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In the absence of infrared mass singularities, the asymptotic behavior of cross sections for e+e
annihilation in quantum chromodynamics can be expressed entirely in terms of the energy dependence of the
renormalization-group running coupling constant. Since the theory is asymptotically free, the running
coupling vanishes at high energy, and such infrared-finite cross sections can be calculated perturbatively. We
extend previous work by calculating, through second order, the energy-weighted angular correlations of the
hadrons produced in e e annihilation. This involves the computation of quark-antiquark-gluon production
and the correction to the lowest-order quark-antiquark production from virtual gluon exchange. A
dimensional-continuation scheme is employed to establish that these correlations, taken in a distribution-
theory sense, are indeed free of mass singularities. The correlations exhibit interesting features which vanish
slowly (~1/ln W) as the energy W increases. We estimate that the nonperturbative, confinement
contributions to these features vanish much more rapidly (~ 1/ W'). Thus, effects characteristic of quantum
chromodynamics should be quite evident at high energies.

I. INTRODUCTION AND REVIEW

Quantum chromodynamics (QCD), ' the non-
Abelian gauge theory of quarks and gluons, is an
extremely attractive candidate for the underlying
field theory of hadronic physics. The highly sin-
gular infrared nature of the theory and the pres-
ence of nontrivial vacuum structure' offer the
promise of an explanation for the observed con-
finement of the basic hadronic constituents but
hinder attempts at rigorous calculation. On the
other hand, renormalization- group techniques
show' that off-mass- shell amplitudes can be ex-
pressed in terms of a running effective coupling
g(W). The effective coupling in qua. ntum chromo-
dynamics vanishes as the energy W becomes
large', it is an asymptotically free theory. A
measure of this asymptotic freedom is provided
by the parameter g(W)'/4m' which, as will be seen
in detail later, controls the QCD contributions to
the high-energy total hadronic cross section in
electron-positron annihilation. In the high- energy
limit the effective coupling depends upon only one
dimensional parameter LU. , and we have

g(W)' 2

4w (11—-N&)ln(W/p) '

where N& is the number of quark types ("flavors" ).
The parameter p, is taken' to have a value of about
0.5 Gev in order to make the higher-order cor-
rections small. Thus the effective coupling is al-
ready quite small at W= 5 GeV with (assuming
Nf 4) g(5)'/4w——'=0.10. This suggests that suitably'
chosen quantities may be precisely calculated at
high energies and the theory of quantum chromo-

dynamics rigorously tested by experiment.
The usual renormalization-group analysis deals

with off-mass-shell amplitudes, and contact with
experiment is made through an operator-product
expansion whose physical matrix elements involve
arbitrary functions that describe, roughly speak-
ing, the constituent distributions within hadronic
targets. Since these matrix elements are not de-
termined, the theory predicts only the manner in
which observabl. es vary with energy but not their
magnitudes. Thus, the major experimental tests
of QCD, involving deep inelastic lepton scattering
from nuclear targets, are not yet definitive. ' The
analysis of high-energy electron-positron annihil-
ation, however, avoids such ambiguities since no
hadrons appear in the initial state. Recently,
Sterman and steinberg' have suggested that suitably
chosen features of the hadronic final states pro-
duced in e'- e annihilation may be directly calcu-
lated by perturbation theory for the production of
quarks and gluons, using the small running effec-
tive coupling. Of course the experimentally ob-
served final state contains hadrons, not free
quarks and gluons. However, as we have dis-
cussed previously, ' the effects of the transition
from the quarks and gluons into the observed had-
rons can be treated approximately, using a simple
phenomenological model which assumes that lim-
ited transverse momenta are produced in these
fragmentation processes. The essential result of
this treatment, which will be reviewed in some de-
tail below, is that the motion of a produced ener-
getic hadron is closely aligned with that of its
parent quark or gluon.

The validity of the use of the running effective
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coupling which vanishes at high energies requires
that no mass scale appear in this limit other than
that provided by the scale parameter p. . Hence,
a necessary criterion for a specific feature of the
produced hadrons to be "suitably chosen" is that
its cross section be finite for massless quarks and
gluons. In general, we have no a priori rigorous
proof that this method of "asymptotically free per-
turbation theory" is valid. , We must resort to per-
turbation theory to verify that a cross section is
indeed free from mass singularities, and this can
be done only in low orders. " Moreover, we must
assume that our fragmentation picture is essen-
tially correct, so that the distributions of quarks
and gluons closely approximates those of the ob-
served hadrons. Although the method does lack
a completely rigorous foundation, we have no rea-
son to doubt its validity. It does provide precise,
unambigous tests"" of @CD which depend upon
no adjustable parameters other than the scale p, .
This requires, of course, that the energy is well
away from (new-particle) thresholds (e.g. charm
threshold).

In general, partial cross sections calculated to
some order in perturbation theory will not exhibit
a finite limit as the masses of the quarks and
gluons vanish; they contain powers of ln(W/m).
These mass singularities will appear if the process
is sensitive either to soft-gluon emission or' to the
collinear branching of a massless quark or gluon-
into massless quarks and gluons. In particular,
the answer to any question referring to a specifi-
cally quarklike characteristic (such as the obser-
vation of one-third integral charge) will, in gen-
eral, involve such mass singularities, and it can-
not be computed by the method of asymptotically
free perturbation theory. One must compute quan-
tities which are "physically sensible"' in the mass-
less limit. The total cross section for e'e an-
nihilation into hadrons is such a "physically sensi-
ble" quantity, for it makes no restriction on the
nature of the final state. This cross section is
the absorptive part of the photon propagator whose
high-energy behavior can be evaluated rigorously
by renormalization-group techniques. However,
at least to second order, the same result is ob-
tained by calculating the processes displayed in
Fig. 1, quark-antiquark-gluon production and the
virtual-gluon correction to the basic lowest-order
quark-antiquark production, using the running ef-
fective coupling of Eq. (1) and taking the quarks
and gluons to be massless. This is the method
of asymptotically free perturbation theory. Note
that although the individual graphs of Fig. 1 have
infrared mass singularities and must be regulated
to be kept finite, the sum which constitutes the
total cross section is finite. The result of either

(b)

P

(c)

FIG. &. Zeroth-, first-, and second-order Feynman
graphs for electron-positron annihilation. {a) Lowest-
order graph for e'e —y qq. {b) Vertex modification.
{c) Self-energy insertions. {d) Lowest-order gluon
emission graphs.

method is given by

4vd' ~, g(W)'
tot 2gr2 ~ @f 4 2

f 7r
(1.2)

where 8' is the total center-of-mass energy of the
e'-e collision, n=, 37 is the fine-structure con-
stant, and Q~ is the fractional charge of a quark of
flavor f. (We write Q&2 accompanied by the factor
3 to explicitly display the three quark colors which
contribute. )

We have proposed' that the total cross section is
simply the first member of a hierarchy of increas-
ingly finely grained but still inclusive cross sec-
tions which can be calculated by asymptotically
free perturbation theory. Each member of this
hierarchy entails the detection of the energy car-
ried off by the produced hadrons. This energy
weighting should eliminate those singularities as-
sociated with soft-gluon emission. Each member
also entails the detection of all of the energy pas-
sing through some small solid angle with no re-
striction placed on whether the energy comes from
a particular quark or gluon. This inclusive energy
summation should eliminate those singularities
associated with the collinear branching of mass-
less quarks and gluons. It must be emphasized
that the measurement of these energy cross sec-
tions does not xe, quire any detailed event-by-event
analysis as is the case for tests which deal with a
quantity involving the definition of a jet axis in
eachevent. ""'Furthermore, since we consider
averaged quantities, they are rather insensitive
to experimental fluctuations and the analysis of
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the nonperturbative fragmentation corrections is
simplified.

[The hierarchy we consider is related to energy
correlations involving the stress-energy tensor
T"(x). Electron-positron annihilation produces a,

virtual photon which is absorbed by the hadronic
electromagnetic current j'(z). The total cross
section is related to the vacuum expectation value
of two current operators (j'(z) j"(z'))o. The sub-
sequent members of the hierarchy correspond to
the vacuum matrix elements (j (z)T' (x,)j"(z'))„
(j'(z)T"(x,)T"(x,)j"(z'))„and so forth. Here the
spacetime coordinates x', , x,', . .. of the detectors
are far removed from the annihilation region de-
scribed by the coordina, tes z, z' of the current
operators. Therefore the usual technique of the
renormalization group with its short-distance
operator-product expansion is not applicable, and
the perturbation theory we have described must be
used instead. ]

In our previous paper, ' we have discussed the
differential energy cross section dZ/dQ which is
the simplest partial cross section of the hier-
a,rchy. It describes the angular "antenna" pattern
of the hadronic energy produced by e'e collisions.
The energy cross section could be determined, for
example, by measurements with a. small hadronic
calorimeter placed at various angular positions.
If the calorimeter collects an energy &E in a solid
angle dQ during a time & T, then dZ/dQ = hE/
(WZb TdQ), where 2 is the luminosity of the e'e
colliding beams. We note that this determination
is in accord with the general characteristic em-
pha, sized previously: It does not require detailed
measurements on each of the particles produced
in a. single event. Since the energy cross section-
involves simply the detection of the energy passing
through some small solid angle, without regard to
the specific hadrons which carry this energy, it is
insensitive to both soft-gluon emission and to the
collinear branching of the massless quarks and
gluons, and it should be ca.lculable with thb method
of asymptotically free perturbation theory. The
absence of mass singularities is borne out by ex-
plicit calculations in second order' which involve
the graphs displayed in Fig. 1. Although the in-
dividual graphs do have ma, ss singula, rities, these
singularities cancel in the construction of the en-
ergy cross section. For the sake of clarity we
sha, ll review our previous results' and refine them
by considering the corrections resulting from
heavy -lepton production.

