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It is shown that in the framework of factorizable models with no transverse dimensions, simple
considerations of the elastic cross section cr„can provide much information on the asymptotic structure of
multiparticle events. Effectively, we determine the stable equilibrium configurations of' an an'alog Feynman-
Wilson fluid with nearest neighbors interacting via the analog potential V(y) = —incr„(y). Various
interesting phenomena are traced if V(y) exhibits spontaneous symmetry breaking. These are illustrated in.
the context of a specific model with Koba-Nielsen-Olesen scaling, which leads to a higher-order phase
transition. In particular, we find that one-gap production is favored asymptotically, while two or more gaps
(of equal size) are produced with quickly decreasing probability. At the "walls, " or between two gaps,
metastable structures of a definite mass spectrum are developed. Asymptotically, we have o.„—cr„and the
implications of this result on Koba-Nielsen-Olesen scaling are discussed.

I. INTRODUCTION

It has been shown' quite generally that the Koba-
Nielsen-Olesen (KNO) scaling hypothesis' implies
a critical behavior for the Feynman-Wilson (FW)
fluid' at asymytotic rapidities Y, unless the Mellin
transform Q(z, E) of the generating function Q(g, Y)
suffers an accumulation of singularities with
ReS- when the "fugacity" z lies near unity. In
the latter case, the FW fluid analogy breaks down,
since there is no thermodynamic limit in the clas-
sical sense. ' Assuming an asymptotic behavior of
the form

P(&) = (n)o„(Y)/o;„(Y)-e '"",

x=n/Q), a&0, K& 1,
for the KNO scaling function, the following behav-
iors were found for the average multiplicity, mo-
ments of the distribution, and analog pressure, re-
spectively,

(n) ~ Y' ", C,=(n')/(n)'~ q"',
p~ co q~ OO

p ~(& 1)1/ u-n)

where 0&r/=1/x&1. These agree, at least to first
order in the E expansion, with the results obtained
with the absorptive-model (AM) cutting rules' in
Reggeon field theory (RFT).' The latter result,
giving the rightmost singularity of Q(z, E) in the
E plane (E=j —1), which is identified with the ana-
log pressure, shows the precise nature of the z-

+ ln(y,.—y, ,) + const,
v+1

o„(Y') = const x (n+ 1)"/'Y '""'/'
x exp[-a(n+ 1)"/Y" '], (4)

which are exact for e= 2 only, but for our purpose
are good approximations of the exact series rep-
resentations obtained' for general values of z& j..
Note that the effect of the transverse dimensions,
which is ignored, has left its trace into z1, and

plane singularity which is responsible for the criti-
cal behavior of the FW system at Y-~. It is
worth rioting that the Abramovskii-Gribov-Kancheli
(AGK) cutting rules' in -RFT do not seem to allow
for FW fluid analogy.

Since the FW fluid lives in one dimension, stan-
dard methods of classical statistical mechanics'
allow the determination of the analog "potential in-
teraction" V(y) between the FW-fluid molecules,
provided that only nearest neighbors interact, from
a precise knowledge of the functional form P= P(g).
Hence, under the assumption that hadrons are pro-
duced from a factorizable multiperipheral chain,
V(y) has been determined, ' and also the elastic
cross section o„(y)= exp[-V(y)], whose multipe-
ripheral iteration builds up the n-hadron production
cross section o„. The asymptotic behavior (1) of
the KNO scaling function leads' to the specific re-
sults

a
V(yt rye-1) / Ate 1, -

gi-i)
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exp[-V(y)] may be thought of as being the effective
(f-integrated) propagator relevant to the multipe-
ripheral model.

Let us stress at this point that the potential (3) is
of infinite range, and in fact increases logarithmi-
cally with distance; hence the one-dimensional
"lattice" with lattice points interacting via (3) can
exhibit a phase transition. It is in fact clear that
the series of calculations which led from (2) to (3)
can be reversed, ' hence we can explicitly see that
the interaction (3) implies a singularity of the form
(x —1)'~ u "' in the fugacity plane.

