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First-order phase transitions in gauge theories
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The statistical mechanics of field theories with broken, global, and local SU(3) gauge symmetries is studied in
the one-loop approximation. The presence of a cubic term in the potential, when allowed by symmetry, is to
restore the symmetry by a first-order phase transition rather than by a second-order transition. The
transition temperatures are estimated to be too low for a finite density of magnetic monopoles to be excited.

I. INTRODUCTION

Recently, Kirzhnits and Linde" ' showed that
relativistic field theories with spontaneous sym-
metry breaking undergo a phase transition at high
temperatures leading to a restoration of the gauge
symmetry. Weinberg' and Dolan and Jackiw4
made detailed calculations of this phenomenon by
extending the theory to include local gauge sym-
metry. These authors confirmed the predictions
of Ref. 1 and calculated the transition tempera-
tures T, in the one-loop approximation. Typically,
they found a continuous second-order phase trans-
ition at T, . They showed that the one-loop results
are reliable in the high-temperature (or weak
coupling} regime. Weinberg' also discussed the
astrophysical implications of such phase transi-
tions. In the present article a new aspect of the
statistical mechanics of relativistic field theories
is investigated in which one obtains a first-order
disc ontinuous res tor ation of gauge symmetry„
This happens in gauge theories which allow a cubic
term in the potential energy. Thus, at the transi-
tion temperature To, two phases coexist, an or-
dered phase in which the equilibrium state breaks
gauge invariance and a disordered phase. Above

T, the system undergoes a discontinuous change
into a disordered state. "

The finite-temperature functional formulation
has been discussed by Bernard' and in the earlier
references quoted above. We shall follow the
notation of Ref. 5. In Sec. II we discuss the global
SU(3) gauge theory in the one-loop level. The
transition temperature and the nature of phase
transitions are obtained by minimizing the effect-
ive (Helmholtz) potential. In Sec. III the calcula-
tions are modified to take into account a local
SU(3) gauge theory. Apart from changing the
value of T, the qualitative features of the global
theory are unaltered. Finally, we give a qualita-
tive argument to show that the magnetic monopoles
which exist in such theories play no significant

role in the statistical mechanics. In other words,
i.t is found that the symmetry is restored at tem-
peratures which are small compared to the mas-
ses of the monopoles.

II, STATISTICAL MECHANICS OF A GLOBAL
SU(3)-SYMMETRIC THEORY

It is well known' that in the Landau theory of
phase transition (i.e. , a mean-field theory), when-
ever the symmetry of the model allows a cubic
term in the order parameter expansion of the free
energy, then one obtains a discontinuous first-
order phase transition. Let us show that the same
phenomenon occurs for a gauge theory. We illus-
trate this for an SU(3) global scalar gauge theory.
The Lagrangian density is taken to be

L' =-'»(s, e}(s'e)- I'(4}, (2 1)

where

V(Q) = ——(Trg )+~(Trg')2+~(Trg') (2.2)

8

(2.3)

The(A.,$'s are the generators of SU(3). The scal-
ar field p takes values in the Lie algebra of SU(3).
Under a gauge transformation by QFSU(3) we have
Q-QQQ '. We note that a cubic term in the poten-
tial energy is allowed by symmetry. We have ne-
glected a term of the form Trg', but this does not
change our results. The stability condition im-
plies ~, &0 and we take without loss of generality
A., & 0.

Let us briefly recall that for model (2.1}spon-
taneous symmetry breaking leaves the vacuum
invariant under U(2). We show later that equili-
brium states of the system at T& T, have U(2)
symmetry. If, however, ~, = 0, the little group
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yO 1fO (2.4)

H may be either U(2) or U(1)xU(1). This is seen
readily by minimizing V(If1). The classical poten-
tial (2.2) is indeed the tree approximation to the
effective potential VoII (1I1) and hence the problem
of minimizing V(Q) will come up again later.
Since Q is traceless and Hermitian we may work
in its diagonal representation. Then minimizing
V(g) subject to TrIt1 =0 yields the minimum of

V(g) to be a solution of the form
0

Integrals over fields are subject to periodic
boundary conditions,

g (x, ~) = + P (x, 7 + P) . (2.11)

