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We show that the Euclidean vacuum in quantum chromodynamics (QCD) can be regarded as a four-
dimensional ensemble of permanent color magnetic dipoles (instantons and meron pairs), with a positive
paramagnetic susceptibility. Standard techniques are used to discuss the interactions of this medium for
moderate densities. In the presence of color fields (due to quarks), large scale instantons (and other fluc-
tuations) are suppressed, the density is low, and the system is easily treated. Below a critical field strength,
this dilute phase is unstable and a firstwrder phase transition occurs to a dense phase consisting of closely
packed instantons and merons, and possibly other things. . In this dense phase, we believe that the perme-
ability is infinite (perfect paramagnetism) and thus the normal QCD vacuum cannot tolerate color fields.
This leads to a strikingly simple baglike picture of hadrons, as consisting of quarks confined to a region of
space-time which is in a very dilute (abnormal) vacuum phase, in equilibrium with the dense vacuum (normal)
phase outside the bag. The quarks are confined to the region of dilute phase where their dynamics are simple;
and, as we show, they are shielded from the large-scale fluctuations outside the bag. We present a derivation
of the static bag for heavy quarks and an estimate (to within a factor of two) of the bag constant. We fur-

ther discuss some features of the resulting bag model including chiral-symmetry breaking and surface effects.

I, INTRODUCTION

At present, the belief that quantum chromody-
namics (QCD) is the true theory of the strong
interactions is rather widely held. This is per-
haps surprising since no experimentalist has
ever seen a quark or a gluon (the fundamental
fields of QCD), nor has any theorist succeeded
in calculating any hadron parameter from first
QCD principles. What persuades the fundamental
field theorist, at least, is that, of all. renormal-
izable field theories, only QCD is asymptotically
free and only asymptotic freedom appears capable
of accounting for scaling phenomena or, more
generally, for the tendency of hadrons to behave
like collections of free, pointlike constituents
when probed at short distances. This sort of
evidence, however persuasive, is rather indirect
and ought to be superseded eventually by suc-
cessful QCD calculations of hadron structure,
reaction cross sections, etc.

Other theorists, desiring to confront the facts
of hadron physics more directly, have chosen to
abandon the constraints of renormalizable field
theory and construct phenomenological models
based on qualitative insights about how hadrons
are actually built. The MIT bag model, in par-
ticular, is a remarkably successful construction
of this type. An energy functional, depending on
a small number of parameters, is chosen so as

to be consistent with a physical notion that the
normal vacuum expels color fields and quarks.
When applied to the essentially static problem
of low-lying hadron spectroscopy, a few-param-
eter mass formula emerges which yields a good
fit to a surprisingly large number of masses.
The disadvantage of this type of treatment is that
the starting point is not really a satisfactory
quantum theory, and one therefore does not know
how to compute quantum corrections or how to
extend the picture to nonstatic problems. Similar-
ly, since the model is not QCD it will not possess
asymptotic freedom and will be unable to incor-
porate scaling in any natural way. Furthermore,
the model contains explicit chiral-symmetry
breaking and thus cannot naturally account for the
pion or the successes of partial conservation of
axial-vector current (PCAC).

To have the best of both worlds, one must dem-
onstrate that the bag model, or some appropriate
variant of it, is in fact a good phenomenological
approximation of QCD, appropriate to the study
of static hadron spectroscopy, but not necessarily
to other questions. The status of the bag model
would then be something like that of the Landau-
Ginzberg approximation to the BCS theory: A
phenomenological approximation to an underlying
fundamental. theory, derivable from it in broad
outline if not in precise detail. The problem is
to find a phenomenon or mechanism which, on
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the one hand, emerges naturally from the funda-
mental QCD equations and, on the other hand,

'

can
be exploited to justify the phenomenological. ap-
proximation.

As long as perturbation theory is the only tool
for exploring the content of a field theory, the
task is hopeless —qualitatively speaking, what
you get out of perturbation theory is what you put
in. Something is needed to bridge the gap be-
tween the perturbative content of QCD, which
can only be directly relevant to short-distance
phenomena, and the quite different structures
which must govern its behavior on the scale of
hadron sizes.

A first step away from perturbation theory is
made possible by our recently acquired under-
standing of instantons and other semiclassical
vacuum fluctuations. ""Studies' of the QCD
vacuum from the semiclassical point of view have
shown that, whil. e the perturbative picture is
correct at the shortest distances because asymp-
totic freedom drives the coupling strength down,
instantons become a significant component of
the vacuum fluctuations at scale sizes where the
effective coupling is so small that the semiclas-
sical calculational method should be quite ac-
curate. ' ' In fact, we find that as soon as the
space-time density of instantons is at all sig-
nificant„ their effects dominate those of ordinary
perturbative fluctuations and make the qualitative
behavior of the theory completely different from
that of simple perturbation theory. This has
been spelled out in detail elsewhere, but we might
remind the reader of the qualitatively striking
effects of instantons on the heavy-quark potential4
as well as on the flavor symmetries of massless
quar ks. '

