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Anomalous components of the photon structure functions
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The leading contributions to the deep-inelastic structure functions of a real or slightly virtual photon are
calculated using a generalization of the Altarelli-Parisi equations for quantum-chromodynamic scale breaking.
These techniques provide a simple alternative to the more conventional operator-product-moment methods
and, lead to integral equations which are easily solve& numerically.

I. INTROOUCTION

According to quantum chromodynamics (@CD),
the structure functions of a real or slightly virtual
photon contain anomalous pieces in addition to the
hadroniclike terms which are expected from gen-
eral arguments (e.g. , vector-meson dominance).
These anomalous pieces derive from the pointlike
coupling of. the photon to quarks and ultimately
dominate at sufficiently large Q' in the Bjorken
limit. They, moreover, can be calculated directly
from @CD without using any experimental infor-
mation. This remarkable fact was fir.st demon-
strated by Witten, '

who built upon the earlier
discovery by Walsh and Zerwas' and Kingsley'
that the free-quark model predicts anomalous,
nonscaling contributions to the photon structure
functions.

The photon structure functions are accessible
experimentally, as first emphasized by Walsh4
and by Brodsky et al. ,4 in the process e+8 - e+ e+
hadrons. A more recent and comprehensive dis-
cussion of two-photon processes and @CD, includ-
ing the special consequences for experiment of
the anomalous components of the photon structure
functions, is given in Ref. 5. An attractive and
complementary approach to study the photon
structure functions is provided by the Drell-Yan
process initiated by a real or slightly virtual pho-
ton, yN- p, 'p, +hadrons. '

In this note we show how Witten's results for the
anomalous terms in the transverse and longitudi-
nal structure functions of the photon follow immedi-
ately from a simple generalization of the Altarelli-
Parisi'equations for scale breaking. We display
results for the anomalous quark and gluon contri-
butions of the photon in the two- (u, d), three-
(u, d, s), and four- flavor (u, d, s, e) cases. Although
the findings reported herein are completely equiva-
lent to those of Witten, ' who used the conventional
operator-product-moment formalism, our ap-
proach, in common with the Altarelli-Parisi meth-
od for conventional targets, has the virtues of
simplicity and ease of physical interpretation. It

II. BORN TERMS

In the absence of strong-interaction corrections,
the photon structure functions to lowest order in
e' are given by the box and crossed box diagrams
of Figs. 1(a) and l(b) respectively. Both diagrams
contribute to leading order and are required for
gauge invariance,

y(p) yap) y(p) y(p}

FIG. 1. Box diagrams which give the deep-inelastic
structure functions of a photon target y(p) in the absence
of strong-interaction corrections. The target photon is
real or slightly virtual; the upper photon is highly vir-
tual in the limit of interest.

leads directly to integralequations in x (momen-
tum fraction) space, which are easily solved nu-
mer ically.

Alternatively, one may Mellin transform the
integral equations, converting them to the moment
equations of Witten. In this note we focus on the
numerical solution in x space since it has not been
discussed previously. A derivation of Witten's
results from a diagrammatic point of view has been
given by Llewellyn Smith. ' This diagrammatic
approach, our approach using the Altarelli-Parisi
evolution equations, and Witten's approach using
the operator-product expansion, represent for the
photon the three currently available techniques for
calculating QCD renormalization effects. Although
all three methods are physically equivalent and

give identical answers for hadronic and photonic
targets, each has unique advantages (and disad-
vantages) and deserves consideration.
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If we define photon structure functions by

—p, Jtd'x e "'"(r(p)~ [j'(x),j"(0)]~y(p)).„,„,
composite hadronic target, i.e.,

»m[E, ,(,Q')„]-0, x~0.
Q ~eo

(8)

=~, — ""'. +w, P"-q'.' P"-q"'.'
(1)

and take the Bjorken limit

Q'=—-q'- ~, v=P'q- ~, with x=—Q2/2v fixed,

the contributions from the box diagrams for a
particular quark flavor (i) and three colors are' '
E(l)( Q2) = pII)((&

=3(-', ) ', x a(x))n . . .)8 6 Q'(1 -x)
4@2 m,. -x' 1-x

-2[1—Sx(i -x)]
[i+2 (i —x)]

[i —(p'/m, .')x(1 —x)]

,o(-;*,L) I

We first calculate h(x) and a corresponding term
in the gluon distribution. Once these are known,
the longitudinal function l(x) is given by quadrature.
In principle, the function s(x) in Eq. (6) is also
calculable without experimental information, ex-
cept for its lowest moment (area); however, the
task is much more complicated since it requires
knowledge of two-loop renormalization effects. ' "
If such additional effects are considered, Eq. (6)
will contain an extra piece proportional to h(x) ln
[ln(Q'/A')]. (See Hefs. 1 and 10.) In this paper we
ignore these refinements.