The plus sign is for Bose fields and the minus
sign for fermion fields, with the exception of the
ghost fieMs where we use the plus sign. '

Thus, after making the shift Q- Q+g(x), we ob-
tain for the Lagrangian density, after neglecting
the constant and linear terms in g(x), the follow-
ing:

and &, determined by
& =~.(4, 4(x))+&,(0, 4(x)), (2.12)

3q (yO)2 g yO i12 0 (2.5)
~.(i, 0) =-'(s, 4')(s "&')- -'1f'(M. '). 0', (2.13)

For ~, &0, the minimum occurs for

yP 2 ~(g 2+12$ g2)1/2

6x, (2.6)

Here we have denoted the eigenvalues of Q to be
(2=1,2, 3). Since g is &,-like we see that

Jf =U(2).
Let us briefly outline the method of calculating

the effective potential V,.I;(If1) at finite tempera, -
tures. ' It is given by

The mass matrix (M, ')„ is defined by
I

(M., ')„= —y2+A, g(If1')' &„
I

+ 2A., If1, 1t1b y2A. d, bc Qc I (2.15)

1 sbV(p)
&, (4, 4) = 3, , -., -,, -.

s'V(A
+

4 t s p s ~b s ~c s ~„g'g' t
' g". (2.14)

+ exp d'x Z, t1tI &(x)) (2.7)

where d„,'s are defined by

aI b] 2 ab + 2dabc (2.16)

V, (p) = V(If1} is just the classical potential'' ' with

Q(x) replaced by constant fields Q, . V1~(Q) is the
one-loop correction and is temperature dependent

(P =1/kT). It is given by

V, (Q) = lim1
cop

The integrals in the one-loop approximation are
Gaussian and are easily evaluated. We find

d'k
V, (Q) =2 Z, 2 Indet[((d„'+k2), b~ oo ( 11

+(M, ').,]. (2.17)

xln d' x exp
a

d'x So(1tI, 1fI(x))

(2.8)

In arriving at (2.17) we have made the Fourier
decomposition of P(x, v),

We use the standard finite-temperature ve'sion
of functional integrals. Furthermore,

d4X —= y3X d7 . (2.10)

where 'U is the volume. Zo(If1, 1fI) is the quadratic
part of the Lagrangian obtained from (1) by
shifting the fields p, - &fj, +1fI,(x). The last term in
(2.7) represents higher-loop corrections, and

J&.[dt'(x)]( ~ ~ ) expl &d'xS„(j, y)]
f g, [d0'(x)1 exp[&d'x& (111 1f1)]

(2.9)

where

2nm
(dn (2.19)

Integrals of the form (2.17) have been evaluated
by Dolan and Jackiw. 4 They show that these con-
tain two terms, one independent of temperature
and the other temperature dependent. The tem-
perature-independent term is removed by re-
normalization counterterms. The temperature-

g' (x, 7) =—, Q 2 (exp[2 ((o„2 +k x)])ya (1o„,k),
n

(2.18)
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dependent term can be evaluated in the high-tem-
perature regime. Thus, if the transition temper-
atures are high then we may use this procedure.
Evaluating (2.17) by this technique, we find

4s' (Tr M, '} 1
45P' 24 j3'

—4n' —4g'+58. , Q (P, )' 1
45'' 12@

(2.20)

Thus the effective potential in the one-loop level
is given by (we ignore terms that do not depend on

V(g) =0 (we have g, = g, =-—,'g, ), when g, =0 (double
root} and

(~) 2(A., +[A., ——,A(T)A. ,] (2.26)

12k. , 27k. ,

the minimum at nonzero g; is not a global mini-
mum. Hence, one still has a symmetry-restored
equilibrium state. Hence, at a temperature T,
determined by

Thus we find that in the range of temperatures de-
termined by

+ ~ (Trg'), (2.21)
01 (2.27)

where

A(T) = —p, '+& &, (kT)' (2.22)

Thus this expression for VBf„(&f&) is just the mean-
field result. The equilibrium state of the field
theory at a temperature T is determined by the
global minimum of V, qq (Q). As opposed to (2.2),
the global minimum is temperature dependent.
Again for simplicity let us work in a representa-
tion in which 4 is diagonal. Let us denote this by