We have already pointed out' that the "micro-
scopic" origin of the singularity in the z plane must
be searched in the spontaneous-symmetry-break-
ing (SSB) phenomenon exhibited by V(y). Indeed,
it is easy to see that considering three successive
particles 1, 2, and 3 produced on the rapidity axis,
if the distance y, -y, is small, only one symmetric
minimum-potential-energy state exists for particle
2, at y, =(y, +y, )/2. But a critical distance y, ex-
ists, such that if y, -y, &y, the stationary point of
V(y, -y, )+ V(y, -y, ) at (y, + y, )/2 changes charac-
ter and becomes a local maximum, while two ad-
ditional symmetric minima appear.

This property suggests that some sort of conden-
sation phenomena must take place in the FW fluid
before the phase. transition, no matter how it man-
ifests itself '*macroscopically", actually takes
place at F-. It is precisely these phenomena
that we want to investigate in this work.

The plan of this paper is as follows: In Sec. II
we discuss the stable equilibrium configurations
of a one-dimensional system, whose nearest-
neighbors interact via V(y); these configurations
correspond to the most likely distributions of had-
rons in rapidity space. In Sec. III we generalize
our results to any case where s "&o„&const (y&0)
asymptotically, and compare the recent findings
of RFT with ours. Finally, our conclusions are
given in Sec. IV.

II. EQUILIBRIUM CONFIGURATIONS OF A ONE-

DIMENSIONAL HADRONIC SYSTEM

Consider ~ hadrons produced via a factorizable
mechanism, which strongly suppresses the trans-
verse phase space, with rapidities y; (i
= 1,2, . . . , ~; y, , ~ y,.}. The total rapidity available
is F (see Fig. 1). The discussion ls being made
in terms of an analog one-dimensional FVf system
whose nearest neighbors interact through the po-
tential (3). Hence, the stable equilibrium config-
urations of the system correspond to the most like-
ly distributions of hadrons on the rapidity axis, and
the classification of multiparticle events can be
made in terms of these configurations. The end

Yn-3 &n-~ &-
E

y„- Y

FIG. 1. Production of n hadrons in rapidity space. The
target (y =0) and projectile (y = F) form the walls of the
"container" of the one-dimensional analog Feynman-Wil-
son Quid.

(y.= o, y„„=I') (5)

and the equilibrium of the Xth particle is expressed
by" the conditions

& ~tot —v (y)„-y, ,) -v'(y)„, -y), ) = 0, (6)

Q2 p'" = V"(y~ —y~-i)+ V"(y"i —y.}& o
ay„

where primes denote differentiation with respect to
the argument. The second condition guarantees
the stability of the equilibrium (maximum on top-
ological cross section). After the substitution of
the expression (3) for the potential and of the in-
verse differences (y, -y, ,) ' =x„conditions (6) and
(I) read:

xi+1 g (xx xx+1) &

IC
'

lC

g= («+ I)/[2(« —l)a],
Q2 p'"' = «(« —1)a[(x," ' -g/«)x„'

(8)

&0.

+ (x„,"-' -g/«)x„, ']

For simplicity, we restrict ourselves to a integer;
however, the same approach can be followed for z
rational. Condition (8} is now fulfilled if either of
the following two conditions is fulfilled

X)( Kg~ $

p-" 0

e p~i p+x &x+j. -g (10b)

In what follows, we distinguish between three re-
gions of values that the inverse difference x„can
take.

(i) If x~&g'j~" ~'=y, ', for some X where yo is
the minimum point of the two-particle potential,
(10b} cannot be satisfied, since its left-hand side

points 0 and z+ 1 (target and projectile) are rigidly
placed at the positions y = 0 and y = F and form the
walls of the container of the system.