III. TRANSVERSE STRUCTURE FUNCTION

For fully composite hadronic targets the one-
loop Altarelli-Parisi equations for the quark and
gluon distributions are'

dq'(x, t) n, (t) dy I

~

x
dt 2z „y "(y

+P,a —
~G (y, t), i = 1, . . . , 2f

e2~ 4

=3(2) ', x c(x)+O
4w2

where c, is the quark (antiquark) charge in units of
e,

and

dG(x, t) n, (t) dy r& x
.~c

+Pea( )IG(y, t)—c (10)

and

a(x) =x'+ (1 -x)2,

c(x) =42(l -x) .

(4) where

n, (0) 1
n (t)= I+n, (0)bt, bt

The overall factor of (2) in Eqs. (2) and (3) comes
from dividing the results of Figs. 1(a) and l(b)
equally into a quark and an antiquark contribution.
The important features of these formulas for our
purposes are the presence of a nonscaling ln(Q2)
term in E, and a nonzero, Q'-independent contri-
bution in E~.

When the strong interactions are turned on, E,
and E~ are renormalized and have the forms
(n„-=e'/4 )z

4 1+g2
&„(z)=3 (1 )

+26(z —1), (12)

~) 41+ (1-z)'
Gq 3 g

(is)

is the running coupling constant, 4mb = (ll —2f/3),
f is the number of flavors, t -=In(Q2/A2), and P„,
P,c, Pc„ I'cc are the fragmentation functions
defined by Altarelli and Parisi [SU(3) color]:

and

2

E,(x, Q') =3 —"x h(x) ln ~ + s(x) +E2(x, Q')z2 2'
(6)

~,(, 2 ) =~(~).) ().~.(,2 ). , (

where A~ is a hadronic mass scale and the sub-
script II denotes contributions' which behave in
the same manner as the structure functions of a

P, (a)=z2 [z'+ (1-z)'],

E„(z)= 6 +, , +z(1-z)cc —,g j1-zp,

+(~- ~f)6(z —1)

with

(14)
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'd l--y. =- l
'

"'
dy f(y) f(x-)

y (1-x/y) (18)

If we set o'.,(t) = 0, Eqs. (9) and (10) express the
naive parton-model result

equation (18) remains valid.
The proper generalization for a photon target of

the Altarelli-Parisi equations is therefore

dq'(x, t) . r ~) &,(t) "'dy
&

dt 2~ 2g & y
«

y
a + ~ P @&y

+~„(-G(y, t) (21)

and

dq'(x t)
( )

dt

dG(x, t)
p ( p)

dt
(18)

ancl

dG(x t} n, (t) ''dy x

+P~ —G, t . 22

2

I', (x, t) = e,'xq'(x, t), (19)

that

d ' t) o(=3~ ' ~ a(x) (o. =O).
dt 2v S (2o}

In the absence of strong interactions, gluons do
not couple to the photon; hence the companion

For a photon target, however, we see from Eq.
(2) that this naive result is wrong. Instead we

find, using the parton-model formula

The above derivation is somewhat heuristic. An
alternative way to see that Eqs. (21} and (22) are
valid is to first write down Altarelli-Parisi equa-
tions which describe one-loop scale-breaking/re-
normalization to all orders in n, and +,. This is
obvious, given the original Altarelli-Parisi equa-
tions, since the photon and gluon are riow on an

equal footing, except that the photon only couples
to charged fields (quarks).

If' we denote by I' the probability distribution
for finding an elementary photon in the physical
photon, then

P'

(x, t) =—J
—o', (t)I', -' q'(y, t)+ o.,(t)P„"-G(y, t)+ o(„(t)I',„'- e, 'r(x, t)

y
(23)

P1

t)=—t,—~ tt(t)I't, (
—
) P ttt,()t, tlt tt. (t)P~,( )G(t,t)—

X j -"1
(24)

d I' 1 'dy x
dt '

2m ~„y ~ ~'y(, t)= ——o. (t)I—' —P e'. q~(y, t),
i=1

(25)

where denotes distributions valid to all orders in,

The new fragmentation functions P,„and P,
appearing in the above equations are simply re-
lated to P ~ and P~, namely,

~,„( ) =»„(.) (28)

o.„(t)= o.„+O(o.,'),
f'(x, t) = &(x —I)+O(o.„),

q'(x, t)= q''(x, t)+O(n„'),

G*(,t) = G'{x,t)+O(n„')

(28)

(29)

(3o)

(31)

&„,(s) =9'„4) .
If we now specialize to lowest order in the elec-

tromagnetic interactions then

(32)

and

G(x, t)=~t'( )t 1+O~-f12m, It

Substituting into Eqs. (21) and (22) we find the t-
independent integr al equations:

h'(x) = e.'a(x)+ —P —I) '(y)
1 dy x

y «y

(33)

+P,~ —h"
y/

(34)

f

Substituting Eqs. (28),-(31) into (23) and (24) we
obtain (21) and (22).