The energy pattern cross section can be ex-
pressed in terms of partial cross sections

dNg

E, '(d'p, ) E„'(d'P„)

for the process e'e —N hadrons at total energy
O'. The general form is given by

d&
0't ty (l 4)

where o„t is the total hadronic cross section.
The observed N-particle final state involves, of
course, N hadrons. In our perturbative method,
the N hadrons, are replaced by massless, quarks,
antjquarks, and massless gluons. We shall de-
scribe the effects of the fragmentation process
connecting the quarks and gluons with the ob-
served hadrons in some detail in subsequent para-
graphs. The production cross sections for mass-
less quarks and gluons are divergent. However,
as indicated above, these singularities cancel in
the sum defining the energy cross section.

Electron-positron annihilation at high energy
produces a virtual photon with a spin density ma-
trix given by

~= —', (l —P')(o~~ —l, l~)+P'bq. b~.

Here l and b denote the directions of the beam and
the magnetic field, respectively, which are ortho-
gonal (l b = 0), and P (-P) is the polarization of
the electron (positron) along the magnetic field
direction. Clearly, the unpolarized form (P=0)
is obtained from the perfectly polarized form (P
= l) by averaging b over two directions perpen-
dicular to l. But the perfectly polarized form can
a,iso be obtained from the unpolarized form. For
example, the identity

f & 2( Jh J 0 jk ~PA (bJa

expresses the density matrix for perfect polariza-
tion along the z axis in terms of the unpolarized
density matrix for beams along the x, y, and z
axes. Therefore, in principle, experiments with
polarized beams yield no new information since a
rotation of the beam axis is equivalent to a rotation
of the detection apparatus. However, in practice,
experimental accuracy may be significantly im-.
proved by using partially polarized beams while
theoretical calculations are most simply performed
for perfect polarizations. Hence we calculate for

N

xS 5 Q-0
b=x

where S„represents the statistical weights neces-
sary to avoid multiple counting of identical parti-
cles. Integrating this general form over all solid
angle produces a factor Q", , E,/W which, by ener-
gy conservation, is unity, and thus we have the
normalization
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from the quark-antiquark production depicted in
Fig. 1(a), and it is identical with the ordinary dif-
ferential cross section,

dZ ' do
dQ dA
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FIG. 2. Geometry for the energy-pattern experiment.

perfect polarization but, using trivial substitu-
tions, present our results for arbitrary polariza-
tion.

The energy cross section in lowest order arises

(1.6)

The definition of the angles 8 and ]C) is illustrated
in Fig. 2. They are the polar angles of the detec-
tion direction x with respect to the beam axis l

a,nd the magnetic -field orientation 5, cos 8 = x l,
cos]j)=i 'b The .result (1.6) is the infinite-energy
limit where the effective coupling g(W) vanishes.
The perturbative corrections must be eva. luated
for finite energies. In second order, these cor-'
rections involve the virtual-gluon exchange shown
in Figs. 1(b) and 1(c) and the real-gluon emission
shown in Fig. 1(d). To this order we have

dg (Qco) g(w)'
dQ 2W' g sq, ' )s, )(P'sis'(s-', (1-P*)(1 sss*s)]4g'

+g, [P'(3 cos'g —1) + —,'(1 -P')(1 —3 cos'8)]4v'

with the effective coupling g(W)'/4v' given by Eq.
(1.1). This angular distribution is most easily
described for the case of perfect polarization (P
= 1). In the high-energy limit it is a sin ]j) dis-
tribution which vanishes along the magnetic field
direction. As the energy is lowered, the dips a.re
filled in by the g(W)' correction as shown in Fig.
3(a). The angular distribution for the unpolarized
case is illustrated in Fig. 3(b).

Perturbative QCD results must be corrected for
the fragmentation of the quarks and gluons into the
observed hadrons. A precise calculation of these
corrections is clearly a very'difficult task, for it
involves the details of the confinement mechanism.
We will obtain a rough estimate of the size of these
corrections by using a simple phenomenological
model. Although this estimate will be a rough
approximation, it will give a good indication of
the size of the nonperturbative "background"
which the perturbative QCD modifications must
exceed if they are to be measurable. Since the
fragmentation effects will be small, we may view
them simply as a correction to the lowest-order
quark-antiquark process [Fig. 1(a)]. We assume
that the high-energy quark or antiquark produces
a "jet" of hadrons whose transverse momenta are
limited, with the number of hadrons in the jet

growing logarithmically with the total energy of
the jet, (n)„,-—', Cln(W/2). More precisely, we
assume that a quark (or antiquark) fragments into
a number dn of hadrons in a momentum interval
(d'h) given by the scaling distribution

dn= () f(z, h,),(d'h)
h

(1.6)

+ —,
'

( sin'q)'"'[P'(3 cos']j) —1)

+ —', (1 —P')(1 —3 cos'8)]).
(1.S)

Here q is a "jet opening angle", the angle that the
emitted hadron makes with the direction of its
quark (or antiquark) parent, and (sin'q)(") is the

where z = 2k()/W) with h)) and h, the components of
the emitted hadron momentum h which are parallel
and perpendicular to the quark (or antiquark)
direction, respectively. Then, as shown in our
previous work, ' which is reviewed and extended
in Appendix B, the fragmentation correction to
the lowest-order energy cross section (1.6) gives
[cf. Eq. (81S)]

g (gf) g 3 Qz'([P'sin']j)+ -', (1 —P')(1+ cos'8)]
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of an emitted hadron and C is the coefficient of the
logarithmic increase in the total multiplicity of the
hadrons produced in e'e collisions,

(n)„,= ClnW+ const. (1.11)

%e see that the fragmentation process also smears
the energy pattern, filling in its minima. How-
ever, this correction vanishes as 1/W as the en-
ergy increases. It vanishes much more rapidly
than does the perturbative @CD effect which be-
haves as 1/lnW. Figure 4 displays the size of
the fragmentation correction for the parameters"
C=2. 5 and (h, ) =0.3 GeV. Note that the pertur-
bative QCD energy pattern (1.7) and the fragmen-
tation pattern (1.9) ha. ve identical structure. Com-
paring the two results, we get an identification of
a "jet opening angle" for the perturbative QCD
contribution '.

sin2 ((s)cD) 2 g(
43)' (l 1 —-' Nz) ln(W7p|

(1.12)

energy-weighted average with the distribution
(1.8). In the high-energy limit

(„) vC(h, )( sin'3))"" = (1.10)

where (h,) is the average transverse momentum

FIG. 3. (a) @CD predictions for the normalized an-
tenna patterns (1/0 «t)(d Z/dO) corresponding to per-
fectly polarized electron and positron beams with vari-
ous total energies O'. The long dashed curve corres-
ponds to TV= 5 GeV, the short dashes to %=30 GeV, and
the solid curve is for infinite W. All unit vectors and
angles refer to the geometry displayed in Fig. 2. 4b)
Same as (a) except that the electron-positron beams are
unpolarized.

The semihadronic decays of heavy leptons into
neutrinos and hadrons gives further corrections.
In practice, these processes cannot be separated
from the purely hadronic events. However, they
give rise to very small effects so that a crude ap-
proximation suffices for their description. As
explained in detail in Appendix 8, we assume that
the heavy lepton produces an isotropic distribution
of hadrons in its rest frame. Vfith this hypothesis,
the hadronic energy pattern resulting from heavy-
lepton decays can be computed without the intro-
duction of any new parameter [cf. Eqs. (B22)—
(832)t. In the high-energy limit the result is
identical with the quark-fragmentation expression
(1.9) except for two alterations. The quark-
charge factor 5~&3Q&' is replaced by P y, where P
is the branching ratio for a single heavy lepton to
decay into hadrons, and y is the average fraction
of the heavy-lepton energy carried off by detect-
able hadrons with the remaining fraction (1 —y)
escaping in undetected neutrinos. The jet-open-
ing-angle factor (sin'3))"" is replaced by BM'/W'
where M is the mass of the heavy lepton. Thus,
summing all corrections, the energy pattern cross
section in leading order reads

2 1+,— g 3Q '+ P'y [P'sin'P+ —', (1 -&')(1+cos'0)]

2 &3) 4M' ,+, +-, (s1o'3)"" P 3ge'+, 3'1 [P (3 sos'3 —1)+-,(1 —P')(1 —3 sos's)]I. (1.13)
tt f
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FIG. 4. @CD and the sum of @CD, quark-fragmentation (qf), and heavy-lepton decay (ld) contributions to

the normalized energy pattern (1/Z) (dZ/dQ), with perfectly polarized electron-positron beams of total en-
ergy (a) 10 GeV, (b) 30 GeV and unpolarized beams of total energy (c) 10 GeV, (d) 30 GeV. The total hadronic
energy cross section Z is obtained by integrating the energy pattern over the entire solid angular region [cf.
Kq. (1.14)]. The curves obtained by neglecting the lepton-decay contributions are not discernibly different from,
the dashed curves.

Since we now include the effects of heavy-lepton
decay, the total energy cross section

is no longer simply the total hadronic cross sec-

tion o'„,. The full expression (1.13), normalized
by Z, is plotted for the polarized (P = 1) and un-
polarized (P=0) cases in Fig. 4. The heavy
lepton is the v' particle' with the parameters'
M = 1.8 GeV, P = 0. 64, and y= 0. 65. It changes
the pattern by an entirely negligible amount (-1/~)
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explanation and computational details of our work
are presented in Appendixes A and B.