The total potential energy of the system is given
by

n+1

V...(y. , y. ,",y.)= g V(y;-y~. )
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is clearly greater than x,"-', and the only solution
of (6) is (10a) (for every X) for which (9) is ob-
viously satisfied. Hence, if at least one distance
x~

' = y~ -y„» = o, is less than y, we can only have
one "symmetric" solution

a(n —p+ 1) «+ 1
+

2 (n —p+ 1) inp

ap K+1
+ „+ plnP, (16)

. X1 I X1+1

l.e. y (13)

31 311 Pv yX+1 yX

where

This solution coexists with the symmetric one,

~ 1
+X+l

l.e. ,

yX y1 1 ye+1

x1=x1„=o.'(c( y()),
' -»

1.e. ,

1x -&~-»=~&+i &&= » y

which corresponds to the only allowed stable equi-
librium configuration. Since the condition F
= (n+ 1)()(&(n+ 1)y, for n fixed can only be fulfilled
for F finite, this configuration is not possible as-
ymptotically. It involves a system of strongly cor-
related hadrons in rapidity space and the value of
the potential (5) at equilibrium gives a measure of
the production cross section:

do'
= exp(- V„,)

7» 72' ' '

= exp[-(n+ 1)V(n)] . (12)

(ii) If -' =(g/«)"'" "&x &g"'" "=y,' for some
X, where g, = y,/2 is the point of. inflexion of the
two-particle potential (3), it is easy to see that
Eq. (10b) has one (and only one) real positive
"asymmetr ic" solution-, namely

is an increasing function of p for large p and takes
its minimum value for p=1. Moreover, since p

~ for F ~ we easily see from (10b) that p
for

(iii) Finally, we consider the case where x &(g/
«)' '" ' =y, ' for some X. It. follows from (9) that
the symmetric solution does not correspond to a
stable configuration. We are brought back to case
(ii) with the roles of P and P interchanged [P &P or
x1&x„„,as seen from (10b)].

From the above discussion we arrive at the fol-
lowing picture of multihadron production: For suf-
ficiently small F the most likely configuration in-
volves hadrons equidistantly spaced in rapidity
[see Fig. 2(a); there is only one "phase" of finite
density present]. However, if the total rapidity
available for the production of ~ hadrons becomes
greater than (n+1)y„ the Stable asymmetr'ic solu-
tion will manifest itself as at least one gap in the
distribution of hadrons in rapidity space [see Fig.
2(b); we have coexistence of two "phases, " one
with finite and one with zero density].

To gain further insight into the structure of the
multiparticle events one could calculate the mo-
ments (r~)(r= dy) of,the gap distribution
exp[-V(r)], as suggested by PirilÃ and Thomas, "
which are related to the coefficients of the cluster
expansion in short-range-order" models, However,
in our model the potential is of infinite range, and
these moments diverge (we have a system with
long-range order). Ihstead, the'analog-energy (U)
distribution introduced by the same authors»' 1s
more appropriate for our-- system.

The U distribution heips to link theory (and es-
pecially factorizable models) with experiment, "
and is defined by"

Q.((v) = „—, J d v)'„(v)&(vv+ )~(v)),

where
and it is easy to check that both solutions (13) and
(15) satisfy condition (9), which means that they
both correspond to stable equilibrium configura-
tions. As discussed above, the symmetric solution
(x„=x1,1 for every X) is only accessible at finite
total rapidity. This means that if F-~ for fixed
n, the relation (n+ 1)P= F cannot be satisfied, and
therefore at least one of the x('s must equal p '.
If p distances are equal to tI (pe 0), we have (n —p
+ l)P+ pP= F and for F-~ and n finite this relation
is satisfied with P- ~. It is obvious, however, that
the corresponding potential,

where

z„(F;x)=
+ C~ joe

e'"SP"(s A.)ds

cfog»F2

p[ V22(yl 32 3 )],
Hence, in a factorizable model one has:

(18)

(19)

(20)
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and

p
00

Z(s; X) = e '"Z(y; )(.)dy,

with

K(y; X) = exp[-(1 —iX) V(y) j.