Although it is clear that semiclassical effects
completely change the qualitative content of QCD,
our previous efforts succeeded only in giving a
rough notion of those changes. There were two
reasons for this. First, our calculations of
instanton effects were, in essence, single-body
calculations, and we assumed that the net effect
of the instantons was simpl. y an incoherent sum
of the individual terms. This is correct when the
instanton density is low and the integrated effect
of instantons small. When the density becomes
comparable to one, the instanton-generated ef-
fects become very big and change the qualitative
behavior of the system, but at the same time, the
instantons interact strongly enough so that the
single-body picture does not work. Therefore,
to get a valid picture of the behavior of the vacu-
um when instanton density is appreciable, we
must include the interactions between instantons
in a systematic way. The second shortcoming

of our previous work has to do with the properties
of vacuum fluctuations on large spatial seal. es.
Since QCD has no intrinsic infrared cutoff, one
finds that instantons of increasing scale size are
increasingly dense, with the result that beyond a
certain critical. scale size, p„ there is no reason
to bel. ieve that the most probable fluctuations
have any recognizable structure. To date, we
have dealt with this problem by ignoring it—in
practice by imposing a cutoff, at approximately
p„on instanton scale size. If we are interested
in questions of hadron structure, some version of
this assumption must be right: On the one hand,

p, is expected to be roughly equal to the hadron
scale size; on the other hand, one does not ex-
pect fluctuations on scales much larger than the
hadron size to have much effect on the hadron
itself. The question is, how and in what sense is
this expectation realized'? Is there a useful way
of isolating the fluctuations on a scale smaller
than p„which we may hope to control, from
fluctuations on a larger seal. e whose quantitative
understanding will surely be quite difficult' ?

The present paper represents an approach to
these problems which, fortunatel. y, turn out to be
interrelated. First, we show how to deal with
the multibody effects arising from instanton inter-
actions allowing the instantons to have a nontrivial
density, but still ignoring large-scale fluctua-
tions. The key idea is to regard the vacuum as a
medium with a paramagnetic susceptibility aris-
ing from the presence of a thermodynamic en-
semble of permanent color dipoles (the instan-
tons). It turns out that the conditions of the prob-
lem are such that well-known techniques for
dealing with polar media may be applied to com-
pute the "permeability" of the QCD vacuum even
when that permeability is very different from
unity (the perturbation theory value). Then the
very large effects of instanton interactions are
taken into account by an extension to four dimen-
sions of the rules of magnetostatics of permeable
media. I

Next, we consider the behavior of this per-
meable medium in the presence of external
color sources (quarks). We find that the medium
responds to the external field in a fashion anal. -
ogous to magnetostriction: The instanton density
is space-time dependent, being large where the
external field is small and vice versa. The
reason for this behavior is that the local vacuum
permeability is determined by the local instanton
density. Consequently, the electrostatic energy
of a given source configuration can be lowered by
adopting a spatially varying instanton density.
Detailed study of the thermodynamics of this
phenomenon yields the magnetostrictionlike



1828 CALLAN, DASHEN, AND GROSS 19

phenomenon mentioned above.
A significant feature of this treatment is that

the external field, in effect, acts as an infrared
cutoff on instantons and other large-scale fluc-
tuations: For strong enough external field no
artificial cutoff on scale sizes is needed because
the internal dynamics of the system suppress the
unmanageable large-scale ft.uctuations. In fact,
for sufficiently iarge external field (i.e. , suf-
ficiently near the external sources) the vacuum
is in an abnormal phase where, as it turns out,
the total instanton density is small, and gets
smaller with increasing external field. %e fur-
thermore find that there is an instability which
makes this phase cease to exist below a critical
field strength, E,. At this critical field, there is
a first-order phase transition to a phase where
large-scale fluctuations are not intrinsically sup-
pressed and whose properties we can at best
estimate very roughly. The existence of the
phase transition can be demonstrated quite con-
vincingly and leads to a strikingly simple picture
of static hadron structure: There is a well-
defined radius, corresponding to the critical
field, at which the two above-mentioned phases
coexist; inside that radius and near the color
sources, the vacuum is in the simple phase where
large-scale fluctuations are suppressed and re-
liable calculations are possible (abnormal vacuum)
while, outside that region, the vacuum is in the
phase where large-scale fluctuations are not sup-
pressed and we can at best make rough estimates
of vacuum properties (normal vacuum). Quarks
turn out to be confined to the abnormal vacuum
region where their dynamics can be reliably
treated. The overall picture of static hadron
structure which emerges is identical in broad
outlines to the MIT bag model with the added
bonus that since we now see how the various
elements of the bag model arise from an under-
lying field theory, we can rationally try to extend
it to new problems.

There are therefore three major results that
emerge from a study of the Yang-Mills vacuum
as a polar medium: First, for sufficiently strong
background external field, the vacuum is in a
phase where the large-scale fluctuations are com-
pletely under control and nonperturbative effects
due to instantons are small and calculable;
second, this phase ceases to exist at a critical
value of the external field and undergoes an
abrupt first-order phase transition to a phase
where large-scale fluctuations are not under
control and instanton effects are large and not
easily calculable; third, when applied to the prob-
lem of static hadron structure, the above two
facts lead to a phenomenological model very

similar to the MIT bag model. At the same time
that we have learned how and where we may
use the dilute-instanton-gas picture without
apologies, we have discovered the mechanism that
causes thebagmodel to emerge as a phenomeno-
logical approximation of QCD.