II. ENERGY-ENERGY CORRELATION CROSS SECTION

FIG. 5. Geometry for the double-energy-cross-sec-
tion experiment. The two detectors are positioned in
the directions i and f' while the beam direction is de-
noted by l and the magnetic-field direction by b.

which cannot be discerned in the plot.
In the next section, we shall examine a finer-

grained measure of the effects of quantum chromo-
dynamics in electron-positron annihilation, the
energy-energy correlation cross section. Further

d'Z Z,„,„„(dEdE')
dQdQ ' 8~+~ 'dQdQ ' (2. 1)

In terms of the partial cross section for the proc-
ess e'e -N hadrons, we have, using the notation
of Eq. (1.3),

The double energy cross section" can be de-
fined by the following experimental arrangement
whose geometry is shown in Fig. 5. A positron
and an electron of total energy 8' annihilate into
ha, drons. There are two calorimeters, one of
solid angle d~4 in the direction x, the other of solid
angle d(I' in the direction x'. The two calori-
meters measure the energies dE and dE' which
a,re carried by the hadrons into the solid angles
d~4 and d~4' during this single event. The product
of the two energies (dEdE') is then summed for
many similar events with the sum divided by the
integrated luminosity of the beams, 2 ~T, times
the squared energy of each collision, 8". This
procedure defines the double energy cross section

(2.2)

Note that terms with b = c are included in this
sum. Thus if the two calorimeters are coincident
in angle (r =r'), they must both detect the same
parcel of energy. The calorimeters are "trans-
parent. " We have included the diagonal terms be-
cause energy conservation then yields the normal-
ization

dz dZ

J dAdA' dQ ' (2.3)

where dZ/dQ is the energy pattern cross section
previously defined in Eq. (1.3). [If heavy leptons
which decay into hadrons plus a neutrino are in-
cluded, the normalization (2. 3) is no longer strict-
ly valid since the neutrinos are not detected and
they carry off part of the energy. However, we
shall see shortly that the contribution of heavy
leptons is extremely small so that their effects
can be neglected. ]

The energy pattern cross section is free of in-
frared mass singularities (at least to order g ).
Hence by Eq. (2.3), the integrated double energy
cross section is also free of these singularities.
Mass singula, rities would appear if the diagonal
b = c terms were not included. Computing order
by order in perturbation theory, for massless

quarks and gluons, the 5 functions in Eq. (2.2)
with b = e give 5(Q —Q') with a coefficient that is
(infrared) divergent. This divergence should be
canceled by other contributions in Eq. (2.2) when
one integrates over a small patch of solid angle
in either Q or 0' which covers 0 = A '. Thus, the
double energy cross section should be finite in a,

distribution-theory sense in the region of nearly
collinear detectors (Q =Q'). We demonstrate in
Appendix A that, to order g, the cross section is
indeed finite in a, distribution-theory sense in this
region. The perturbation series does not converge
uniformly when O'- A. %e expect that, if the
series could be summed, this nonuniform behavior
would combine with the divergent 5(Q —Q') con-
tributions to form a, well-defined ordina. ry function
which is sharply peaked near- O'=O'. In pertur-
bation theory, the double energy cross section is
also divergent when the detectors are anticollin-
ear (Q'= -Q), and the series also does not con-
verge uniformly when O'- -Q. The lowest-order
quark-antiquark production gives a 5(Q+Q') an-
gula. r dependence which a,cquires a divergent coef-

' ficient in higher orders from virtual-gluon ex-
change. Again, the cross section should be finite
in a distribution theory sense in this region of an-
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ticollinearity. This is verified to order g in Ap-
pendix A. We also expect that, if the perturbation
series were summed, the nonuniform behavior
would combine with the divergent 5(Q+ Q') con-
tributions to produce a well-defined function which
is sharply peaked near O'= -A. We shall present
evidence elsewhere" that this does indeed happen.

The double energy cross section d'E/dQdQ' in-
volves several variables. We shall describe the
orientation of the two detection directions i, z'
with polar angles relative to the beam direction
l and the direction of the magnetic field b, defin-
ing

cos8= x'l, cose'= ~' 'l,
(2.4)

cos(= r'b, ocsg'=r' b.
t

We also define an angle between the detection di-
rections

A A

cosg= f 7' (2. 5)

Since the two directions x and x' are. completely
specified by four angles, the five angles 8, O', P,
g', X are, of course, not independent. The general
form for the energy-energy cross section d'Z/
dAdO' in regard to orientations relative to the
beam and magnetic-field directions is obtained
easily. The virtual-photon spin density matrix
I-» of Eq. (1.5) must appea, r linearly, contracted
with a tensor H» that characterizes the produced
hadronic energies. Since I-,,=L», we. can take
H,.~ to be symmetrical in its indices, H» ——H~,
Since the directions of the produced hadronic en-
ergies are specified by x and x', with the cross
section unaltered by the interchange z x', H»
must be composed of scalars (depending upon
cosy= r 'r', which is even under the interchange)
multiplying three possible symmetric matrix

and

(,) (ri+ r;)(r, + r,)

2(1+r r')

(2) (rJ rJ)(ra ra)

2(1-r r')

P(3) g P(&) P(2)

(2. sb)

(2. 6c)

We may now write the double energy cross section
in the form

3

dQdQ'
f1= 1

Since the P,'.,' and L,.„are symmetrical, positive
matrices, the contraction P,"„'L,, is a positive
number. Moreover, since the projections P,".„'
are orthogonal, the numbers P,.~'L» for a= 1, 2, 3
can take on independent values. This is most
easily seen for the case of perfect polarization
where L,,= b~b, . In this case it is clear that b,.
can be chosen to be orthogonal to any two of the
P,'. . We conclude that the positivity of the cross
section requires that each of the scalar coeffi-
cients A"'(r r') be non-negative,

(2..7)

A"'(r r')~ 0, 'a=1, 2, 3. (2. S)

Although the structure (2. 7) displays the positivity
of the cross section in a simple way, it is a cum-
bersome form for exhibiting the QCD result.
Hence we shall replace the matrices P~~ with

In terms of this new basis, we have

forms. Let us first display the cross section in
a manner which makes its positivity obvious. For
this purpose, we introduce three symmetrical,
positive, mutually orthogonal, projection matrices:

2

, g 3q&'(e(X) [P'(sin'p+ sin'g') + ~(1 —P')((1+ cos'8) + (1+cos'8'))]
f

+$(X)p"(cosX —cosp cosg') + —,'(1 -P')(cosX+ cos8cos8')]+0 (X)f. (2. 9)

Here we have extracted a convenient overall factor
which makes the coefficients 8,$,8, dimensionless
and roughly of order unity. The positivity con-
straints on these coefficients follows by expres-
sing Eq. (2. 9) in the form of Eq. (2. 7), and we
find the conditions

2 »1

, g 3q,' A, =(1 rr)(e ',6-i)+e O,--
(2. 10a)

2 -1(,Q 3q~'
~

A, =2e+r 'r'%+8» 0. (2. 10c)

The QCD double-energy cross section is calcu-
lated in order g in Appendix A, and the result for
perfect polarization with the detectors away from
collinearity or anticollinearity is presented in Eq.
(A29) with v set equal to 4. This result corre-
sponds to the graphs in Figs. 1(d). Using

2 «]

3q,' A, =(1+r r')( e'+e) e+O,
i 28" f = 2(l cosX) (2. 11)

(2. 1Ob) and comparing Eq. (A29) with Eq. (2.9), we find
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@(&&c»&( } g(W) 1 1
4~' 12~1-g

4 3 5 1———ln(1 -g)+ ——
&4

(2. 12}

g(W') 1 1

4g 12m 1 —f
,

t' 12 16 4 12 10
x

~

——+ —In(l-g)+ ———
( (5 (4 g3 g4 g3

(2. 13)

&@cn)(, g(W) 1
4&'

&s &gc)&&(y)
4 12m 3) '

and, for g- 1,

(QCZl)
( )

g(W)' 1 2

4m 12m1 —g
'

(2. 15)

(2. 16)

(2. 17)

(2. 16)

and

g&o c&& ) (y) (2. 14)

This cross section diverges when the detectors
become collinear (y=0, )=0) or anticollinear
(y=«, (=1). We have, for &-0,

As we have just discussed, these singularities
cancel in a, distribution-theory sense against
6(Q —0'), 6(Q+ 0') contributions that have diver-
gent coefficients. Note that the coefficient of 8(y)
in Eq. (2.9) is just the sum of the lowest-order
cross sections (l. 6) for each detector. Thus,

d Z(@ ) da' d0
,+(qeD)( 3

dAdQ' ' '
dO dA'

+&9' '(y) ~ g 3Q&'[P'(cosy —cos&j) cosg')+ —,'(1 P')(cos-y+ eos6cosH')].
2 f

(2. 19)

d'Z "" („) do do
(2. 20)

The fragmentation of the quarks produced in
lowest order also contributes to the double energy
cross section. This correction is described in
detail in Appendix B, and according to Eqs. (B44)
and (B76}we have, to within an error of order 1/W'
and for X4 0, m,

ficient and the antisymmetric part of the 9 coef-
ficient &t (« —y) —a(y) should provide precise tests
of QCD even at relatively low energies.

The corrections resulting from heavy-lepton de-
cay are also estimated in Appendix B. Since these
effects are very small, the rough approximation
given in Eq. (B47) suffices. In the high-energy
limit, this result reads

where

8 ' (y) =— '- sin
C (h) (2. 21)

d 5~ ()d) d(T do
d(ldA' dQ dQ'

where

(2. 22)

with C the logarithmic multiplicity coefficient de-
fined in Eq. (l. 11) and (I&,) the average transverse
momentum of an emitted hadron. Note that, as in
the case of the energy pattern cross section, the
fragmentation corrections to the double energy
cross section vanish more rapidly as the energy
increases (~1/W) than does the QCD contribution
(~1/InW). To within an accuracy of order 1/W',
there is no quark-fragmentation correction to the
terms having the angular dependence with the or
&-' coefficients in Eq. (2.9). Moreover, neglect-
ing contributions of order 1/W', the quark-frag-
mentation contribution to the coefficient is sym-
metric under the interchange y —« —y (g —1 —g)
while the quantum-chromodynamic coefficient
8'~ '(y) is markedly asymmetric under this in-
ter change. Thus, measurements of the S coef—

1 1
X 3+

(1 —v cosy)' (1+v cosy)'

(2. 23)

with &3 the semihadronic branching fraction, y the
average fraction of the energy carried off by had-
rons, and M the mass of th'e heavy lepton. Al-
though we have taken the infinite energy limit
elsewhere, we have retained the heavy-lepton
velocity v = (1 —4M'/W')'~' in the denominators in
Eq. (2. 23) since these denominators can become
very small. Again, to leading order, the correc-
tion to 8 is symmetric under y 7t —y and there
is no contribution to the coefficient.