Then we minimize Vrf(g) subject to Try =0.
We find that the extrema of V,«(P) are either

there is a coexistence between two phases, one a
broken-symmetry state g, = P, = ——,'g, = 2k.,/9g)
and a symmetry-restored state with g, =g, =g, =0.
For T&T, one has only a broken-symmetry state
with g, 's determined from (2.25). We see that all
these states have U(2) symmetry. Figure 1 illus-

g, =0, i=12, 3 (2.23)

or
3 (2.24)

where

~, +[~,' —12&,A(T)]'~'
(2.25)

clearly P; =0 corresponds to a symmetry-restored
state. We imagine lowering the temperature of the
fields from a very high temperature T where
A (T) ~ (&,'/12&, ). Clearly, in this case the only
minimum of Vff is at g =0. We have a disordered
phase. Now as the temperature is lowered such
that A(T) & (&,'/12&, ) but A(T) & 0 (say) then an
additional minimum occurs away from the origin.
However, to be the true solution, the effective
potential must be negative for this value of Q
[note that V(g) =0 at g =0] .

Thus, look for roots of V($}=0. We find that

FIG. 1. Plot of effective potential against P for three
different temperatures. At T = To there are two equilib-
rium states. Below To the equilibrium state is the
broken-symmetry state, and above To symmetry is re-
stored discontinuously.
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trates schematically the effective potential as a
function of temperature. We thus have established
the occurrence of a first-order phase transition.

The masses of the scalar fields may be readily
evaluated from (M, '),~ for the equilibrium value
of Q which is &a-like for temperatures T & T .
Since our calculations are valid in the high-tem-
perature range, the following formulas are valid
for T & T, We. find that (hP},a =&„(M )„with

(M, ')„=43 a2p'(T), a=1, 2, 3

2 =7, (Q; g, A„}+XI(p; g, A, „), (3 7)

&.(4; 4, A~ }= '-(s-, A' &-.A'„)' + a(s „4 )(s"0' )

+ a(M '),aAaqAaa ——,'(M, ')„g'g

As in Sec. II we shift the scalar fields P- Q
+ p(x) in order to study the symmetry-breaking
pattern. Again, apart from constant and linear
terms in P, the Lagrangian density may be written
as

(M, ')„=0, a =4, 5, 6, 7

(M ') =A. [g'(T)]'-A(T), a =8

(2.28}

where .

+ gfaa. 4"8I O'A'", (3.8}

where (Mw')a~ =8 fae. feae O' Y (3.9)

+[g a 12' A(T)]t/2
s 2v3 A.

(2.29)

We can now estimate the limits of validity of
our results. From (2.27) we see that (kTa)'
&6p, '/5X, = (kT, )' where T, is the critical temper-
ature for a theory without the cubic term where
the phase transition is of second order and the
masses of the scalar fields vanish continuously
at T = T, . Typically p, '/A, , -O(1/G~) =10'M&'
where G~ = Fermi coupling constant and M~ is the
proton mass. Thus (kTa) = 300 GeV. Thus, this
is indeed a high temperature.

III. LOCAL SU(3) GAUGE THEORY

The calculations for a local gauge theory are
more involved because of the need to take into
account the gauge-fixing and ghost terms in the
Lagrangian. The Lagrangian density is now given
by

Z =- —,TrF„,F"'+-,'Tr(D„Q)(D" P) —V(Q) .
(3.1)

V(P) is given by (2.2):

Z, may be writ:ten down readily, but since it does
not contribute to the effective potential in the one-
loop level, we ignore it in what follows.

