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Anomalous components of the photon structure functions
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The leading contributions to the deep-inelastic structure functions of a real or slightly virtual photon are
calculated using a generalization of the Altarelli-Parisi equations for quantum-chromodynamic scale breaking.
These techniques provide a simple alternative to the more conventional operator-product-moment methods
and lead to integral equations which are easily solved numerically.

I. INTRODUCTION

According to quantum chromodynamics (QCD),
the structure functions of a real or slightly virtual
photon contain anomalous pieces: in addition to the
hadroniclike terms which are expected from gen-
eral arguments (e.g., vector-meson dominance).
These anomalous pieces derive from the pointlike
coupling of the photon to quarks and ultimately
dominate at sufficiently large @2 in the Bjorken
limit. They, moreover, can be calculated directly
from QCD without using any experimental infor-
mation. This remarkable fact was first demon-
strated by Witten,' who built upon the earlier
discovery by Walsh and Zerwas? and Kingsley®
that the free-quark model predicts anomalous,
nonscaling contributions to the photon structure
functions.

The photon structure functions are accessible
experimentally, as first emphasized by Walsh*
and by Brodsky ef al.,* in the process e+e—e+e+
hadrons. A more recent and comprehensive dis-~
cussion of two-photon processes and QCD, includ-
ing the special consequences for experiment of
the anomalous components of the photon structure.
functions, is given in Ref. 5. An attractive and
complementary approach to study the photon
structure functions is provided by the Drell-Yan
process initiated by a real or slightly virtual pho-
ton, YN- u*u”+ hadrons.®”

In this note we show how Witten’s results for the
anomalous terms in the transverse and longitudi-
nal structure functions of the photon follow immedi-
ately from asimple generalization of the Altarelli-
Parisi®equations for scale breaking. We display
results for the anomalous quark and gluon contri-
butions of the photon in the two- (#, d), three-
(u,d,s), and four-fiavor (u,d, s,c) cases. -Although
the findings reported herein are completely equiva-
lent to those of Witten,! who used the conventional
operator-product—moment formalism, our ap-
proach, in common with the Altarelli-Parisi meth-
od for conventional targets, has the virtues of
simplicity and ease of physical interpretation. It
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leads directly to integralequations in x (momen-
tum fraction) space, which are easily solved nu-
merically. :

Alternatively, one may Mellin transform the
integral equations, converting them to the moment
equations of Witten. In this note we focus on the
numerical solution in x space since it has not been
discussed previously. A derivation of Witten’s
results from a diagrammatic point of view has been
given by Llewellyn Smith.® This diagrammatic
approach, our approach using the Altarelli-Parisi
evolution equations, and Witten’s approach using
the operator-product expansion, represent for the
photon the three currently available techniques for
calculating QCD renormalization effects. Although
all three methods are physically equivalent and
give identical answers for hadronic and photonic
targets, each has unique advantages (and disad-
vantages) and deserves consideration.

II. BORN TERMS

In the absence of strong-interaction corrections,
the photon structure functions to lowest order in
e® are given by the box and crossed box diagrams
of Figs. 1(a) and 1(b) respectively. Both diagrams
contribute to leading order and are required for
gauge invariance.
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FIG. 1. Box diagrams which give the deep-inelastic
structure functions of a photon target y(p) in the absence
of strong-interaction corrections. The target photon is
real or slightly virtual; the upper photon is highly vir-
tual in the limit of interest.
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If we define photon structure functions by

oo f d*x e X (P [1# (), 7 O 7 (P aptn ars
< o >+W(u “1; q)(p, z;q)

(1)
and take the Bjorken limit

2=__q-.oo

vEpeq—~ o, WltthQz/ZlJ fixed,

the contributions from the box diagrams for a
particular quark flavor (i) and three colors are!™

F{P(c, QY =vWgY

=3(§)g42—;‘;x{a(x)ln .Qz(l ~) )

m F=x2(1 —x)p?
—2[1-3x(1-%)]

[1+2x(1-%)]
[1 - (p%/m Px (1 -x)]

o) e
and .