The solution of these equations in the asymptotic
limit is straightforward. I et

n„,. (].
q'(x, t)=—"I *( )t 1+O~—

271
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ldy -
~ 2f

he(x) = 0+ —P cq — Q h'(y, t)

h (x)=~,a( )+ —P„~ —h (y)
s 1 ' A t'x s

2.gg y QQI y

+P g
—h, 3S

+Pgg —h y (35)

h" = (h" —h)

[b was defined in Eq. (11)].
As usual we can simplify the calculation by

defining singlet and nonsinglet quark combinations.
The form of Eqs. (34) and (35) ensures that quarks
(antiquarks) with equal squared electric charges
will have equal h'. Thus, we need only consider
h" (~ h") and hs (=hs). Define

h'(x)=0+ y 2fP„—h'(y)
2m& „y 'y

,P..("-)3 (,), (4O)

and

h( ) =~ h'( )+'-, h"'( ), f= 4

h( ) ='-, h'( )+'-, h"'( ) f=3

(41)

(42)

where as=~», a9 ~»for f=4, 3, 2 respectively.
In terms of these quantities, the leading term of

the full E, structure function defined in Eq. (8) is

h(x) =—"h'(x)+-'h"'(x) f= 2. (43)
hs

2
(3'7)

I'- dyh"'(x) =&a(x)+ ( &P hNs(V)6 2gQ J y
QQ

y
(38)

In terms of these combi. nations one can cast Eqs.
(34) and'(35) into the form

(Note that due to changes in b and as the values of
and h" also change when the flavor symmetry

is varied. )
Our equations are easily compared with those of

Witten in Mellin transform space. In this space
Eqs. (38)-(40) may be solved algebraically, and
hs and h"s used to obtain the moments of h(x),

. 1
h"= dxx" 'h(x)

0

9 1 25 [1—(1/2mb)P ss]
'"i 34 [1—(1/2mb)P"„] 34 [1 (2/2rb)(P „+—P J+(I/2"zb) (P"„Poa—2fP,"gP"~,)] I'

(44)

(45)

I.O—

0.8—

where

Pl +Ã +2
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FlG. 2. The singlet function h (x) for flavor groups
SU(f), f = 4, 3, 2. See Eqs. (37), (39), and (40).

X

FIG. 3. The nonsinglet function h (x) for flavor
groups SU(f), f = 4, 3, 2. See Eqs. (36) and (38).
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See Eqs. (6) and

scales are included in Fi . 4ig. to show details near
x = and x=1. We note that direct num l
solution of th

erica
he integral equations by the above

technique has the potential fog veri oz very accurate
e ermination of the behavior near the end oint

p this here, but we note that this
may offer advantages over the mo t
techmque (where su 1

moment-inversion

pp ementary consideration
must be invokedd to determine end-point behavior

shown in Figs. 2-5 ressh
' ' . —,respectively for flavors

J=4, , The curve in Fig. 3 sh h"8'

f=; t e insert gives [/g" (r) —I"sb;) I
y 4

— &&100.
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IV, LONGITUDINAL STRUCTURE FUNCTION

tions of
nce the anomalous quark dr an gluon contribu-

ions of the photon are known, the leading con-
tribution to the longitudinal t
folio

in s ructure function

the l
ollows straightforwardly. All th at is needed is

q. . Since in thee longitudinal analog of E . (19).
naive parton model E~ vanishes identically, the
first nonzero contributions occur in 0, For a
composite hadron the result is"

(48)

The physical interpretation of E . '48'io q. & g is str aight-
e quark term comes from

y o e target momentum interacts with
e ongitudinal current aft er gluon emission.

hami arly, the gluon term in Eq. (48) comes from
p esses shown in Figs. 6(b) and 6(c) in

which a luon ion y interactsg with momentum fractio t
the longitudinal current afta er pair creation.

p oe ave seen. above, however th t
ge there is a contribution to I"e ' o ~ even in the

sence of strong interactions, The en
which takes this into account

2 f

where c(x) is defined in Eg. (5).
To calculate the renormalization of c' ',

y substitute into the ri ht-h d

(49) h I ad'e mg asymptotic forms [Eqs. (32) and
33 for q' and G calculated in Se Illec. I. We find

as the form specified b Ey q. ~7' and that

the renormalized funct lion x is given by

I (x ) = asc (X) +
2mb

'd 8x
+ 2a~ — 1-— h 50
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FIG. 7. The functionl (x) which determines the longi-
tudinal structure function of the photon for flavor groups
SU(f), f =4, 3, 2. See Eqs. (7) and (50).

)

targets. When this is done, the strong-interaction
renormalizations of the direct photon-parton
diagrams are easily computed from a Q' indepen-
dent integral equation. The renormalized direct
photon-parton contributions will dominate in the
Bjorken limit and will provide an important test
of QCD.

In this paper we have calculated only the leading
(one-loop renormalizatiori) contributions to E, and

E~. We believe, however, that our method would
also be useful in computing next-to-leading (two-
loop renormalization) contributions as well as
quark- and target-mass effects.

Note added. Subsequent to and independent of
our work, Koller, Walsh, and Zerwas" use a
completely analogous method to calculate the QCD
renormalization of the functions which describe
the inclusive fragmentation of quarks and gluons
to photons. They suggest that the process
e'e —p+ hadrons be used is a test of these predic-
tions.

'where ao= 9 3 9, and as-,—"„9,g, for f=4, 3, 2
respectively. Numerical results for /(x) are
shown in Fig. 7.

V. SUMMARY

We have seen that the Altarelli-Parisi approach
to scale breaking is easily extended to photon
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