(21)

(22)

( 1)
F n+1A

=(n+ 1) in
Y

pg+ 1

This gives only a 5 function in the U distribution,
namely

In our model, the essential results do not depend
on the details of the hard core, but stem basics, lly
from the long-range tail 2()(+ 1) lny of the potential.
Therefore, we can greatly simplify the algebra
working with a kernel of the form

Y
' -(«+).)/2)(n+&) [Y' (n+ 1)Ajn

Q„(U)= „„
x 5 U —m+1 - ln

x+1 Y
n+1 (28)

0 if y&A,
K(y; )() = Therefore, the only point of the U space which con-

tributes to the distribution is

A&0, y= (1-i)(),tc+ 1
(23)

U= (n+ 1) ln = (n+ 1)V(N), 'I(+1 F
n+&

(29)

where we replaced the hard core of (3) with a wall
of infinite height at y=A =y, . Hence, we readily
obtain

ff(s;) ) = s"-'r(l -y, eA). (24)

&
(@+1)As

ffn+(( . )) ) A (n+) )r
Sn+1

(n+ 1)y (,)
sA

(25)

Assuming that F is near the kinematic limit, Y
=(n+ 1)A, we find

[Y -(n+1)AjZ„Y;)( =
n

where

x

Since the previous analysis has led to completely
different dominant configurations for small and
large F (hadrons equidistant in rapidity and gap
production, respectively), we now consider the
U distribution in both small and large F limits. In
the former case most of the contribution to Z„(F;X)
comes from the large-s behavior of (24), i.e. ,

which corresponds to the total energy of the per-
fectly ordered system with equidistantly spaced
hadrons at b,y = n = F/(n+ 1), in agreement with our
previous result (12).

On the other hand, for large F the small s be-
havior of (24) gives the dominant contribution to
Z„(Y;X). We have

gn+)(&. )() ~ ( ] )n+(-n &p(r ))-
p@=1

)( Z'n(1 -y)gn+). -n

where

i -"0

(31)

The p= 0 term in (30) is omitted since it does not
contribute to the inverse Laplace transform (20).
Hence, for F ~ the leading contribution to Z„(Y;X)
comes from the p= 1 term of (30), with the l= 0
term of Z. On the other hand, for z&(p, +1)/(po
—1), (p, -n+ 1), the "corrections" at finite F to
this contribution come from the p= 2, 3, . . . , p,
terms of (30) with the l= 0 term of Z only, i.e. ,
for t& sufficiently small we can write, for some po,

1 Z ni1 i~~(~-»
+ . - I 1)a+1-P +

A (n+1-n)(1-r)Kn fs~hi'= I (1-y)""'
p=l

(32)

Therefore, we now easily obtain

Q„(U) =
1 Q (-1)' 'p exp — U —(n+ 1 —p) inA —p lnF

2 ~ n+1 )( —1 2U
)(+1 Yl n p ((+1 /(+1

n=1

x e —(x+1 —p) lxA —plnr) .2U
K+1 (33)
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~3'

(c)

FIG. 2. Some stable equilibrium configurations of the one-dimensional Feynman-Wilson fluid (corresponding to n =8
hadrons). (a) The only allowed stable equilibrium configuration for Y- (n+1)yo= 9yo. (b) A typical configuration which
can result if Y&(n+1.)y0=9yo. Note the structures of fixed mass, M„=cosh(nl, yo) which involve nz+1 hadrons. (c) The
most likely configuration at asymptotic energies involves the production of one large gap; hence the asymptotic result

(d) The least probable stable equilibrium configuration involves pairing of hadrons into minimal structures of
mass coshyo [the configuration (a) is not stable asymptotically].