Fii)(x’ QZ)B = VW;!)_wafi)

2 4 'm .2 p2
=3(§)$4—fr—g—x [c(x)+o(Q—;,%§)], 3)
where €, is the quark (antiquark) charge in units of
e,

alx)=x2+(1-x)3 v (4)
and
clx)=4x(1-x) . (5)

The overall factor of () in Egs. (2) and (3) comes
from dividing the results of Figs. 1(a) and 1(b)
equally into a quark and an antiquark contribution.
The important features of these formulas for our
purposes are the presence of a nonscaling 1n(Q?)
term in F, and a nonzero, @*-independent contri-
bution in F .

When the strong interactions are turned on, F,
and F; are renormalized and have the forms
(a,=e%/4m) =

P, @ =3(32 )< ) 10( &) 560+ P,
(6)

and
Fylr, @)= 3( 2l ()4 F 1, @) (1)

where A? is a hadronic mass scale and the sub-
script H denotes contributions® which behave in
the same manner as the structure functions of a
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composite hadronic target, i.e.,

lizm[Fz'L(x,Qz)H]-*O, x#0. (8)
Q= 0

We first calculate %(x) and a corresponding term
in the gluon distribution. Once these are known,
the longitudinal function I(x) is given by quadrature.
In principle, the function s(x) in Eq. (6) is also
calculable without experimental information, ex-
cept for its lowest moment (area); however, the
task is much more complicated since it requires
knowledge of two-locp renormalization effects.!+!°
If such additional effects are considered, Eq. (6)
will contain an extra piece proportional to %(x)1ln
[In(Q3/A?)]. (See Refs. 1 and 10.) In this paper we
ignore these refinements.

III. TRANSVERSE STRUCTURE FUNCTION

For fully composite hadronic targets the one-
loop Altarelli-Parisi equations for the quark and
gluon distributions are®

dg*te,t) _a ) (*d x
B y_y[P“(I 70,1

+PqG(§)G(y,t)], i=1,...,9f (9)

and

0.0 () v
+PGG(y) (y’t)] (19

ai(O) 1
1+a (O)bt g-oon

where

at)= (11)
is the running coupling constant, 4wd = (11 - 2f/3),
f is the number of flavors, ¢=1n(Q?/A?), and P,
P, Pge P are the fragmentation functions
defined by Altarelli and Parisi [SU(3) color]:

P, ) =§[}1—+f;) +306 -1, (12)
Paq(z)—é—————“(lz L (13)
P (z)=3[22+(1-2)%], (14)

Pgelz)= 6[ +—T+Z(1 -z)

+(B—21)0(z - 1)] , (15)

with
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[‘iyy—f@)/(l"‘/y)ﬁf(x)m(l;x)

Ldy fly)=flx) ‘

If we set a,(t)=0, Eqs. (9) and (10) express the
naive parton-model result

dqilc,t) _ _

T—O (as-O) )
and

dG(x,t) _ _

T—O (OLS_O) . (18)

For a photon target, however, we see from Eq.
(2) that this naive result is wrong. Instead we
find, using the parton-model formula

Fz(x,t>=‘f,<fxq*(x,t), (19)
that
W80 3¢ (2ot (@,=0. (20)

In the absence of strong interactions, gluons do
not couple to the photon; hence the companion
S |

equation (18) remains valid. .
The proper generalization for a photon target of
the Altarelli-Parisi equations is therefore

+pqc(§)c o, t)] (21)

and

=0 [ Slrel) Sare
PG,I\;)G@,L*)] . (22

The above derivation is somewhat heuristic. An
alternative way to see that Eqs. (21) and (22) are
valid is to first write down Altarelli-Parisi equa-
tions which describe one-loop scale-breaking/re-
normalization to all orders in &g and @,. This is
obvious, given the original Altarelli-Parisi equa-
tions, since the photon and gluon are now on an
equal footing, except that the photon only couples
to charged fields (quarks).

If we denote by I' the probability dlstrlbutlon
for finding an elementary photon in the physical
photon, then

qg(x,t) =§1; ] ‘iy [a )P q< )'*(y t)+a (t)PqG< >6(v,t)+a,(t)1;q,(;‘7)<i2f(x,t)] , (23)

%fiw,ﬁ:% J‘iy[ (t)ph< >§f Gy, t) +ast) Peg

* 1

and

e [2foior )3 v

x

where ~ denotes distributions valid to all orders in
a,. The new fragmentation functions P, and P,
appearing in the above equations are simply re-
lated to P, and P, namely,

P () =2P q(z) (26)

and
P, (2) =3P, (2) . @17)

If we now specialize to lowest order in the elec-
tromagnetic interactions then

a,(t)=a,+0(a,?), (28)
Tw,t)=0(x -1)+0(a,), (29)
7', 0)=¢'x,0)+0(,?), (30)
Gily,1)=G(x, 1) +0(a,?). (31)

(B)éw.n], 24)

| (25)

T

Substituting Eqs. (28)—(31) into (23) and (24) we
obtain (21) and (22).

