) we obtain the projection
onto open channels of (A)= (g„,)'=0.23. For com-
parison the S-wave wm P-matrix pole at 0.69 GeV
has a residue of 0.06 corresponding to g „„'=0.52.
The p is half as strongly coupled to the open chan-
nel. Note, however, that even if (g„)' for the p
were as large as 0.5, the p would still show up
as a "resonance": (a) because the pole location
(788 MeV) is so far below the P-wave compensa-
tion energy (k, =4.49/b=0. 60 GeV so E, =1.23 GeV)
signalling strong attraction, 'and (b) because the
angular momentum barrier [reflected in the kine-

matic factors of Eq. (A8)] makes the effect narrow.
A P-matrix study of familiar resonances will pro-
vide input to calculations of configuration mixing

(Qq+ Q'Q'+ ~ ) in quark models.

D. b-dependence

We have chosen to analyze the meson-meson S
wave with the simple form b=D4' ' GeV '. A dif-
ferent choice would shift the locations but within
the wide limits not change the qualitative results.
The shift in s, with h is given by &s,/&b which also
measures the residue of the pole. Thus narrow
objects like the p meson or even better, Q meson,
are not b-dependent. This is reasonable: as we
have emphasized, objects are narrow because of
real, physical barriers such as confinement. Mov-
ing the artificial barrier has little effect on the
primitive when b is outside the physical barrier.
Figure 8(a) shows the dependence of the location
of the p-meson P-matrix pole on b. It requires
an unreasonable choice of b to move the P-matrix
pole out of the vicinity of 750-800 MeV.

The 8-wave states are expected to be more sen-
sitive to the choice of b because there is less of a
physical barrier (making &s,/&b greater). This
may be seen in Figs. 8(b) and 8(c) where we have
plotted s,(b) for the mv l =0 and I= 2 channels. Also
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I.O—
troduce the spherical Bessel functions e,'(kr),
defined to approach e"""+ ' as ~-~, and in-
stead of cosk(r —b) and sink(r-b)/k, C, (r, b) and

D, (r, b) which satisfy the wave equation and are
defined by the equations

I I

I.O b (frn) 2.0
I

3.0
C, (b, b) = 1, D, (b, b) = 0,
C,'(b, b) = 0, D', (b, b) = 1 .

(A1)

g&n

I.O—
(b)

/

I

I.O
I

b (fm) 20
/

I

3.0

g, (r) =A[e, (kr) —b, e', (kr)], i & b (A2)

whereas the matching functions C, and D, define
the P, matrix:

q, (~) = a[C,(r, b)+ P,D,(~, b)]. (A3)

For simplicity consider only one channel. The S$
matrix is defined by the asymptotic form of the
wave function:

O

gu&

IO —
( )

d e, (kr) —S,e', (kr),
d~ e, (kb) S,e'-, (kb)

~ „,' (A4)

Here A and B are normalization constants. Using
Eqs. (A1)-(A3), we easily find

I I I

I,O b(fm) 2,0 3.0
FIG. 8. b dependence of the P-matrix pole position for

(a) the p-meson, (b) the lowest 7|71 S-wave primitive, (c)
the m exotic 8-wave primitive. The dashed curve indi-
cates the v so dependence of b estimated from the bag
model. The arrows in (b) and (c) locate the predicted
primitive masses in the bag model.

shown in Fig. 8 is the bag parametrization of b

[Eq. (3.7)]. A nontrivial. result of our analysis is
that the intersection of the two curves in Figs. 8(b)
and 8(c). which marks the mass of the primitive
with the bag prescribed radius, also coincides with
the mass of the primitive calculated in the model.
The location of the I= 2 primitive is particularly
sensitive to b, indicating that this object is actual-
ly created by the imposed spherical bounda, ry con-
dition, and presumably has no nearby pole of the
S matrix corresponding to it.
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If we define a dimensionless P matrix in units of
1/b, and call x=bk, we find

Pi ei (x) Srei (x)
x e, (x) S,e', (x)-

Our old S-wave result is easily obtained:

-ie '" —iS,e'"
= cot[5,(x) + x] .