Figures 6 display our results for the parame-
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&(X)=@(v- X) —e(X) . {2.24) [Eqs. (2. 12), (2. 13), and (2. 14)], we compute

The QCD perturbation contribution to this differ-
ence is shown in Fig. V.

A new measure of the "jet opening angle" is
provided by the average

(sin')t)'~' '=2 (0. 55)
-(w)'

F . 4m' (2.28a)

d&
(sin'X) = dA dA'sin'y

tot
(2.25)

Using the general form of Eq. (2.9), we have

(sin'i)=2m f dxsin'i[2a(x)+tmsxiiNx)+-, '6(x)].
0

(2.26)

To exhibit asymmetry in the distribution, we de-
compose this average into forward (0 & y & n/2) and
backward (n/2 &y. &n') pieces:

r/2
(sin'y)z —2v dy sin'y [28(y) + cosyS(g) + -'8(g)]

0 2

(2. 27a)

n) @g)(sin'y)~+ '=2 ', (0. 89) .4m' (2.28b)

(sin')t) ' ' = 0. 55(sin'q) + n'

while

(sin'y)e ' = 0.89(sin'q)'o

(2.29a}

(2. 29b)

These results contrast with those produced by the
quark-fragmentation process. Introducing Eq.
(2.21) [and S ' '(X) = 0= &""(X)]in Eqs. (2.27a)
and (2. 27h) and using Eq. (1.10), we find [cf. the
discussion of Eq. (B46) in the Appendix]

(sin'y) P"= (sin'q) ""

This can be compared with the average (sin'q) '~cn'

= 2 g(ii') /4m'. of Eq. (1.12), an average which iden-
tifies a jet opening angle in terms of the broaden-
ing of the energy "antenna" pattern. Thus

and
=(sin'y)~". (2. 30)

( sin'y)s = 2 v dX»n'X [2&(X)+cosX~(X)+ -', &(X)1.
/2

(2. 27b)

I.O

Using the QCD results for 8(y), $(y), and 8(y)

Thus the quark-fragmentation contribution is for-
ward-backward symmetric and gives the same re-
sult for the two different measures of the jet
size. On the other hand, the more complex struc-
ture of the quark-antiquark-gluon final state pro-
duced in QCD does not have this forward-backward
symmetry and yields different results for different
measures of the jet size.

III. DISCUSSION AND SUMMARY

O. I =

(QCD)

0.0 I—

0.00 IO 50 60
( degrees)

90

FIG. 7. The difference 5) ~ defined by Eqs. . (2,24)
and (2.12) as afunction of X for S'=10 GeV. The plot
for %=30 GeV is obtained by scaling the curve dis-
played by the factor g(30)2/g(10)2 = 0.73.

Deep-inelastic lepton scattering from nuclear
targets provides only a partial test of the theory
of quantum chromodynamics, for its complete
analysis requires the introduction of arbitrary
functions to describe the distribution of constit-
uents within the hadronic target. Electron-posi-
tron annihilation avoids such ambiguities since
hadrons are absent in the initial state, and various
features of this annihilation process have been
suggested for possible precise tests of QCD. ' ""
Such features must satisfy several criteria if
they are to be useful:

(1) They must be reliably and precisely cal-
culable. This requires freedom from infrared
singularities and insensitivity to nonperturbative
fragmentation (confinement) effects so that a per-
turbative analysis is possible.

(2) They must exhibit some special characteris-
tic of QCD, such as the presence of both fermions
and gauge vector bosons or the vanishing of the
running coupling a,s the energy increases.
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(3) They must be accessible to experiment.
.This constraint argues against studying quantities
which are small effects on much larger back-
grounds and quantities which are sensitive to the
absence of complete (all-particle) data for each
annihilation event.

Here and in our previous papers, '"we have
proposed the study of a hierarchy of energy-
weighted cross sections to obtain precise tests of
quantum chromodynamics. These cross sections
involve averages over many events, and they do
not require an event-by-event analysis to deter-
mine a jet axis as do other proposed tests. ""'
Using the three criteria, given above as guidelines,
we shall examine the merits of these energy-
weighted cross sections for testing quantum
chromodynamics.

The first member of this hiera, rchy is the tota, l
cross section, o„,. It can be rigorously com-
puted by renormalization-group techniques, but
the same result is obtained by calculating the
total cross section for the production of massless
quarks and gluons, using the running effective
coupling that vanishes at infinite energy. The
latter is the method of a,symptotically free pertur-
bation theory. The "antenna-pattern" dZ/dQ and
the energy-energy correlation cross section
d'Z/dQdQ' form the next two members of the
hierarchy. , %e should emphasize that the method
of asymptotically free perturbation theory includes
the assumption that the nonperturbative fra, gmen-
tation processes involve limited transverse mo-
menta so that these corrections vanish rapidly as
the energy increases. The partial cross sections
involve energy weightings, and they should be free
from ma, ss singularities due to soft or collinear
massless particle production. Thus these quan-
tities, which are outside the usual realm of the
renormalization-group and short-distance analy-
sis, should be calcula, ble in the asymptotica, lly
free perturbation theory. The antenna -pattern
cross section was shown to be finite through
second order in our previous work. ' The energy-
energy cross section is calculated in Appendix A

through second order and no mass singularities
appear.

The. result for this calculation is given by Eqs.
(2. 12)-(2.14). Experimental studies of the coef-
ficients e(y) and(E(y), which are proportional to
the asymptotically vanishing coupling constant
g(W)' and which have properties characteristic of
the quark-antiquark-gluon final state, serve as
good tests of QCD in accordance with criterion
(2). As indicated in criterion (1), these tests
sh'ould be devised so as to minimize nonperturba, —

tive fragmentation effects. The analysis of these
effects, presented in Appendix B, is based on the

experimental indication that the momentum of the
final-state hadrons transverse to the direction of
the parent quark is limited. The contributions of
quark fragmentation for the coefficient. 8(y) are of
order (h,)/W away from the angular regions near
g= 0 or m. These corrections are much smaller
a,t high energies than are the asymptotically free
perturbative corrections which vanish only log-
arithmically. Moreover, it was observed that the
leading nonperturbative contributions to 8(y) are
symmetric under the interchange y m —X while
the perturbative QCD form is quite asymmetric
about y. = v/2. Thus as the energy increases, the
perturbative QCD contribution dominates the val-
ues for the antisymmetric part of the 8 coefficient
$(y) =8 (v —y) —8(y), with the fragmentation cor-
rections only of order 1/W'. The perturbative
QCD contribution also. dominates the S coefficient
at high energies since the nonperturbative correc-
tions here are also of order 1/W', Thus, these
measures are particularly insensitive to the ef-
fects of fragmentation. The corrections due to
heavy-lepton contamination of the hadronic final
states are also estimated in Appendix B, using a
rough phenomenological model. These correc-
tions are imperceptible [of order (M/W) ] in angu-
lar regions away from y= 0 or m. The measure-
ment of the antenna pattern, which we previously
suggested as a test of QCD, has larger correc-
tions due to quark fragmentation (of order (hQ/W)
and from heavy-lepton decay [of order (M/W)'].
Note that since the quantities which we investigate
are averaged over many events, the analysis of
fragmentation effects has been considerably sim-
plified, and we have been able to obtain quantita, —

tive estimates.
The measures which we have proposed are a,c-

cessible to experiment as required by point (3).
In particular, since the energy-energy cross sec-
tion is of order g(W)' (plus fragmentation contribu-
tions of order 1/W), it should be stra. ightforward
to determine the angular coefficients" 8 and 8
which are of the same order. Moreover, at mod-
erate energies the quantities S and S are dom-
inated by QCD effects since they have small frag-
mentation contributions of order 1/W'. In con-
trast, measurements of the QCD corrections to
the antenna pattern are simpler, , but have back-
grounds of order g' from the lowest-order process
and a much greater statistical accuracy is re-
quired. Experiments to measure all of these
cross sections involve only the detection of energy.
They can be performed using only calorimeters.
Experiments involving magnetic detectors can be
used under the fairly unrestrictive assumption that
the angular patterns of energy are the same for
cha, rged and neutral hadrons. The experimentally
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averaged nature of these quantities implies that
they are relatively insensitive to experimental
fluctuations.

In conclusion, we have presented measures
which satisfy three basic criteria for a good test
of QCD. Since these measures do not require a
detailed event-by-event analysis, they have both
calculational and experimental advantages over
quantities which involve the event-by-event defini-

tion of a jet axis. Their experimental determina-
tion would constitute a precise test of quantum
chromodynamics.
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APPENDIX A

Here we shall give some of the details of the calculation of the second-order QCD energy-energy cross
section, formula (2. 9) in the test. Moreover, we shall prove that this formula, suitably regulated and
augmented by the collinear and anticollinear 5-function terms described in the test, is finite in a distribu-
tion-theory sense. Thi. s proof is greatly facilitated by using a dimensional-continuation scheme.

The general definition of the energy-energy angular correlation cross section presented in the text, Eq.
(2. 2), may be written equivalently as

OO

N=2
2W' „,, g gr

(Al)

q~ = (W, O) . (AS)

As discussed in the test, the sum over the particle
indices b and c in Eq. (Al) runs over all the ¹

possibilities, including the N terms with b = c.
Thus, the energy of the same particle will be
counted by both detectors when they are aligned;
they are "transparent" calorimeter s. This defini-
tion is necessary to achieve an infrared-finite
energy-energy cross section. If we integrate the
energy-energy cross section over the entire range
of one of the solid angles, say over dQ', then with the
unrestricted sum over e, the energy-conserving
5 function for N particles gives

J EdQ' Q 6(Q' —Q,) —'= —Q E = 1.
t."=1

Hence

d'Z dZ'"
dndQ -dQ

(A4)

(A5)

where dZ/dQ is the single-energy cross section
discussed in the text. VYe have proved in our

The +-particle production amplitude TN contains
appropriate factorials so that identical particles
are not overcounted in the integration over the
final phase space. The four-momentum of the
virtual photon is denoted by q"„with

q=l+l, (A2)

where l' and l are the four-momenta of the elec-
tron and positron. We work in the laboratory

. frame which is the center-of-mass frame of the
annihilation. Thus

C

previous work that this single-energy cross sec-
tion in QCD has no infrared mass singularities
to second order, and we expect that it is devoid
of such mass singularities to all orders.