The solution of these equations in the asymptotic
limit is straightforward. Let

qi(x,t)=%71hi(x)t[1+0(zl—>] | (32)
and
G(x,t)=g%lh°(x)t[1+0(zlv)}. (33)

Substituting into Eqs. (21) and (22) we find the ¢-
independent integral equations:

hi(x)=<ia(x)+2—13f d;[ qu)h‘@)

+pq0(;i)hc(y>] (34)
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"‘Poc(;“)hc(v)] (35)

[6 was defined in Eq. (11)].

As usual we can simplify the calculation by
defining singlet and nonsinglet quark combinations.
The form of Egqs. (34) and (35) ensures that quarks
(antiquarks) with equal squared electric charges
will have equal %!. Thus, we need only consider
n* (=K% and ¥ (=h%). Define

RN =3 (h* - n?), (36)
1 &4
K=o DA @7

In terms of these combinations one can cast Egs.
(34) and (35) into the form
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1 (ldy x
S(x) = — [ & X)ps
h (x)—asa(x)+2ﬂbj(‘ y [P“<y)h o)
+ch<f7>h6(y)] , (39)

#0=0s507 [ 22 (st

+PGG<§>hG(v)] ) (40)

where ag=%,% & for f=4, 3,2 respectively.
In terms of these quantities, the leading term of"
the full F, structure function defined in Eq. (6) is

i) =2 1K) +$ (), f=4 (41)

hix)=4n8x) +$n"™ ), f=3 (42)
and :

i) =22n8(x) +2n™(x), f=2. (43)

. (Note that due to changes in » and ag the values of

1% and ™ also change when the flavor symmetry
is varied.)

Our equations are easily compared with those of
Witten in Mellin transform space. In this space

hNS(x)zéa(x)*-LJ’l ‘i—quq(ic—)th(v) , (38) Egs. (38)-(40) may be solved algebraically, and
21b J, y %8 and 4™ used to obtain the moments of % (x),
J
1
h"=f dxx"n(x), (44)
o]
prepn 32 1 W25 [1-(1/27b)P%] (45)
hox) 33 [1-@/2mb)Pn] 34 [1-(1/210) (P}, + Plg) +(1/2m0)* (P P - 2f Pi P2 (*

FIG. 2. The singlet function #25(x) for flavor groups
SU(f), f = 4,3,2. See Egs. (37), (39), and (40).

r

where

n L[ nPen+2
o= 2 €4 +2mbe+1) ]
i=1
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FIG. 3. The nonsinglet function NS (x) for flavor
groups SU(f), f = 4,3,2. See Eqgs. (36) and (38).
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FIG. 4. The gluon function ~C(x) for flavor groups SU(f), f = 4,3,2. See Egs. (39) and (40). (a) linear
scale, (b) semilog scale, and (c) log-log scale showing details near x=0 and x =1 of (a).

Using the results given in Ref. 8 for the P™s one
can easily establish that Eq. (45) is identical to
Witten’s result [Eq. (12) in Ref. 1] after multipli-
cation by 4 to adjust to our normalization conven-
tion.

We have solved Egs. (34) and (35) by a straight-
forward iteration procedure. These equations can
be written symbolically as

) =00 + 5 [ [Pe/ye6)] (46)

where g(x) denotes the functions #'(x),. .., h¥(x),
1€(x); blx) denotes the respective Born terms,

and P(x/y) is a matrix containing the kernel func-
tions of the Altarelli- Parisi equations. The
iteration then proceeds as follows: Taking g (x)
=b(x), the kth approximation to g(x) is given by

g% )= (1-B)g*?(x)

+ﬁ{b(x)+2—7lrb- x.l%[zﬁ(;i)g‘k'“(x)]}. ‘;47)

Here B is a convergence factor that keeps g%’(x) from
fluctuating too wildly. If B is chosen too large, the
procedure does not converge. We use 8 =0.1.