The first term of this series represents the lead-
ing contribution to Q„(U) at truly asymptotic ener-
gies; it has a maximum at

U= (n —1) + (n lnA+ ln Y),
x+1 K+1
g-1 2

(34)

which obviously corresponds to the analog energy
of the one-gap configuration [Fig. 2(c)], which was
found previously to dominate asymptotically. The
other terms in (33) represent nonasymptotic fluc-
tuations relative to the first one, at least for z suf-
ficiently small. Each of them produces a maximal
effect for

&U'&= ) U'Q„(U)d JI q„(U)dU (36)

of the U distribution. In particular, at truly as-
ymptotic energies [p= 1 term in (33)] we find

(U)= 1 n+
2 (n lnA+ lnl')K+1 K+1

(3"I)

absent here]. Figure 3 shows the truly asymp-
totic contribution (one gap) to Q,(U), together with
fluctuations owing to two and three gap configura-
tions.

Finally, one can calculate the moments

U=(n —1) + [(n+1 —p) lnA+ plnY].
K+1 v+1
g-1 2

(38)

and

(38)

These points can obviously be identified with the
analog energies of the two, three, etc. , gap pro-
duction configurations found previously to be pres-
ent at finite energies [see Eq. (16), where asymp-
totically P=y, =A and 1nP- in Y; of course the
terms related to the details of the hard core, are

independent of F. This is a particularly reasonable
result in statistical systems.

III. DISCUSSION AND GENERALIZATION

Having traced the regions of multiparticle phase
space which are favored by the potential interac-
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300

where 5 = i)(/(al I),)", p = (1 —)I) ', which result'
from the potential (3). The dynamical origin of the
heavy metastable hadrons Hn must be searched in

nh
the critical behavior of the hadronic matter. "

Since the one-gap configuration gives asymptot-
ically the dominant contribution to the z-particle
production cross section, for fixed n and Y
we have

0'n™eely (4o)

100

-20 -10

"&..(c)
~ ~ ~ ~ ~ ~ ~

10

FIG. 3. Typical U distribution for n=4 and I/: =2 (Y=10,
A =0.025). (a) One-gap production [p=1 term in Eq. (33)].
(b) Modification of the one-gap U distribution owing to
the production of a second gap [p= 1 plus p=2 term in
Eq. (33)]. (c) Modification of the two-gap U distribution,
due to a third gap [p=1 plus p=2 plus p= 3 terms in Eq.
(33)].

tion (3), we now proceed to discuss in more detail
the physical content of our model, and to show that
in fact, most of our results are quite independent
of the "details" of this potential.

From (16) we see that one gap [see Fig. 2(c)) is
produced with maximal probability, whereas two,
three, etc. , gaps are produced with quickly de-
creasing probabilities. Since the symmetric solu-
tion' is not stable asymptotically, the least likely
stable configuration at asymptotic energies involves
the production of pairs with spacing by=y, [see
Fig. 2(d)]. In general, as Y-~ localized struc-
tures in rapidity are produced, with fixed size
&y=n~, which contain n„+1 hadrons [see Fig. 2(b)].
It is remarkable, that this phenomenon has also
been discovered in a theory of strong interactions
with spontaneously broken internal symmetry, re-
cently suggested by Arnold, "which leads to con-
densation in rapidity and charge space. We may
identify the structures found in our model with
metastable hadrons H„of very high spin (p~» pr),
which decay into zh+1 ordinary mesons, e.g. , H„"h
-(n„+1))(, and have a mass spectrum M„
-cosh(nd), ). This spectrum seems to be uncorre-
lated with the ordinary hadron spectrum, described
in this model by the quantized intercepts of "Regge
trajectories"'

Rss (0)=2+( ) sos — (m=0, 1, 2, . . .),

(39)

X-(2 sas)-R)/ (2+2))XJ ~X
x~O

(41)

On the other hand, - in RFT with AM cutting rules,
the asymptotic behavior of the average multiplicity
takes the form' (n)- Y' "while o„and o„, remain
unchanged. Hence

y(X) X()s-&)/(&-R) (42)

Finally, in the framework of the critical FW fluid
it is found' '