We shall. use the general definition (Al) to cal-
culate the double-energy cross section for the
second-order QCD processes shown in Fig. 1.
We are interested in the limit where both the
quarks and the gluons are massless, a limit where
separate pieces of the calculation become singular.
We shall regulate these potential singularities by
performing our calculations in a space-time of
dimensionality v & 4, keeping the quarks and gluons
always to have zero mass. The limit v-4 will be
taken only after all contributions to the cross sec-
tion have been added together. In our space-time
with v di-mensions we have a matric tensor g„„
with signature (—,+, +, . .. , +) and Dirac matrices
obeying Iy„, y,)= -2g„„. The 4 x4 y matrices for
ordinary four-space must be increased in their
dimensionality as the dimensions of space-time
are increased. However, we shall adopt the fic-
tion that tr(y')'=tr 1=4. This ruse is permissible
since all' our expressions will involve a single,
overall trace in the y-matrix space, with the trace
constrained to give tr j.=4 when v=4. With v t4,
the overall trace in a consistent definition would
produce a dimension-dependent factor trl=f(v),
but the entire expression which multiplies this
factor is finite at v=4, and hence f(v) may be
replaced by f (4) =4.

We turn now to the single-gluon-emission pro-
cess depicted in Fig. 1(d). The squared matrix
element in v dimensions has the form
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(A6)

Here a scale mass v has been introduced to keep
the electric charge e dimensionless. The virtual-
photon spin-density tensor I.„„is obtained from the
square of the leptonic current. '

1—v(F) y„u(f),

averaged with the density matrix for the spins of
the e'e . Our calculation is simplified somewhat
by assuming that the e'e system is perfectly po-
larized along the magnetic field direction b, a di-
rection perpendicular to that of the electron, l.
In this case, I.„„has only the spatial components

A A

(A V)

[Cf. E(l. (1.5) of the text. As explained there in
detail, the result for general polarization can al-
ways be obtained from that for the perfect polar-
ization, Eq. (AV). ]

The normalization of the QCD coupling constant
g is specified by the interaction Lagrangian

g9'~u~a&+a ~ (AB)

where the color SU(3) generating matrices A.,
have an isospin normalization, so that, for exam-
ple

0 0

0 --'. 0

(o o o).
(A9)

Again the mass scale ~ has been introduced to
keep the QCD coupling constant g dimensionless.
We denote the v-momenta of the produced quark
and antiquark by p and p and that of the produced
gluon by k. Thus, momentum conservation reads

(A10)

The fractional charge of a quark of flavor f is
given by Q&. Using these conventions, the hadron
tensor H"" is given by

y'(p+k), , r'(P+k)H"= z' " tr gh,y', Qzy' Qzy' (- ), gX,y' y p(P+ k)

r (p+k) r (p+k)
(p+k)o g~ r -g~ r (p+k)2 Q(r" 'y'P ~ (A11)

Evaluating the trace and displaying the result in a, manner which makes current conservation manifest,

q„H "=0=H""q„,

we find

1 1H'" = 32~' "g' Q Q,
' —;,((q'g"" —q"q")q'+ [&"&"q' —(q" a'+ &"q") q b +g""(q a)']

f

+ [k"k"q' —(q"k" + k"q')q 'k+ g"'(q 'k)'][1+ (& —4)]j

1 +(o+o)' (F+o)* (A13)

where ~=p -p. This expression can be simplified when it is contracted with the lepton tensor I.„,; factors
which are proportional to q" or q" can be neglected since they are orthogonal to L „„,which is the state-
ment that the leptonic current is conserved. Thus, effectively,

H'" =64~ "g' Q Q,
' —([E'+E'+(-,'v —2)~']g"" —P"P" -P"P"—(-', v -2)k'k'),

.It'

where

(A14)

O'=E(l, p) p" =@1,p), k" = &u(1, k), (A16)

W=E+E+~. (A 16)

Contracting the hadronic tensor, Eq. (A14) with the leptonic tensor (AV) yields, according to Eq. (A6), a
squared amplitude for the production of a quark-antiquark-gluon final state given by
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l&3I'=84e'g'. "'"~2 g &,
'

W 2~ ~ 2E
.f

xl&'[I-(p'b)']+&'[I —(p b)']+(l -2) '[1 —(& b)']).

(A17)

The general definition of the double energy cross section, Eq. (Al), must be extended to a v-dimension-
al space-time by writing the phase-space integrals for v dimensions rather than four dimensions. Thus
we write

d'Z
dQdQ' J ] f 2 „,2' (2v)5 '(p+p+ p~-q)l T

x —' —' 8'"-"(Q -Q, )8'"-"(O' Q ).~ W W b

b, c=l

(A18)

We may now apply the dimensionally continued formula (A18) for the double energy cross section to the
production of a quark-antiquark-gluon final state in order g'. We consider first the partial cross section
d'& ""/dQdQ', where the quark and antiquark are detected with Q= Q„Q'=Q,— or Q=Q,—, O'=Q,
serting Eq. (A17) in Eq. (A18) we find after some calculation that

d2g (qq ) ~2 12-3vW 2v-8 g' ll (v)I'(v —1)
dQdQ' 242 W' (4v)" ' ~ 4w' I'(2v —2)

.f

x —,
' F(v, v —2; 2v —2; g)(sin2$+sin2$')

1

+ F(v —1, v —1;2v —2; f)(cosy —cosg cps'')(v —4)
(v —1)

(A19)

where F(a, b;c;z) is the usual hypergeometric
function. " Here

f = 2(l —cosx) ~ (A20)

cosg= b cosP'= b (A22)

where X is the angle between the two detectors,
while g and P' are the angles between the detector
directions and the magnetic-field direction. Spe- .

cifying the detector directions by x and x', we
have

cosg= t' 'f' (A21)

This geometry is illustrated in Fig. 8. Since the
hypergeometric functions approach 1 as f -0, we
see that the cross section (A19) is finite at f = 0
(y= 0) when the energy detectors are coincident.
This is to be expected since, when the quark and
antiquark are aligned, the gluon must carry half
the energy in the opposite direction. Thus the
gluon is neither soft nor collinear with another
massless particle and no divergence should ap-
pear On the . other hand, the cross section (A19)
diverges at f = 1 (y= vr), where the quark and anti-
quark emerge anticolline3rly. We can isolate
divergent pieces by using the series expansion"

F(a, b; a+ b; z) = », 2 [-ln(l —z) +2tII(n+ 1) —p(a+n) —if)(b+n)](1 -z)" (A23)
I'(a+ b) I'(a+n)I'(b+n)'
I(.)'1(b)' „, (nt)'

and keeping only the n= 0 term. Noting that as f —1, cosP'- —cosg, we find that the cross section in this
limit is given by

d2~ {qq) +2 +12-3vW 2q-8
17 88 4 2 1 ' ~ 2

dQdQ,
~™

24 W, 2 (4 )„, + 3Q('4 2 1 ] 21n
1 f

——', + '8' ——,
' v')(—', v —2) sin'$. (A24)

Here we have retained all the terms which, while integrable in v &4 dimensions, either produce divergent
integrals as v- 4 or integrals that are finite at v =4 but which are independent of the integration range.
The latter involve (v —4)(1 —f) whose limit is essentially 5(1 —g).

Let us turn now to the contribution d'Z ""/dQdQ' which arises when the quark (antiquark) and the gluon
are detected, i.e., when Q=Q, (Q=Q,-), O'=Qq, or O'=Q, (O'=Q,-), Q=Qq. These configurations give
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d2~ (22) +2 12-3vgp2v-8 g ls(v 2)is(v 1) I

dnd&' 24rW' (41r)'" ' ~ ' 4
' F(2v -3) 5(1 —K)

& 2(v -1)
X I, + —', (v —1)) F(v —1, v —1;1v —1;))(sinn) sin'()')

+4E(v —2, v —2;2v 3—;f)(cosy —cosg cosg') (A26)

This expression is singula, r at both g = 0 and f = 1, with

(A26)

and

d2g (i)2)
'

(22 ')(12-3iv'iy2is-8

(A27)

where the g —1 limit follows from the relationship"

I'(a+ b+ 1)
", , F' '"""=r(a,

l)r(baal)

Again, these are the contributions which are integrable in v & 4 dimensions but whose integral over an

arbitrarily small region either diverges or approaches a. constant when v approaches 4.
The limit v-4 can be taken in Eqs. (A19) and (A25) if r is kept away from t = 0 or f = 1. In this case

the hypergeometric functions reduce to simple logarithms and algebraic functions. These results can be
combined with the limits displayed in Eqs. (A24), (A26), and (A27) to obtain an expression for the total
real emission cross section that is valid for all values of g in the v- 4 limit:

d0d&' d~d' dd~'
12-3vp 2p-8

3Q 2

24)TW' . (4v)'" ' ~ 42'

2v —2 sjn 1 sin
37 (1 —f)

12$ 3

1P 16 4 12 10+ ———+—ln(1 —r) +———(cosy —cos()) cosg')