The functions #%(x), h™(x), h¢(x), and k(x), cal-
culated from the functions generated in (4'7), are
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FIG. 5. The combination %Z(x) of quark functions which
enters the transverse structure function of the photon
for flavor groups SU(S), f =4, 3,2. See Egs. (6) and
(41)—(43).

shown in Figs. 2-5, respectively, for flavors
f=4,3,2. The curve in Fig. 3 shows n"%(x) for
f=4; the insert gives [A™(x);., = K™ (x);_5 ,] X 100.
Changes in the curves caused by increasing the
number of flavors are dictated primarily by the
charges of the additional quarks. Addition of
quarks with charge +% has a substantially greater
effect than addition of quarks with charge 3.
Plots of #%(x) and £%(1 -x) on semilog and log-log

J

8
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FIG. 6. The O(ag) contributions to the longitudinal
structure functions for a composite hadronic target, Eq.
(48). The parts of the diagrams enclosed in dotted lines
represent the induced longitudinal coupling of (a). a quark,
and (b) plus (c) a gluon, to the electromagnetic current,

scales are included in Fig. 4 to show details near
x =0 and x=1. We note that direct numerical
solution of the integral equations by the above
technique has the potential for very accurate
determination of the behavior near the end points.
We do not pursue this here, but we note that this
may offer advantages over the moment-inversion
technique (where supplementary considerations’
must be invoked to determine end-point behavior).

IV. LONGITUDINAL STRUCTURE FUNCTION

Once the anomalous quark and gluon contribu-
tions of the photon are known, the leading con-
tribution to the longitudinal structure function
follows straightforwardly. All that is needed is
the longitudinal analog of Eq. (19). Since in the
naive parton model F; vanishes identically, the
first nonzero contributions occur in O(a,). For a
composite zadvon the result is'!

Fo b, t)y =9-2s—7(:lx [1 %2 i e {E@)q*(y,mz’yi(l _’yi)c(y,z)]. (48)

i=1

The physical interpretation of Eq. (48)is straight-
forward. The quark term comes from the process
shown in Fig. 6(a) in which a quark carrying a
fraction y of the target momentum interacts with
the longitudinal current after gluon emission.
Similarly, the gluon term in Eq. (48) comes from
the processes shown in Figs. 6(b) and 6(c) in

J

2f
FL(X, t)=
i=1

where c¢(x) is defined in Eq. (5).

To calculate the renormalization of ¢ (x), we
need only substitute into the right-hand side of Eq.
(49) the leading asymptotic forms [Egs. (32) and
(33)] for ¢* and G calculated in Sec. III. We find
that F; has the form specified by Eq. (7) and that

-

which a gluon with momentum fraction y interacts

with the longitudinal current after pair creation.
We have seen above, however, that for a photon

target there is a contribution to F; even in the

absence of strong interactions, The generaliza-

tion of Eq. (46) which takes this into account

is

614%12"C(")fa237(7t)x[1%2 292[%(;‘7)611'(%”4_2%(1 —i—)G(y,t)jI ) (49)

r

the renormalized function / (x) is given by

1
l(x):ch(x)+2—7T3

S 2[HE) oy 2a( ) ‘%)hg@)] > (50
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FIG. 7. The function! (x) which determines the longi-
tudinal structure function of the photon for flavor groups
SU(f), f=4,3,2. See Egs. (7) and (50).

N 1 68 —_
where ap=%, 4, ¥ anday=8, & ¥, forf=4,3,2
respectively. Numerical results for I(x) are
shown in Fig. 7.

V. SUMMARY

We have seen that the Altarelli-Parisi approach
to scale breaking is easily extended to photon

targets. When this is done, the strong-interaction
renormalizations of the direct photon-parton
diagrams are easily computed from a @2 indepen-
dent integral equation. The renormalized direct
photon-parton contributions will dominate in the
Bjorken limit and will provide an important test
of QCD.

In this paper we have calculated only the leading
(one-loop renormalization) contributions to F, and
F,. We believe, however, that our method would
also be useful in computing next-to-leading (two-
loop renormalization) contributions as well as
quark- and target-mass effects.

Note added. Subsequent to and independent of
our work, Koller, Walsh, and Zerwas!? use a
completely analogous method to calculate the QCD
renormalization of the functions which describe
the inclusive fragmentation of quarks and gluons
to photons. They suggest that the process
e*e”— y+hadrons be used as a test of these predic-
tions.
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