This paper is devoted to a general development
of these results. No detailed numerical calcula-
tions are attempted since at our present level
of understanding we are not in a position to do
much better than existing bag calculations, though
improvement should be possible. In Sec. II, we
remind the reader of various relevant facts
about instantons and merons. In Sec. III, we dis-
cuss the properties of the QCD vacuum from the
point of view of the magnetostatics of a polar
medium. In Sec. IV, we compute the permeability
of that medium. In Sec. V, we discuss the con-
sequences of the possibility that the instanton
density and therefore the vacuum permeability
may have reasonably sharp discontinuities. In
Sec. VI, we show how variations in the instanton
density necessarily arise by virtue of a phenom-
enon similar to electrostriction and then demon-
strate the existence of an instability which must
give rise to a first-order phase transition and
sharp discontinuities in vacuum properties. In
Sec. VII, we use these insights to construct a
possibly improved bag model. which automatically
incorporates chiral-symmetry constraints as
any proper descendant of QCD must. In Sec. VIII,
we show that the bag has the important: property
of shielding the quarks inside it from large color
field fluctuations in the vacuum. In Sec. IX, we
discuss the implications of all this as well as
suggestions for future work.

II. ANALOG GAS OF MERONS AND INSTANTONS

The analog gas of instantons and merons, de-
veloped in Ref. 1, yields an intuitive physical
picture of Euclidean QCD and enables one to use
all the machinery of classical statistical. mechan-
ics for practical calculations. Let us recall this
picture.

The vacuum-to-vacuum amplitude in QCD can
be written in the leading semiclassical approx-
imation as

Z =&vac(e "
)vac&
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This results from evaluating the Euclidean func-
tional integral by saddle-point integration about
the (approximate) multiple instanton-anti-instan-
ton saddle points. The saddle points are given
by a superposition of Belavin-Polyakov-Schwartz-
Tyupkin (BPST) solutions' in the singular gauge

[(x —x', )'+ p, '](x —x', )'

8m 2

x(p) =, = —111n(pp, )z'(p (4)

in the small-p limit.
Our expression for Z is identical to the grand

canonical partition function for a perfect (ideal)
gas of instantons and anti-instantons, with equal
densities given by n, = J (dp/p')D(p) In the.
perfect-gas approximation the dominant configura-
tion consists of an equal density, n„of instantonh
and anti-instantons. This approximation is valid
only if no is sufficiently small, since the mean
separation between instanton and anti-instanton
is proportional to n, ''. Knowing the density
of instantons we can inquire whether they are
indeed far apart. This is the case only if we cut
off the p integration. Our aim in this paper
is to study certain effects which arise pre-
cisely because instantons interact and the gas is
not perfect. In Ref. 1 we computed the long-range
interaction between instantons and anti-instantons.
We found- that an instanton of size p in a weak
slowly varying background field, E~"'~„, may be
assigned an interaction energy

2
2 — ext

S(m~ —
2 p Roiaga„v FN»

and that the interaction energy of an instanton of
size p with an anti-instanton of size p separated
by distance R„ is given by

Sm' p'p' (,) (,)
4 RNaReb v w'~ay'v'Tv'v 1/1 v yR (6)

where T„„=g„„—2R~R, . The interaction energy of

2R', rl, „„(x—x» ) p, '
( )(x —x, )'[(x —x, )'+ p»»]

'

where each instanton (anti-instanton) has 12 col-
lective coordinates: position x» (x, ), scale size
p» (p, ), and orientation within SU(3) determined by the
unitary matrix R, (c»=1, . . . , 8; a=1, . . . , 3). The
density function D(p) has been found to be, for an
SU(3) gauge group,

D(p) = C»x'e ",
where C, is a renormalization scheme dependent
constant (values to be given later) and

two instantons or two anti-instantons vanishes.
The interaction energy at large distances falls

off like 1/R', which is what one expects of a di-
pole-dipole interaction in four dimensions. In
the fol.lowing we shall pursue this analogy and
show that the long-range behavior of the instanton
gas is precisely that of a gas of colored magnetic
dipoles in four spatial dimensions. The instantons
are not puye dipoles —it turns out that underneath
the R ~ term of (6) there is an R» term which
may presumably be neglected unless the instanton
gas is extremely dense.