We should remark that such a simple form can be
obtained because the hypergeometric functions
IEqs. (A23) and (A28)] have uniform limits when

g —1 or f —0 and v —4. This would not have been
possible, for example, with a, function involving
(1 —5)" ' whose expansion in powers of v —4 is
accompanied by powers of ln(1 —l). In such
cases, the entire series must be kept since suc-
cessive terms give comparable contributions when

one integrates over g.
The complete energy-energy cross section will

be well defined, in a distribution-theory sense if
its integrals over small angular regions in 0 or
0' a,re finite in the limit v —4. This requires
that the singularities at )=0 and )=1 displayed

above cancel against singularities arising from
the order-g' vertex correction due to the virtual-
gluon exchange illustrated in Fig. 1(b) and against
the further singularities appearing at f = 0 due to
the real emission process with only one particle
passing through both "transparent" detectors.
The vertex singularities appear as a factor mul-
tiplying the zeroth-order cross section and thus
contribute in the anticollinear orientation f= 1.
The vertex singularities also contribute to the
collinear orientation because of the "transparent"
detector character of the energy-energy cross
section. To establish this cancellation, we need
an expression for the (v —2)-dimensional element
of solid angle appropriate to a v-dimensional
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space -time, v/2-1

I(-', v —1)
' (A31)

O'" 20'= Sinv 'ydyd" '0'

= 2[4&(1 —0)]'~' 'dfd" 'Q' (A30)

We use these forms to integrate Eq. (A29) over
small solid-angular regions near the collinear
orientation, 0 & g & f„or the anticollinear orien-
tation, 1 —g, ~ g ~ 1. Neglecting all terms whj. ch
vanish as g, —0, we get

d2~ (real ) +2 12-3v~ 2v-8
v~2 V'3n2 &

dQdQ' 6W' (41r)" ""' ~ ~ 47r'

x, , +, + (-ln g, —3 in&, ——, v + y —3y+4) sin )I)

2 ( 3+ 2y)
„—,'v -2) —,'v -2)

(A32)

l d2~ (real ) 2 12-3vgr 2v-8 ~ 3d" 0' CV K

dQdQ' 6W' (4v) "i""' ~ ~ 4m' 2 (—'v —2)
(A33)

where y=0. 577. . . is Euler's constant. These are the terms which must cancel the divergent 6(Q —Q')
and 5(Q+ Q') contributions mentioned above.

The "transparent" detector contribution for the real gluon emission process is obtained by inserting
~
T, ~' given by Eq. (A17) into Eq. (A18) and extracting only those terms with b = c, terms which have an

overall factor of 6(Q —Q'). A straightforward calculation yields

d2~ (trans ) +2 12-3vgr 2v-8

dQdQ' 6W' (4&)'"'" ' ~ 4 '

+
2..+, '

&, +(y' ——'y+ —"' ——'w') s'n'g+-'(3cos't) —))I,(2V —2~ ~ 2V —2j 2 24 6 3

(A 34)

where we have retained only those terms which are nonvanishing for v=4.
The order-g' correction to the vertex, illustrated in Fig. 1(b), appears in v dimensions as

(d"u) 1 .y ~ (-p+a), y (p+u),
(2v)" P ' (-p+ f )' (p+ u)'

We shall calculate this vertex on the zero mass shell with, effectively, yP =0= yP. We perform some
simple y, and A., matrix algebra and write the vertex in the form

+ —(v —&)4").' —vk'y ))+4(p —. p)'y ).
IV

1 1 1
l' —2P '). ).'+2) ) ~ 2v )

The integration converges in the region 4 & v &6 for all the terms except those enclosed in the last square
brackets. The latter terms are both infrared and ultraviolet divergent at v=4, and there is no value of
v for which they give a convergent integral. Thus, these terms must be separately regulated, for example
by the replacement 1/JP —1/k' —1/(k'+A'). However, as we shall now prove, they are exactly canceled
by the wave-function renormalization of the vertex. "

The second-order self-energy correction to the quark propagator corresponding to the graph shown in
Pig. 9 is given by
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(d"k) 1 1
Z (p) = -iK

(
)„—~ ( )~ggqy y

' (p +k)gpss'yq

(d"k) 1
i ', -g'(-v —2)1(.

""
( )„p ( ),-y (p+k). (A37)

Here it is to be understood that the gluon propaga-
tor 1/k' has been suitably regulated so as to make
the integral converge. Now with symmetric k in-
tegration we have, effectively,

1 1 1 1

(p+k)' 2 (p+k)' (p

Accordingly,

(d'k) 1 1

(2 7(')" k' k' + 2p ' k
(A42)

2p~ k
(p + k)'(p —k)' (A36)

With p'= 0, this (suitably regulated) integral is
otherwise independent of p". Thus, we may write
the renormalized vertex as

Moreover, after combining denominators, trans-
lating k, and integrating symmetrically,

1
(p k)(~ k)--(r P)k'+(r P)P'".

V
(A39)

6Z&p = -Z(p) ~,.,
Hence the P' terms in Eq. (A39) can be neg-
lected, and effectively,

(A40)

1 1 1 1
y u=-- + ~(p+ k)' v k'+2p k k' —2p 'k &'

We are interested only in evaluating the quark
wave -function renormalization constant 5Z, which
is the negative of the coefficient of yP in Z(P) at
p'= 0,

r,',„=r'+ czar"

= I' + i -', g'v' '

(d k) 1 1 1

(2w)' k' (' —2P (. k'+2( '(1)

x —(v -2) y'.2

2U
(A43)

1""...(-p, p) =y"1(2p p), (A44)

and we see that the badly behaved term in the ver-
tex integral (A36) is precisely canceled by the
wave -function renormalization.

The renormalized vertex can now be evaluated
by standard methods, and we obtain

2 1
vk +2p (A41)

where

2p op v/2 2 1
I(2p p) = -', g', (4~).gg

x(r(v/2 2)]'"' '/"
1(v —2)

x t -v/2 —2(v/2 —2)']. (A45)
A
bji

AI With the vertex function in hand, the virtual-
gluon correction to the zeroth-order cross section
can be evaluated easily. This interference con-
tribution to the quark-antiquark squared amplitude

FIG. 8. Geometry for the energy-energy cross-sec-
tion experiment for the case of perfectly polarized,
e'e beams. The two detectors are stationed in direc-
tions x and f" with relative angle y. These detector
directions are respectively at angles g and g' relative
to the magnetic field direction (the polarization direc-
tion) denoted by b.

p+4
FIG. 9. Quark self-energy insertion giving the wave-

function renormalization.
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is given by [cf. Eq. (A6)]
4 8-2v

larized lepton tensor L„„gives
2 2 0 2-20

x +3Q&'try"y py"y 'p2ReI( W')-.
f

(A46)

Here the kinematics of the two-particle production
requires that 2p 'p = —8' and p= —p. Calcuj. ating
the trace and using Eq. (A /) for the perfectly'po-

x Q 3Q/ [1 —(p 'f)) ]2 ReI( —W ) .

(A47)

We introduce this into the dimensionally continued
double energy cross-section formula (A18) to com-
pute the virtual-gluon exchange interference con-
tribution. We find

Q 30' s(n'3[3'""(0+0')+ ll'" "(0—0')] —(,) 3Rsi( W'), (A48)

where 6 '" 2)(0+ 0') denotes a solid-angle 6 function for the anticollinear orientation and arises from de-
tecting the quark and antiquark, while the collinear 6'" '(0 —Q') arises from the "transparent" calori-
meters detecting a, quark or antiquark.

The total 6-function contribution in the collinear direction is obtained by summing Eqs. (A34) and (A48)
to obtain the v- 4 limit

d2g (col ) +2 12-3v~~y2v-8

6W2 (4 )
(3/2)Q-R ~ Qf 4 2

n 3 "(0—0') —
3

+(- —'1+—'") s(n'3s -,'(3oos'3 —1)I,

(A49)

while the 6-function contribution in the anticollinear orientation is found from Eq. (A48) to be

6W (4 )(2/2)0-() ~ / 4 2
( y2 2)2

+
( y2 2)+a / + y — + — ) s

(A50)

Using the 5 functions, we can integrate these contributions over the small patches about the collinear and
anticollinear orientations. Adding the integrated Eq. (A49) to Eq. (A33) gives the finite v —4 limit:

f 2 Q/2 2
d" 20', =, g 3Q&' 2 [(—', in)0+ —,",)sin2$+ -', (3 cos'(I) —1)],

0~0-(0 f'
while summing Eq. (A32) and the integrated Eq. (A50) also yields a finite ]/ —4 limit:

(A 51)

l a'Z 2 2

d" 'O', =, P 3Q&' 2 [—in'$0 —31nr, —4 —n'/3]sin'g.
f

We see that the energy-energy angular correlation function is indeed finite in a distribution-theory sense.
As a final check, let us verify that the sum rule (A5) holds in order g'. Equations (A51) and (A52) give

the integrals over small patches surrounding the integration end points. Thus we need only integrate over
the intermediate range g, & g & 1 —$0.. In this region, the energy-energy cross section is everywhere finite
so that we can set v=4 in Eq. (A29), use the law of cosines to relate P' to ]I) and y [cf. Fig. 8], and secure
the integral

~

~

dZ 2

30 , =,P 30 '', ln 3+ —')n( + —',"'+,—sin'(ts —'(3 sos'3 —1)I. (A53)



ENERGY CORRELATIONS I& ELECTRON-POSITRON. . .

Adding this result to Eqs. (A51) and (A52), we
note that the logarithms of the small angular cutoff
fo cancel, as they must, and we find that

f d'Z ~', g'
dQdQ' 2W' ' ~ 4 '

This is identical to the O(g') energy pattern, Eq.
(1.7) (with P=1), verifying the sum rule.

(As4)

This function obeys a sum rule expressing energy-
momentum conservation,

APPENDIX B

The energy-energy cross section involving the
production of quarks and gluons was calculated in
Appendix A. However, in order to make connec-
tion with experiment, we need to estimate two ad-
ditional effects. First of all, there are modifica-
tions of the perturbative @CD result caused by the
fragmentation of quarks into the observed hadrons.
Second, the semihadronic decay modes of heavy
leptons contamiriate the data. In this appendix,
we shall analyze these two processes within a
common framework which describes the fragmen-
tation corrections to the members of the energy-
cross-section hierarchy. The specific effects of
the two types of fragmentation will then be eval-
uated using simple phenomenological models.
Rough approximations will suffice for the heavy-
lepton corrections since they are very small at
high energy.