We must now add to 20 the gauge-fixing and
ghost terms. Weinberg' has demonstrated that the
computation of the effective potential is reliable
only in the Landau gauge; otherwise one must
suitably modify the R& gauge. ' Here we therefore
compute V, in the Landau gauge. We do this by
starting with the R& gauge and taking the g-
limit. The gauge-fixing contribution to the La-
grangian is given by'

&(B,A'" )'+ —(gf.p. 4' 0')'

—2gf„,P' g'8„A'" (3.10)

where

g=&E(B„A",——gf„,e~g') . (3.11)

The Landau gauge corresponds to the $- limit.
The quadratic part of the action including (3.10) is

Dpd =sf 4+g[Ap 4]~ (3.2) ,A„—gF, F, d x

A'„~,
(3.3} g P (A'„(k„)(a, '(k„; y)) ~,"A', (k„)

n k

Q=Q A. (3.4) +~ (k.}«.— (k. ; k)).a~ (k. }],

F„,= "'. ' =BqA„—B„A„+g[A„,A„], (3.5)Pv 2~ P p

Under SU(3) the fields transform as follows:

y-QyQ-', QCSU(3),

where

k„" = (ur„, k),

and where

(3.13)

A„-QA„Q '+ —(B„Q)Q ' . (3.6)
(3.14)
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(a ')., =((g„' ~ k')5., +(I,' ~ —. M ' . (3.15)
ab

The ghost contribution can be evaluated by
standard techniques. ' This contribution can. be
written as an effective Lagrangian for anticom-
muting ghost fields. Since we are interested in
one-loop calculations, we only need to take into
account the quadratic part of the ghost Lagrangian.
This yields to the effective potential a contribution
of the form

lndet (v„'+k')~„+
2p „ 2m

(3.16)

where {g'),~ is the mass matrix. On evaluating
this integral in the same approximation as for the
other two-point functions, we find the significant
term to be Try. '/24/'( which in the g-~ limit
vanishes. Hence, we may neglect the ghost con-
tribution in the one-loop level. We can now write
down the effective potential in the one-loop level:

V ff = Vo(g}+V, ((t)), (3.17)

where

d3k
)',(()= —Q f, [lndet(a ')a,

+ Indet(&~ ') ."(", ].
(3.18}

The determinant over the (p&) indices is evalua-
ted using the result

b
det( 5„„+h).'„|.„)=a'(( —).') (3.19)

Thus the effective potential is given by

(3.21)

The remaining integrals are evaluated as be-
fore. We find after letting $-~ that

7p 3 gVB(y)=3,——Q(y } +O — . (3.20)
&9p4 24 P' P

The masses of the vector bosons as a function
of temperature T» T, are evaluated by substitut-
ing the e(luilibrium value of (t) = ~, (((), determined
by minimizing V(f(p) into the expression for the
mass matrix for the vector bosons. We notice
that the symmetry is restored in the gauge theory
at lower temperatures than for the global theory.

IV. HIGHER-LOOP CORRECTIONS
AND MAGNETIC MONOPOLES

If the phase transition were of second kind (A.,
=0), then near T, fluctuations in the field would
have been uncontrollable and higher-loop correc-
tions would have been significant. Kirzhnits
and Linde' show that the one-loop calculations are
reliable provided (T —T, )/T, &&,. In the present
case we have a first-order phase transition which
may be thought of as an interrupted second-order
transition in which the order parameter goes to
zero discontinuously at 7,. Hence we expect that
the one-loop level is reliable for T- To, as fluc-
tuations ar e unimportant near 7, for suff ic iently
large ~,.

The theory that we have considered admits
magnetic-monopole solutions. It would be useful
to inquire if these objects will change the nature
of symmetry restoration. We recall that the mon-
opole mass in these theories" is of the order

(4 1)

On the other hand, the transition temperature
(kT, ) is

((~x ) 'y4)"') (4.2)

If &, «g' then kT, -O(g/g). Hence (I„/kT, )
—O(1/V &, )»1.

Hence near 7'~ the density of magnetic mono-
poles will be very small and we might ignore
them. If g'«~, then

A(T) -A'(T) = —p. '+ ' + (kT)' .5A., 3g2
6 4

Then the local gauge theory undergoes a first-
order phase transition at a temperature 7', deter-
mined by

2A, ,/27k. , + y,
2

6&,/6 + 3g'/4

Thus the problem of finding the equilibrium state
of the field theory is identical to the previous
case, with the obvious modification

The conclusions are unaltered. Hence it would
seem that temperatures at which symmetry of the
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gauge field theory is restored are small compared
to the masses of the monopoles„and thus the ef-
fects of these objects on the statistical properties
of the fields may be ignored.
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