For very smal. l. scales onl. y instanton and Gaus-
sian fluctuations need to considered. However,
at large scales, where the coupling becomes
bigger, we must also consider merons. ' The gas
of meron (and antimeron) pairs can be developed
exactly as in the case of instantons. The meron
pair solution has the form

(x —xL)" (x —x )"
(x —x„)' (x —x,)'

A =R +

corresponding to a meron singularity at x, and
x2. These singularities need to be smoothed out.
This can be done in a way that does not introduce
an arbitrary scale (or cutoff) by inserting con-
straints (and their associated Jacobians) into the
functional integral and integrating over all meron
core radii. The Gaussian functional integral about
the constrained solution is then perfectly well. -
defined and, up to one overall constant, has been
performed. ' In a gas of meron pairs the density
of pairs of core sizes r, and x„small compared
to the meron separation 4, is equal to'

C,','d'&exp -Q~ ~y Q+ ~2 S~ ~]
/2

(8)

where C is a constant containing some powers of
g, but otherwise independent of x„r„and &.
The terms»x(r;) are simply the action of half
an instanton in each core, and S is the renormal-
ized interaction of two merons, its dependence
on x„r„and & given by

" =-'t(~), S =--»'t(r;),

2 = x —6.55.
The derivatives are the same as those of the
classical action,

6@2
»»( „)»»»»

with the bare coupling, go, replaced by the in-
dicated running couplings. With the Gaussian
integral now evaluated, merons are on the same
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footing as instantons.
Meron pairs, just like instantons, interact as

four-dimensional dipoles. Equations (5) and (6)
can be taken over for meron pairs except that
one must replace 2p'g, „„by

r&'[n. g. —& &"n.g~ —& &"naia]

We shall see below that a meron pair of separa-
tion & can be regarded as a dipole with dipole
moment proportional to &'. Large meron pairs
are more important than instantons simply be-
cause the density of such pairs is proportional to
~'d~e ~, whereas an instanton of equal size has
density proportional to d& & 'D(&). Once
x(&) (—", , or x(&)- 17.22, meron pairs dominate.
In what follows, we will not make heavy expl. icit
use of the meron pairs, but it is important to
recognize that they have exactly the same kind of
long-range interactions as do instantons and will
participate in all the physical effects we are about
to describe.

III. FOUR-DIMENSIONAL MAGNETOSTATICS

In the previous section we have seen that the
Eucl. idean functional integral, evaluated in the
semiclassical. approximation, can be regarded
as the grand canonical. partition function of a
gas of dipolelike objects —instantons and meron
pairs. Here we shal. l develop this analogy further,
showing that instantons and meron pairs behave
exactly like four-dimensional permanent dipol. es
and that computing their contribution to the Eu-
clidean vacuum functional reduces to a study of
the properties of a four-dimensional polar medi-
um. We will find that techniques and concepts
developed in the study of three-dimensional
polar media carry over very nicely to our four-
dimensional problem and provide helpful new

insights.
First, we note that the Euclidean vacuum-to-

vacuum amplitude
I

dA„exp ———, Tr E„„E'"d'x

is the partition function of (colored) static mag-
netism in four dimensions. In other words, we
can regard E~„(p, v=1, . .. , 4; o. =l, . . . , 8) as
the spatial components of a five- (four space, one
time) dimensional non-Abelian gauge theory,
whose equilibrium thermodynamics is deter-
mined by Z. The electric fiel.d, E», integrates
out of the classical. partition function and the
energy density is simply

(10)

&gv =Bit,v-4m Mgv ~ (12)

It wil. l turn out that only the external sources act
as sources for H. In the absence of external
sources, II =0 and the net magnetization is zero.
Therefore, for weak fields we should be able to
set

M„„—gH „,
where p, =1+4@'X is the permeability of the
medium (g is called the susceptibility). One can
further show that the energy density, including the
orientation energy of the dipoles, in the presence
of an external source, J~, is

(14)

There is, of course, a vector potential for B„„,

where the magnetic field, B,„, is defined as
at n tX

B~v =Ep, v =- ~~~vyaEyo.

This picture is, of course, valid in general
for Euclidean Yang-Mil. ls theory. However, when
Z is evaluated by saddle-point integration about
the instanton and meron pair saddle points, the,
picture simplifies. As long as the density of
instantons and meron pairs, as well as the ef-
fective coupling, are reasonabl. y small, expanding
the functional integral about the instanton and
meron pair saddle point amounts to linearizing
the Yang-Mills equations. We can then regard Z
as the thermodynamic partition function for a
linear, Abelian, five-dimensional static gauge
theory, in a medium of instanton and meron pair
dipoles (whose statistical mechanics must also
be done, including their interactions with each
other and the linearized gauge field). But this is
just a four-dimensional version of the magneto-
staties of a polar medium, a system about which
a great deal is known. In what follows we will
work out four-dimensional magnetostatics and
show how it applies to our system of instantons
and meron pairs.

Magnetostatics in four spatial dimensions can
be treated in complete analogy to conventional
electrodynamics. In a vacuum, the energy den-
sity is given by the Abelian version of Eq. (10).
The dipolar medium may have a net dipole mo-
ment density which will be specified by a bulk
magnetization tensor, M„„(eventually we will
derive an expression for M„„ in terms of the
properties of elementary dipoles). With the help
of M~„we may define two useful field variables:
B„„=&&„„zEz, the microscopic magnetic field
(whose sources are the dipoles and any possible
truly external sources), and second,
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which guarantees that B is divergenceless
1

Bye —&8 cp, vogBay =0 (16a)

The usual Maxwell. equation which says that the
source of E„„is the total current density may be
converted to a statement that the source of
H„„ is the external current

(16b

In the Lorentz gauge, S"A„=O, and we have (for
constant p, ), a simple equation for A„:

where

T„~(x)=5 y-2J Rg.