%e begin by reviewing the effects of fragmenta-
tion upon the energy cross section dZ/dQ. (A

more complete discussion is found in Ref. 9.) The
fragmentation of the parent (a quark or a heavy
lepton) moving with momentum p produces a num-
ber dn of hadrons in the momentum interval (d'h)
given by

dn= 0 f,(h;p) .(d'h)
h

(B4)

where

&,(n)= fh dhf, (h;p), (as)

and g is the opening angle between the parent and
the observed hadron, cosg=p 'h. From the ener-
gy component of the sum rule (B2) we see that

QQP, q =1, (B6)

and hence

r d'E
yn 0„,.

The general formula (Bs) will now be applied to
models representing the two types of fragmenta-
tion. First, we consider the fragmentation of a
quark. Taking for convenience that the annihilat-
ing electrons and positrons are completely po-
larized, the lowest-order cross section is given
by

do
dQ 2W' ~ (as)

where $ is the angle between the quark momentum

p and the beam polarization b. Guided by experi-
ment, we assume hadronic scaling so that the
quark-fragmentatiom function depends only on h,
and z = 2h„/W, with h „and h, the components of the
hadronie momentum h that are parallel and per-
pendicular to the quark momentum p. Thus

the contribution from each of the two parents which
are produced back to back in the laboratory frame.
Extracting the solid-angle element dQ of the de-
tected energy from (d'h) =dQh'dh, we may ex-
press Eq. (B3) in the convenient form

f h"y, (h; ) p (B2) f,(h;p) =f,(z, h, ) . (B9)

The fragmentation correction and the QCD effects
are small at high energies. Hence, the fragmenta-
tion effect Bt high energy can be calculated by as-
suming that the parents of the hadrons are pro-
duced with the lowest-order two-body cross sec-
tion dad/~QThe part. ial energy cross section
with hadrons observed in a phase-space volume 4
is given by

We also assume that f,(z, h, ) decreases rapidly as
the transverse momentum h, increases, such that
311 moments of the h, distribution exist, and that
there is little backward production so that the
scaling variable z may be limited to the range
0 &z &1. Hence the angular distribution E, (g) de-
fined by Eq. (B6) vanishes in the backward hem-
isphere (q & v/2), and in the forward hemisphere
(q & v/2) it is given by

&+p o i h~p + 1 hi-p z,(n)= —„', f) ~)y(z), , (B1O)

The two terms in the brackets of (B3) represent
Making the simple change of variable h= h, /sing,
we have
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tion axis 5. We have included factors of the semi-
hadronic branching ratio P for the heavy lepton
since the purely leptonic decays can be excluded
from the data. We shall account for the fact that
the undetected neutrinos carry away on average a
fraction 1 —y of the energy by multiplying our
final result by a factor y. We construct the frag-
mentation model in this case from the assumption
that the decay distribution of the heavy lepton is
spherically symmetric in its rest frame. The
lepton fragmentation function is thus given by a
simple phase-space model which depends only
upon the Lorentz scalar —(p —h)',

f,(h;p) =f,[-(P —&)'], (823)

yielding, when inserted in (85), an angular dis-
tribution

M
(q) =—(1 —v cosy) ', (825)

and v=p/p' is the velocity of the heavy lepton.
Thus, introducing the variable

, (1 —v cosy),
AR'

M
(825)

which has the kinematic limits 0 ~ x ~ 1, we can
write

-(p -a)'=~'(I x)

and obtain

(827)

2M 1F(O)= ,~, (l, f x f[M ((*-,x)]*d . x

(823)

x,(c)=y~ f)s'd)() [ (t'-)s)']. - (824) The value of the integral can be obtained from the
normalization condition (86), yielding the result

We shall assume that the mass of the produced
hadrons can be neglected and take h =h. This
should induce little error since most of these
hadrons are pions. The kinematical constraints
-(p -h) & 0 and (p —k)'& 0 are tantamount to the
restriction 0 (h (k,„(g) where, with p'= W/2,

4 Mx 1
&,(n) =

W) [1 —@cosy]'
'

Equations (84), (822), and the law of cosines now
give, including the factor y for the fraction of the
energy carried off by the detected hadrons,

yZ fn' l 4M'
Il+ &. )]Isis*(+] [(slo'c)+, (cos'o) (secs't) —l)I . (830)

(sin'q) = 4M'/W' (831)

The energy-weighted averages can easily be com-
puted using (829). In the high-energy limit

average number of hadron pairs d'n produced in
the momentum interval (d'h)(d'h') from the frag-
mentation of a parent with momentum p,

(d'h) (d'h')
(833)

]I'a . ~ 4M—=P'y~, sin'g+, (3 cos']C) —1)

(832)

Energy-momentum conservation imposes the con-
straints"

d'k '
0"f,(h, h';p) = (p' -h")f,(h;p) . (834)

We now turn to the evaluation of fragmentation
effects for the next member of our hierarchy, the
energy-energy cross section. Since this quantity
involves a two-hadron distribution, we must in-
troduce another function f, (h, h' p) which gives the

A general expression for the energy-energy cross
section in terms of the fragmentation functions
may be written in a manner similar to that used
for the energy cross section:

d&dA' ~ d& h k' O' 8'

x [[f,(h;p) f,(K';-p) +f2( h, K',p) + h 5(h -h') f,(h;p)]+ [ p -p]] .

The first two terms within the brackets correspond to the cases where the hadrons arise from the frag-
mentation of distinct parents and from the same parent. The third term within the brackets is a conse. —

quence of our prescription dealing with coincident detection. It is easy to verify from the energy compo-
nent of the sum rules (82) and (834) that Eq. (835) obeys the normalization
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J
d s

dndn
""-dn

As before, it is convenient to express Eq. (835) in the form
2 ~ g

d+~~1=4 dP ~~ +1 1 +y & 1 ++I ~ 1 +] 1 ++2 1P 1 PX ++2 ~ 1&~ "1 PX y

where we have used (85) and defined

(836)

(837)

.2. '
F,(n, n', X) = h'dhh' dh'[f, (h, h';p) +h 6(h —h') f,(h;p)]. (838)

Here q and g' are the two opening angles defined
by cosy =p h, cosy'=p 'h', and X is the angle be-
tween the hadronic momenta, cosX=h 'O'. It fol-
lows from the sum rule (834) that

(839)