( )- Y' " (/„-Y"' o„,- Y ",
hence,

y(x) ~ x (43)

independent of any critical exponents. With all
model estimates" of the critical exponents q and
v in RFT, we see that (41) tends to infinity for x- 0, while (42) tends to zero [which is always the
case with the FW prediction (43)]. Present data
seem to be compatible with the latter case. This
result is not in favor of the particular assumptions
hidden in the AGK cutting rules. ' Future high-en-
ergy experiments probing into x «0.1 will certainly

which may be directly checked from the explicit
calculations of Ref. (9). Similar behavior of o„
has been found by Bartels and Rabinovici" in the
framework of RFT. Although we are working with
a factorizable model, we arrived at a "gap expan-
sion" of o„, of the same nature as obtained by Pom-
eron-interaction corrections which are highly non-
factorizable. Qf course, our factorizable model
based on the iteration of o„=exp[-V(y)] is free of
the Finkelstein-Kajantie disease"; also the sum of
g„relevant to the configurations discussed in the
previous sections, saturates o„, (Ref. 9) whereas
this is not true in RFT.

In view of the fact that KNO scaling and (40) are
common properties. of both RFT and the present
model, we now discuss the implications of (40) for
the small x behavior of the KNO scaling function.
Notice that for fixed n, we achieve x-0 by letting
Y- ~, and g(x) - Q)o„)/ot, t. In RFT with AGK cut-
ting rules it is found' that (n) Y"", o„Y'~',
o't ) Y" hence
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~el(y)

v (y}

FIG. 4. General characteristics of the analog potential
V{y) and of its first and second derivatives, when the
elastic cross section 0„=exp[ —V{y)] decreases asymp-
totically slower than any power of the C.M. energy. It
is clear that if y„-yz ~&yo, Eq. {6)has takeo stable solu-
tions, P and P. Moreover, P—yo if P

seen, will have a point of inflexion between y, and

3)0 It is worth noting that this is prec isely the con-
dition in order to have an SSB phenomenon of the
minimum potential energy state of the A.th particle
in the potential well formed by the (X —l)th and the
(X+ l)th particles, as can be easily seen from (7)
and discussed in Sec. I.

In Fig. 4 we show a possible behavior of o„and
the corresponding potential V(y) which satisfy the
conditions (a) and (b). The first and second de-
rivatives V'(y) and V"(y) of the potential are also
shown. Recalling (6) and (V) and inspecting this
figure, we easily convince ourselves that the stable
equilibrium configurations found in Sec. II [in the
cases (i), (ii), and (iii) considered there] hold
true in any case V(y) obeys conditions (a) and (b).
Perhaps we should explicitly note that the stability
of the asymmetric solution in case (ii), now re-
quires V"(P) & —V"g) which is true, at leastasymp-
totically, since P-~, P-y„and V (y)-0 for y

If e„has more than one local minima at interme-
diate energies, our picture remains basically un-
changed and the stable asymmetric solution is man-
ifested as a large gap at asymptotic energies, after
some possible transition phenomena and local in-
stabilities have settled. We conclude that it is the
SSB mechanism, and not the details of the particu-

~el(y)

be crucial to test the validity of these models.
Although we obtained al.l of the above results

with explicit reference to the specific potential (3),
which has the virtues of s-channel unitarity and
KNO scaling, it is easy to see (see Fig. 4) that the
results concerning the asymptotic structure of the
multiparticle events and the gap expansion of o„,
are in fact independent of the particular form of the
potential provided that it obeys the following two
conditions:

(a) At large y, V(y) increases slower than const
x y . This is equivalent to requiring that the elas-
tic cross section decreases slower than any power
of the energy for large energy (e„&s ", y&0).

(b) The potential V(y) has a minimum at y=y„
i.e. , O„has a maximum which will, in general, be
of kinematic origin since e„will have a threshold
and will be rather quickly decreasing at interme-
diate energies.