The tensor T q has the important properties

det(T} = -1,
Tafg Tgy Ofay y

ex T'AI/
—~x

from which it follows that

(22)

(23)

A~ = pJ~, (17) B~„=— , T„—(x)D~T~„(x).

c 2B„„= .B„„,
p. +1

i.e., that the field in the cavity is reduced if
g &1 (as will be the case).

Since permanent dipoles play such a large role
here, we shal. l want to study the field of a single
dipole located at a particular point, x,. The
relevant solution of A =0 is

v
2~ (18)

where D„„=-D„„which has dimensions of length
squared, is the "dipole moment. " The source
of this field, in the sense of Eq. (17), is easily
seen to be

J„=-D„„&"4m'5 ' (x-xo).
Note that dipoles in four space dimensions are

characterized by antisymmetric tensors. This is
also the case in three dimensions, but there the
moment tensor, f d'x(x, J', x, Z, ), is equiv-alent
to a single vector. In four dimensions, however,
there are two types of dipole according to whether
D„„is self-dual or anti-self-dual, and in general
(D~. = ~ &u. a D s)

gv= a( gv gv) = gv ~

(2o)

The magnetic field, B„„,that arises from a
dipole located at the origin is easily found to be

»- ~~ —~ i»os us= —4T~o(x) aaTg. (x), (21)

We may of course amuse ourselves by solving
Eqs. (16) and (17) with various boundary condi-
tions. A sample problem, whose solution will be
needed in order to compute p, itself, is the de-
termination of the field B„„inside an empty
spherical cavity in a medium of permeability p. ,
under the condition that the external field approach
a constant value B„„far awar from the cavity.
Textbook manipulations, given in Appendix I,
show that

This means that if D„„is self-dual (anti-self-
dual), then B„„is anti-self-dual (self-dual): A
dipole moment of given duality creates a mag-
netic field of opposite duality.

Let us evaluate the interaction energy of a
dipole, D„„, with a background magnetic field,

8 = d'xA. „xZ„x

d xA.„x4g, 'D„„~"5 x

=+ d4x4~'~"A„x D„„O4 x

= -2m'B„„D„„. (25)

If the dipole moment, D„„, is self-dual (anti-
self-dual) there will be no interaction with an
anti-self-dual (dual} magnetic field. Therefore,
since the duality of a dipole magnetic field is
opposite to that of the dipole that produces it, two
self-dual (or anti-self-dual) dipoles will not
interact. This is the underlying reason why
instantons do not interact with instantons.

Finally, we record the expression for the inter™
action energy of two dipoles, D» and D» sepa-
rated by vector distance R„. Using Eqs. (23),
(25) we find

8m'
8 = —

~ T~ (R}D~qTq„(R)D'„„R (26)

which, of course, vanishes if D'„„and D'„„are
both either self-dual or anti-self-dual.

Let us now return to our analog gas of instan-
tons and meron pairs. Comparing Eqs. (2) and

(18), we see that the long-range field of an in-
stanton is simply that of a (colored) permanent
magnetic dipole, with dipole moment

D„„=-p~R~, g,„„.
The color index, a, indicates that there is an
independent moment for each component of color.
Furthermore, the interaction energy of an instan-
ton and an anti-instanton, given in Eq. (6), is
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precisely that of Eq. (26), provided we sum over
the independent interaction energies of each color
component. Note that the non-Abelian aspect of
color plays no role here, except of course insofar
as it is responsible for the existence of elementary
dipoles in the first place. (It should be borne in
mind that this is due to our decision to linearize
the theory about a certain class of saddle points,
an approximation with a limited, but useful, range
of validity. )

In ordinary electrodynamics permanent dipoles
exist only due to the quantization of spin. In QCD
they exist due to the quantization of topological
charge —a unique feature of four-dimensional
non-Abel. ian gauge theory. The other special non-
Abel. ian feature of our theory is the existence
of merons, which we shall see are magnetic null
poles. One might have thought that, since instan-
tons are magnetic dipoles, they should have as
constituents a pair of magnetic monopoles. Re-
call, however, that a monopole field in four di-
mensions falls off as 1/r (if A„= 1/r"' and

E„,=1/r"', we say that we have an l poie. )
Thus for such fields, as for dipole fields, the
equations of motion linearize asymptotically and
are easily analyzed. However, there are no solu-
tions of the monopole type. Alternatively, we can
argue that to conserve topological charge the
constituents of the instanton must have fractional
topological charge. But this requires fields that
fall off as 1/r, i.e., null poles. Merons, which
are solutions (albeit singular) of the nonlinear
equations of motion, are precisely such fields—
magnetic null poles with one-half unit of topologi-
cal charge. '

Since merons are inherently nonl. inear we are
not able to treat a gas of ionized merons by the
linear techniques developed above. This the main
impediment to a full understanding of "meron
plasma. " Isolated meron pairs, however, are
simply distorted instantons and, like instantons,
have a dipole moment. Indeed we may deduce
from Eq. (7) (transformed to singular gauge) that
the dipole moment of a meron pair, separated by
vector distance &~ is

(D»)merous

ger = sD &~&[0&&v+T»Z()T~y(4)Qausl ~ (28)

By virtue of the remarks following Eq. (24), this
is the sum of a self-dual and an anti-self-dual
piece of equal magnitude.