Assuming scaling, the two-particle function for
the fragmentation of a quark can depend only on
the variables z = 2'�„/W, z ' = 2k, ', /W and h„h,'.

~~~ = ~~ which implies that g = 0 and g' =X. Here the
angular distributions F,(q) and F,(q, ))', y) are ra-
pidly va. rying in 71. We can expand the dependence
of the rest of the integrand on the variables 0, and
71' as power series in the small opening angle 71

for fixed X; the dominant pieces are obtained from
the zeroth-order term of this series. Hence, the
integral is evaluated over this region by taking
dA, = dQ, do/dfl~=do/dQ, and )) '= y, yielding the
contribution

f,( h, h ';p) =f,(z, h, ;z ', h,') . (840) 1 d Ci'

F,(m —y) dQ F,(q) + dQ F,(q, )l, )()4 dQ

The general features of the double angular. distrib-
ution I'2 can be deduced by using methods similar
to those employed in the analysis of the single
angular distribution I', . Thus, by changing inte-
gration variables in (838) from h and k' to h, /sin))
and h,'/sin)l', we find that when both opening angles
q and q' are large compared to 1/W, F,(g, q'; )(') is
proportional to 1/W' in the high-energy limit.
However, we cannot determine the coefficient of
this energy factor for the two-particle fragmenta-
tion in a model-independent way as was done for
the single-particle function [Eq. (812)]. Although

F, is quite small in this angular region (of order
W '), it is strongly peaked when either of the two
opening angles becomes very small. This peaking
is required by the normalization (839) since F,(q)
is of order W '.

Armed with these facts, we can now extract the
leading contribution to the energy-energy cross
section from quark fragmentation. We observe
that evaluating the integral over the soj.id angle
0 in (837) yields nonleading contributions as8'- ~ except for small angular regions about
directions which are aligned either collinearly or
anticollinearly with a detection direction 0 or 0'.
These are regions where the value of an opening
angle approaches 0 or 7t with the integration in-
cluding a, fragmentation peak. (We shall constrain
the angle X between the two detectors to be away
from 0 or 7T. If X=O or z, the interaction would
run simultaneously over peaks for both opening
angles. ) As an example, consider the contribution
which comes from integrating @ver the patch about

(841)

The values of the integrals appearing here are
determined from the normalization constraints
(86) and (839). That they do not extend over the
full so),id angle is of no consequence since the
leading terms in both cases are obtained from
small angular regions. Thus, the result of the
integration over the patch about Q~= 0 is

do'

4 d
—„fF,(v-X)+F,(X)). (842)

(PZ C (hg . , do der

d~d&' 4m
' W d& dQ' (844)

We shall show later, after some travail, that the
corrections to this formula are of order 1/W'.

The forms (843) and (844) for the fragmentation
effect on the energy-energy cross section are, as
remarked above, not valid for X-0 or X-p. In

particular, they do not obey the normalization
condition (836). However, we may use these
forms to evaluate a moment such as (sin')() which

The inclusion of all such regions in Eq. (837)
yields

2„,—,, =l()",()) )",( -x)1(„—„+„„,). ())4&)

Using the distribution function F, given in Eq. (812)
for )(' &))/2 and noting that, since sin(v —y}=sin)(
the contributions to the forward and backward
hemispheres are identical in form, we find (0 & y
&v)
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involves a function that vanishes sufficiently ra-
pidly at y= 0 and y = m to ensure that. the contribu-
tions of the integration range with siny «(h, )/W
are negligible. In order to emphasize the sym-
metry of the fragmentation effects, we consider
separate averages of sin'y in the forward (y & v/2)
and backwar'd (y & m/2) hemispheres, defining

1 2 d Z(sin'y)z— dQdQ' sin'y, (845a)
tot X«/2

with X0, the quark-fragmentation contribution to
the energy-energy cross section may be expressed
entirely in terms of the single-hadron distribution
Il, plus a remainder which is of order 1/W'. To
do this, we introduce a two-particle correlation
function c(h, h', p) by writing

f,(h, h';p) =f,(h;p) f,(h', p) + c(h, h';p) . (848)

The energy-momentum sum rules (82) and (834)
and the decomposition (848) of f, into uncorrelated
and correlated pieces give

d&(sin'i) = f diidQ'sin'x, . (B45b)
tot X&if /& dQdQ' r d'h '

h "c(h,h', p) = -h"f, (h;p) . (849)

Using Eq. (843), we find that to leading order

1 dZ
(sin'y)r = dQ' sin'yE, (y) dQ

&&~tot

= (sin'q)

= (sin'y)s . (845)

The forward and backward averages of this mea-
sure of the ang~. e between, the two energy detectors
are thus identical in leading order and equal to the
measure of the average jet opening angle defined
in Eq. (820). This is in sharp contrast with the
QCD behavior.

A parallel treatment of the contribution of the
semihadronic decays of a heavy lepton to the en-
ergy-energy cross section is hampered by the fact
that energy is carried off by neutrinos which are
not detected. The heavy-lepton contribution is,
however, roughly similar to that made by quark
fragmentation except that, on average, a fraction
(1 —y) of the energy is carried off by neutrinos
and not detected. Since the heavy-lepton effects
are very small, this rough similarity provides a
sufficiently accurate estimate. Hence we may
use the angular distribution (829) in the general
formula (843) along with an additional factor of
y' to get

2@2 ~ 4 1
dQdQ'. m W (1 —v cosy)' (1+v cosy)'

Assuming that the detectors are not coincident,
we may insert the decomposition (849) into the
general fragmentation formula (835) for the ener-
gy-energy cross section to get

dndn
=' '"

du '"'"""'-""d Z j dO'

x [E,(q') + Z,(~ —7l')]+ R+ R,
(850)

where R (R) describes the correlated fragmenta-
tion of the quark (antiquark),

dQ hdhh dhchh p,
(851)

with p given by an entirely similar expression
save for p being replaced by p= —p. We shall
now prove that if the detectors are not collinear
(y -0), then R (and hence also R) is of order 1/W'.
Thus, with y c 0 and to order 1/W', R and R can
be neglected in Eq. (850) and the quark-fragmen-
tation contribution to the energy-energy cross sec-
tion is expressed in terms of the single-particle
distributions F

With the scaling hypothesis, the correlation
function c depends only upon h»h,', h, 'h,', z =2h„/
W, and z'= 2h, ',/W. Recalling that the angles be-
tween h, h', and p a,re denoted by g, q', we have

dQ dQ' (847)
h =h, /sing, h'=h, '/sing',

with the heavy-lepton production cross section
dc/dQ' being given by Eq. (822).

We have found that, for detectors which are not
collinea. r (y= 0) or anticollinear (y = m), the leading
contribution is of order 1/W and arises from un-
correlated quark fragmentation while the heavy-
lepton contribution is negligible, of order 1/W'.
Conceivably, there could be quark-fragmentation
contribution of, say, order lnW'/W'. We turn
now to show that, this is not the case but that,

2h~, 2h,'' coty, ~'= ' coty . (853)

Choosing h, and h,' as the integration variables
gives

1 do' h~2dh~ h,' dh~
TV' ~ dQ sin'g sin'g'

x c(h„h,', h, 'h,', z, z') . (854)

The h, and h,' integrations are effectively bounded
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p)i

A
P Ai

FIG. 11. Coordinate system used to specify the dir-
ection of the quark momentum/ relative to the plane
of the hadron momenta in terms of the angles g' and X.

by the cutoffs in the correlation function c. Hence
Eq. (B54) is of the order 1/W displayed by the
first factor except possibly for integration regions
where q or q' become very small. Since XXO,

g and g' cannot both be small simultaneously.
Since there is a complete symmetry between g and
g', it suffices to consider the case when q' is
small. Let us initially set up a coordinate system
with h' lying along the z axis and h lying in the
x-z plane as shown in Fig. 11. The quark direc-
tion p is now specified by a polar angle ti' and an
azimuthal angle A. , with

FIG. 12. Coordinate system which defines the new
azimuthal angle v .

h, h,'=h,h„'cosv (B57)

and, on comparing with Eq. (B56), to first order
in sing',

h, h„'= -h,h,'(cosA —sing'sin A coty),

where y is the angle between h and O'. It will
prove convenient to refer to a new coordinate sys-
tem where p is taken to lie along the z axis with
h lying in the x-z plane as illustrated in Fig. 12.
Now the orientation of h' is described by the polar
angle q' and by an azimuthal angle I(. . In terms of
this new azimuthal angle we have simply

dQ~ = dA. Sing'dg'. (B55)
and

cosA, = -cosw+ sing' sin'g cot/ (B58)

We see that the integral in Eq. (B54) involves a
factor (sing') ' which might give large contribu-
tions counterbalancing the first 1/W' factor.

To investigate this possibility, we can expand
the remainder of the integrand in powers of sing'.
Only terms of zeroth and first order in sing' give
rise to potentially large contributions so that we
need only examine these terms. We must except,
of course, a' = (2h~/W) coty' from this expansion.
To first order in sing',

dA. = dv(1+ sing'cosa coty) .
Moreover, to first order in sing',

sing ~ sinx+ sing' cosy cos~

and

coty = coty —sinrj ' cosv(siny) ' .

(B59)

(B60)

(B61)

Therefore, the potentially large terms involving
(sinrj') '

and (sing') ' are contained in

+sing 2 . 3 4K . 2, jlq 4&qAq Qk~ 1 + sl.n'g cosK' —2 cot/8" sin'g sin'g' dQ ~X

2hj 2kj+ c Pl A A A cosK cotX cot'g (B62)

Here the quark production cross section do/dQ~ should also be expanded about p =h', keeping zeroth- and
first-order terms in sing'. The only facet of this expansion that we need is the fact that terms linear in
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sing' correspond to small devi. ations of p
in sing' must be accompani. ed by a single
tially large pieces depend upon integrals

1

d 'dy, , h„"dh,' sing ' cos~san'q'
sin 'sing

c h„h,', h,h,'cosv, ' coty, ~' coty'
(863)

from h' that lie in the x-y plane of Fig. 12. Hence, a term linear
factor of cosA. ~-cosv or sink = -sine. Accordingly, the poten-
of the type

All of these integrals are, however, controlled by the four-momentum sum rule (849). Since small sinz)'
corresponds to large h', we may neglect the mass of the produced hadron and take h'= h. Evaluating the
p=0, p, =x, and p, =y components of the sum rule (849) in the coordinate system of Fig. 12 gives

h,"dh,'
1

2h, 2h,'sing'cosz g h„h,', h,h,'cosy, ' coty, ' coty'

sing' sine

1/sinzt !! (864)

0

Replacing z) by )t, we see that all of the integrals in Eq. (863) may be expressed in terms of
h,f,((2h,/W)coty, h,) and hence Eq. (862) has the form

R„.„,-— h, 'dh, f, -1, 1
(865)

Thus we have proved that R and R are indeed of order 1/W' if y c0.
With the neglect of the order 1/W' correlated fragmentation corrections, Eq. (850) can be written as

, =4 d'Qp F, g +F, p —g F, q' +F, 7t —q' (aee)

We shall now use this result to refine the argu-
ments leading to the formula (844) and prove that
it is indeed accurate to order 1/W'. Since F,(z))

is of order 1/W unless z) is small, the angular in-
tegration in Eqs. (866) gives terms of order 1/W'
except for regions where the argument of one of
the F, functions is small. Let us consider, for
example, the region where 0 & q & e with e «1.
Except for the factor of F,(z)), the remainder of the
integrand is of order 1/W, and it is well behaved
as a function of g. Let us denote this remaining
factor by W G(p) so that we are investigating in-
tegrals of the type

Since F, does not involve the azimuthal angle P,
the P integration produces

1G=-
27T

dyG(j). (BV0)

This integration removes odd powers of sing from
G since, according to Eq. (868), these odd powers
of sinz) are associated with odd powers of cosp or
sing. Moreover, cosz) is an analytic function of
sin'g for small p. Hence we may write

G = G(0) + sin'ztG, (sin'q), (BV1)

where G(0) is the value of G(P) when P is aligned
with h. This decomposition gives .

f=— d&,F,(q)G(j) .F' (867) 1f=—G(0)
W

dn, F,(q)

We use the spherical coordinates

p = cos'g

P„=sinz) cosQ, p, = sinz) sin&]&

with

do~ = sinz)dz)d&f& .

(866)

(869)

2r+ — dz) sir 'zt, (z1)G, (sin'z)) . (872)

dQ F,(z)) = 1 + O(1/W) .
Qcq (6

Since F,(z)) is of order 1/W for z) & e, the sum rule
(86) evaluates the first integral above,
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To evaluate the second integral of Eq. (872), we
use the variable h, =h sin)7 in Eq. (85) to secure I=—G(0) + O(1/W') .

W
(Bv5)

dg sin 'gF~ 'g G~ sin 'g
0

I

dhl h, 'dh, f, (
—'

eo(tl, k,)G, (sin'q) .
0

(Bv4)

The integration over h, is finite in the limit R'- .
Hence, Eq. (874) is of order 1/W' and we have
proved that

,+ O(1/W'), (876)

which proves that Eq. (843) and hence Eq. (844)
are accurate to order 1/W'.

Using this result for all the regions where the ar-
guments of the F, functions in Eq. (866) become
small, we get

d2

„„„„,=!(+,(x) +~,(~ - x) ] „—+„„,)
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