These conditions mean that V(y) will have a point
of inflexion at go~go i e. , 0„, as can be t;asily

l
I

I
I

I

I

I

I

I

FIG. 5. Same as Fig. 3, but in a case where the elas-
tic cross section decreases faster than any power of the
energy. Now, Eq. {6)has always one solution.
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lar potential (3}, which is responsible for the den
sity fluctuations manifested as gap production at
asymptotic energies. Of course, we have to be
careful in interpreting this phenomenon as a "phase
transition" (compared with the behavior of a plastic
cord near the strength limit). One has to check the
analytic structure of Q(z, F) in s, for each spe-
cific potential; e.g. , Eq. (3) clearly leads to phase
transition.

To complete this discussion, we now consider
the case where the elastic cross section decreases
faster than any power of the energy (while it still
has a maximum at y = y,}. This means that the po-
tential V(y) = —lno, ~(y) increases faster than
(const) x y' and does not have the point of inflexion
at 3l $0 i.e. , the spontaneous symmetry breaking
is lost. By inspection of Fig. 5, which shows the
same quantities as Fig. 4 but corresponds to the
case V(y) &y' we easily see that there is only the
symmetric solution allowed and leads to a,.table
configuration. Hence, in this rather unphysical
case fluctuations do not appear. Finally, we notice
that an increasing e„as F", y&0, lies outside the
framework of factorizable models, since it results
in violation of s -channel unitarity. "

IV. CONCLUSIONS

We have investigated the implications of a fac-
torizable mechanism for hadron production at as-
ymptotic energies, which we introduced in pre-
vious work, on the structure of multiparticle
events. The advantage of this specific mechanism
is that although it involves a singularity at j= IL, it
does not spoil s-channel unitarity; it also allows
for KNO scaling. We have shown that most of our
results are in fact independent of its "details, " but
derive mostly from the property of SSB that the
corresponding potential, relevant to the ana, log FW
fluid, possesses.

In particular, we studied the density fluctuations
in rapidity space, motivated by the critical behav-
ior of the analog FiV fluid, traced previously in
the framework of this model. For this purpose we

studied the stable equilibrium configurations of
the equivalent one-dimensional classical system.

It is found that at sufficiently low energies, had-
rons are equidistantly produced in rapidity. At
high energies [more precisely, for F&(n+ l)y,
where n is the number of hadrons produced, and

y, is a constant j gap production occurs with prob-
ability decreasing as the number of gaps increases.
Asymptotically, the one-gap configuration is dom-
inant. This hierarchy of gap configurations, shown
in Fig. 2, i.s similar to the corresponding result
found in the framework of RFT" and shows the
specific structure of density fluctuations connected
to the underlying critical behavior which at least
our model potential (3) exhibits.

The structures produced near the walls or be-
tween two large gaps for F , have fixed size
when the number of hadrons they involve is fixed.
This property allows their interpretation as heavy
hadrons with high spin and well-defined mass
spectrum. Similar results have been found by Ar-
nold in Ref. 12.

An immediate consequence of this picture is that
0'& 0'ey for fixed ~ and Y- , which is also found
in Ref. 13. This property, if combined with KNO
scaling, implies a behavior of the form g(x) x
near x= 0 for the KNO scaling function. The expo-
nent e depends crucially on the particular theory.
The AGK cutting rules together with the RFT es-
timates of the critical exponents give o. &0 while
ihe AM cutting rules, or our model. based on the
cri.tical FW fluid, predict e&0.

To conclude, we note that three seemingly com-
pletely different approaches to the high energy had-
ron physics, namely RFT, the stochastic-field ap-
proach of Arnold, and the critical-FW-fluid model
with the specific "potentia|." (3}, lead to qualita-
tively similar results, i.e. , production of gaps,
together with heavy metastable hadrons. This may
not be too surprising since in all three models, a
critical behavior is exhibited by the hadronic sys-
tem they described. Hence, the similarities may
be ascribed to an underlying' universality principle.
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