Finally, we should indicate how quarks or other
color-carrying external fields enter this mag-
netostatic pictur e. Recall that quark-antiquark
time histories are represented in Euclidean field
theory by current loops which contribute to the
partition function a term TrP exp(if A"dx~).

Z = dA exp ——,
' 8' „d4x+i A.~dx

)
(29)

for a current loop. If the loop is small, it may
be characterized by an area element, S„„,normal
in four dimensions to the loop surface. Then
i J A"dx~ =B„„(x,)D„„, where x, is the center
of the loop and D„„=iS„„is an imaginary effective
dipole moment. Since the susceptibility is, as
we shall see, always proportional to (D'„„), lt
will be negative and p, less than 1.

Thus in a functional integral formalism, Lenz, 's
law is the statement that dipole moments of cur-
rent loops are imaginary. This carries over to
field theory The act.ion for a scalar field, (D~tP)',
coupled to only a gauge field A, is bilinear in P
and the integration over P can be performed ex-
plicitly yielding (detD') ' . If the determinant
is expanded in the number of closed loops, each
term can be represented as a path integral over
closed loops x„(r). In the Euclidean formalism
all factors are real and positive except for a path
ordered exponential P exp(i g A"dx„). For a
small loop and slowly varying A„, we have

(Quark dynamics are accounted for by integrating
over all possible loops. ) When one does the
ordinary statistical mechanics of a loop carrying
a fixed current, the Boltzmann factor of the mag-
netic field is weighted by the same factor to take
account of the work necessary to maintain the
fixed current. [The reader who is surprised that
i appears in classical statistical mechanics may
note that the interaction of a charged particle with
a magnetic field, f A~(dx" /dt)dt, remains real
upon passing to imaginary time. Since A. „and
-A„contribute equally, the net contribution of the
phase factor is real. ]

With the aid of the picture developed above,
many of the physical effects of instantons are
easily understood. A gas of permanent magnetic
dipoles gives rise to a positive susceptibility and
therefore to a permeability, p, , greater than one.
This is paramagnetism and corresponds to anti-
screening behavior.

Placing a current loop in such a paramagnetic
medium will increase its self-energy, the op-
posite of what one would expect from Lenz's law.
As this antiscreening is of fundamental impor-
tance in QCD, we will discuss it in some detail,
starting with the more familiar case of screening.
In classical. statistical. mechanics there is no
paramagnetism (which only arises from quantiza-
tion of angular momentum). This is a consequence
of Lenz's law: A current loop responds to an
applied field in such a way as to reduce the net
field. This phenomenon is easily understood
in terms of the functional integral
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i f A"dx„=E""M„„,where M„„ is an imaginary
dipole moment. Thus scalar fields coupled to
gauge fields obey Lenz's law and screen rather
than antiscreen. In the weak-coupling limit this is
just the familiar statement that scalar fields
make a positive contribution to the P function.
Instantons and meron pairs, on the other hand,
are permanent dipoles. They have real dipole
moments due to the quantization of topological
charge and antiscreen, or cause the coupling, to
incr eas e.

The effect of instantons on quark interactions is
then analogous to the behavior of an electric
current loop in a paramagnetic gas of magnetic
dipoles. The dipoles antiscreen and cause self-
energy of the loop to increase. Scalar fields (or
fermion fields) work in the opposite way: They
screen an external current. The limit of complete
screening is what one woul. d obtain from the
Higgs mechanism.

Meron pairs work in the same direction as in-
stantons since they, too, carry a permanent dipole
moment. Moreover, since the moment increases
rapidly with pair size, the susceptibility would
diverge if it were possible to integrate over arbi-.
trarily large separations. Divergent susceptibili-
ty, a property which one might call "perfect
paramagnetism, "would imply confinement. Un-
fortunately, because merons of large separation
become dense and impossible to treat pairwise,
we are unable to say whether the susceptibility
actually diverges, but can say that it must grow
rapidly as we move into scales dominated by
merons. In what follows we will see that we can
actually compute the susceptibility in situations
where it is large (albeit finite) and that by studying
the possibility of spatially varying susceptibility,
we can see a plausible way of understanding low-
mass hadrons.

IV. PERMEABILITY OF THE VACUUM

We have demonstrated that the four-dimensional
gas of instantons and meron pairs is a gas of
permanent magnetic dipoles which, by anal. ogy
with three-dimensional magnetic systems, should
give rise to a positive vacuum susceptibility and
antiscreen colored fields. In this section we shall
show how one can reliabl. y compute the vacuum
permeability, even in circumstances when it is '

large. The calculation we shall do is exact insofar
as we can neglect the short-range interactions
of the dipoles, even if the resulting permeability
is large. So, once again, the basic approximation
is to consider configurations with integrated
instanton and meron pair density less than (but
not necessarily very much less than) one.