0

(A5)

(A6)

The P wave is more involved. We give it here
for easy reference:

e', (x) =+i e""(1+i/x),
and (A5) becomes, after some algebra, ,

P, = -(1+x' tang) /(1+ x')

with

y =—5,(x)+ x+ tan '(1/x) .

(A8)

Finally, we note that Eq. (A5) generalizes to the
multichannel case:

P, = [e, '(kb) —e', '(kb)S, ] / [e, (kb) —e', (kb)S ,]'
(A 9)

where

S,=
k
sue,1

and that P = 1/R (where R is the Wigner-Eisenbud
matrix) for all l.

APPENDIX A: HIGHER PARTIAL WAVES

We repeat the exercise of Sec. II leading to Eq.
(2.3), except instead of the functions e'"" we in-

APPENDIX B: FINAL-STATE INTERACTIONS

We show in this appendix, for S-wave potential
scattering, how the P matrix can be introduced
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at a value of r where there is still a residual in-
teraction.

For r & b, we define

q(r) = C(r, b) + PD(r, b),

where, as usual, C and D satisfy the correct wave
equation for r & b and the boundary conditions

g(r) = cosk(r —b) + —sink(r —b)
P

(as)
t r

+ — dr' sink(r —r') V(r')y (r') .
k~b

Assuming the solution j of Eq. (BS) to be known,
we go to asymptotic r and find

C(b, b) = 1, D(b, b) = 0,

C'(b, b) =0, D'(b, b) =1.
Thus, y satisfies the integral equation

(a2)

y(r) -2e'"" "(1—iP/k)

&ef,ur
dr'e ""'V(r')q(r') + c c.~

~ ~

from which

(B4)

„» 1 —iP/k- (i/k)f, e '"'"' '~ V(r')g(r')dr'
1+iP/k+ (i/k) J'" e'"" ' V(r')q(r')dr' (B5)

or

with

1 'l7/k'
1+iP/k '

P+J,
"dr' cosk(r' —b)[C(r', b) + PD(r', b)] V(r')

1 —(1/k) J"dr' sink(r' —b)[C(r', b)+ PD(r', b)] V(r')
'

(B8)

(B7)

Provided the integrals in (B7) are all small, the poles and residue of P and P will be very close. We may
estimate the effect by setting

C(r', b) -cosk(r' —b), D(r', b) ™[sink(r'—b)]/k

and substituting these functions into (B7). We find for P (in units of 1/b)

P[1+ (1/2k)J, Cr'sin2k(r' —b) V(r')]+ f, dr'cos'k(r' —b) V(r')b
1-(1/2k)f"dr' sin2k(r' —b) V(r') (P/k) f"—dr' sin'k(r' —b) V(r')

b b

P(1+ Z,)+ Z,

1 —I2 —PI3

(B8)

Let V-k, 'e ""; then at k =0 (the worst point for
a monotonic potential) the relevant integrals are,
respectively, where

g' 8k'+ 4m„'+ m, ' 1
( )4~ 0 2

and

b k2
e-Nb I 0 e-Nb

2
0 -Mb, e

(B10)

1 g.2P3
I" = ——'

(w =m /2)34mu '
and 6'0 projects on I= 0, t2 on l = 2. We have, then,
with g'/4m= 1, from (B10) and (B11), for i =0 and

9 -650 MeV,

~6e-mpb 0 p5

for I=O, whereas for "=2, and TV-1 GeV
If M -lV)~, then Mb» 1, and the first integral is
the most dangerous. However, I, is only involved
in the residue of the pole in P. The shift in pole
location is proportional to I,. Now for p exchange
between pions

I, -0.03.

The residues of our model are then modified by
-S-5/0. The pole shifts are down by (1/mpb)'
-1/25 and therefore totally negligible.
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fits, nor have we attempted to resolve conflicts be-
tween experiments. Our calculations were made with
data at hand and should be regarded as illustrative.
The parameters quoted in Table I will no doubt be re-
vised when a more systematic analysis of the data is
made.
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