This is a big improvement over Ref. 1, where
we found that the basic hadron scale had to be
the scale where integrated density became unity,
but could not actually compute in that regime be-
cause we did not see how to treat the cooperative
effects of instantons on each other. I et us now

review the discussion of permeability given in
Ref. 1. %e start with a computation of the re-
sponse of a single dipole to a weak external field,
ignoring the interaction with other dipoles. Con-
sider then a particular instanton, located at the
origin, of size p and group orientation R„,. It
has a dipole moment D„„=-p'R~,q„,. If we apply
a weak external field, B,„, the energy of the
instanton in this field is, according to Eq. (25),
given by

2iT2
E(p, R)= — . , B„„D„„.

g= (p)
(30)

Thus the orientation-dependent part of the Boltz-
mann factor for the instanton (negiecting its
interactiop with the anti-instantons in the gas) is

( )
exP( [ & /g (P)]BapP Raanapp)v(3i)

J[dR] exp [-[2m'/g'(p)]B „.P'R, g„,)'

The mean dipole moment of the instanton in the
background field, B„„,is

(p „) =f [aa„]p(p, a)D

dg, is normal. ized so that

(32)

[dR]Ra,R][a = s~a]]5,a,

R]=l, and [dR]R, =0.

For a weak external field, B, this is easily cal-
culated by expanding the exponent in Eq. (31) and
keeping the first nonvanishing term:

2it 2

(n;.&
=f [aa]p a n ~ ".,.., p.*„a...n...a', .}g tP)

271' p
) 3 la[pa'9ax nBA n (34)

But q, ~„g,&, = 5» 5„,—5„,5„& —&~„&„and therefore

4~' 4

(Da.) = 2;; 3 (B:.-B:.) ~

gipi 8

To evaluate the net magnetization of the instanton
gas, we must add the mean dipole moments of
all the instantons and anti-instantons (for which
we obtain the same expression with B -B re-
placed by B+B). Since the vacuum. density of
these is equal, and given by n(p) [see Eq. (4) for
the perfect gas], we find that the magnetization,
M~„, is
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dp 8n' p'
M~v = —&(p)g( )

-Bgv ~ (36)

pDG - 1+4P QDG

dp 8n'2 p4
= I + 4s' —D(p) g'( p)

8' (37)

where we take n(p) =s,(p) = (I/p')D(p).
This expression for p, can be written as

7T dp
vDo = I+

2
—&,x'(p) exp[-~(p) j, (38)

This result is of general validity so long as 8
is sufficiently small and interpreted as the local
field at the position of the dipole (not necessarily
the same as the average B field in the medium).
We could in fact, calculate the exact nonlinear
dependence of M on 9 by not expanding the inte-
grand in Eq. (31). In this paper, however, we
will work in the weak-field approximation since
it produces linear equations and relatively trans-
parent physic&. In a sufficiently dilute-gas con-
figuration, p -is close to one and distinctions be-
tween local and average fields and between B and
H are not impl'tant. In that case, following Ref.
1, we may convert Eq. (36) to a dilute-gas (DG)
expression for the permeability,

o 2 a ext 2I" o ext
(Bg V) loC$1 Blklt HlkV1+/ 1+/ (40)

There is in addition a reaction field on the dipole
due to the fact that is polarizes the medium.
This field is, however, proportional to D,„ itself
and will not affect the orientation. On the other
hand, it does affect the scalar density n and in
the absence of B'"' actually accounts for all the
instanton-anti-instanton interactions (in the dipole
approximation). We will return to this in Sec. VI.
Having calculated (B„„)„„,we can evaluate the
approximation as in Eq. (31), and calculate the
mean moment of the instanton. It is clear that
Eqs. (34), (35) need to be multiplied by 2/(1+ p, ),
and Eq. (37) by 2p, /(1+ p, ). Therefore,

g =1+4@2, 2p. dp 8n' p4

1+v p g'(p) 8'—~(p)

or if we define

(41)

field H„„'"'. The calculation is similar to the one
described above except that we must now distin-
guish between the external field B'„„'"'and the
local field in the spherical cavity, (B',„)h„~, which
differs from B~™„'"'.(See Figl 1.) The field inside
the cavity can easil. y be calculated by standard
magnetostatic techniques. The calculation is
performed in Appendix I where we show that

or, if we take the asymptotic-freedom result,
x(p) =111n(1/pp. ), as

r2 OO

gg)g =1+ Co de/ 8 ~

XQ

(39)
then

V. =n+(O'+1)".

dp 8g2 p'g=4m' n(p) 2 =pDG ~

p g'(p) 8 (42)

(43)

This expression is not defined until the lower
limit is specified or, equivalently, until we have
decided on the precise set of configurations we
propose to integrate over. We will eventually
be interested in configurations for which the
dilute-gas picture is reasonable, yet pDG, as de-
fined by Eq. (39), is substantially greater than 1.
In other words, the instanton gas is such a strong-
ly polar medium that a, simple linear approxima-
tion to p. is likely to be inadequa, te.

To circumvent this difficulty we shall adapt
Onsager's' treatment of polar dielectrics to four-
dimensional magnetostatics. This method in-
volves no approximations except the neglect of
all but dipolar interactions. ' We consider once
again a single dipole or instanton and divide the
space into two regions: a spherical region which
contains the single dipole and the rest of space.
The dipoles in the region outside the sphere will
be treated as a macroscopic continuous medium
with permeability p. . We then calculate the mean
magnetic dipole moment of the instanton under
consideration in a slowly varying, weak external

This expression should be a very good approx-
imation to the permeability. We have, of course,
made some approximations. For example, the
polarizability of instantons has been ignored.
Classically instantons are nonpolarizable per-
manent dipoles, but, due to quantum fluctuations

FIG. l. A spherical cavity with p= 1 in a paramagne-
tic medium with j(f & l.
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they acquire a finite polarizability. On the other
hand, this effect should be of order g'/8m' and so
truly negligible. We have also neglected all but
dipolar interactions. This too should be an ex-
cellent approximation since the next term in the
instanton-anti-instanton interaction energy is an
octopole-octopole term which falls off like I/R'.
Given these approximations Eq. (43) is exact.
One can show that the result is independent of
the size of the spherical region which mas chosen
and holds even when this region is macroscopic. '
We also note that the analogous treatment of the
ordinary dielectric constant works very mell
even for substances with very large susceptibility
(such as water where e = 78 at room temperature).
Thus, we may trust Eq. (42) even when q is very
large and are now in a position to discuss the
physics of the regime of scale sizes where instan-
ton effects are large.

We must still, however, calculate the density, n(p),
of instantons of size p. Once the gas is not dilute
it is not a good approximation to use for n(p) the
perfect gas density n, (p) =(I/p')D(p). Instead, we
must include the effect of instanton interactions
which will change the density. In Sec. VI, where
we cal.culate the structure of the vacuum in the
presence of color fields, such calculations are
pres ented.

Finally, one must conclude that the suscepti-
bility of the vacuum is large. The calculation of
g, including instantons up to an integrated den-
sity of one, is precisely the same as described in
the discussion of Eg. (39), and gives the large
value 7)=10. According to Eq. (43), when g is
large, p. = 2q and me conclude that the vacuum
permeability is at l.east p. = 20. While this is not
yet perfect paramagnetism, it is very strong
paramagnetism. We shall see in the next few
sections how it can be exploited-in some very
interesting mays having a bearing on the problem
of hadron structure. In fact, we believe that the
breakup of meron pairs will actually make p. di-
verge. ' [From Eqs. (8), (9), and (28) it follows
that the contribution of meron pairs to q is
J 4'd'6 exp(-S„); this integral, which we have
encountered elsewhere, ' begins to diverge when
the upper limit is extended beyond x(D) =x(D)
—6.55=—3.] The detailed way in which this hap-
pens is not understood, but since instantons by
themselves produce a large permeability (~20)
the precise manner in which p, diverges may
not be important.

pairs in Euclidean space-time makes the vacuum
behave like a medium of large (probably infinite)
permeability, p, . It is implicit in our whole ap-
proach that the permeabil. ity at a point depends on
the instanton and meron pair density, n, at that
point. In the undisturbed vacuum, it is obvious
that this density, and therefore the permeability,
is uniform. In the presence of external sources
(i.e., tluarks) it is almost certain that the most
probable configuration is one in which n (and,
therefore, p) varies from point to point. The
thermodynamic reason for this is that while any
spatial variation of n raises the free energy, the
attendant variation of p, may lower the electro-.
static energy of the color field attached to the
quarks by an even greater amount. A limiting
case of this possibility is the creation of a
finite-size region around the quarks where n- 0
and p. -1 with an abrupt transition to normal
vacuum values at the boundary of the region. (See
Fig. 2.) This limiting case is obviously very
closely related to the MIT bag picture of hadron
structure and raises the tantalizing possibility
that one may be abl.e to derive the bag, at least
as a phenomenological approximation, from
QCD first principles. In the next section, we
wili study the thermodynamics of the QCD vacuum
in the presence of external sources and isolate
a mechanism which favors the formation of sharp
bag boundaries. In the present section, we will.
study the easier problem of the behavior of the
color field in the presence of such boundaries.

Let us therefore assume that the density, and
also p. , have baglike space-time variation and
see what this implies about the fluctuating; lin-

V. BOUNDARY CONDITIONS AND BAG FORMATION

We have seen in the preceding sections that the
naturally occurring density of instanton and meron

FIG. 2. A static bubble or bag in the QCD vacuum.
The cylindrical region corresponds to a region of space,
whose time histories have no instanton or meron pair
tunneling events.
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earized Yang-Mills field. If we choose the boun-
daries of the bag to be time independent, then
we can translate our Euclidean picture to a Min-
kowski description. In Minkowski space, the
field tensor F ~„ is related to the usual micro-
scopic average fields by E~ ——Fo; and B~ ——&&;»F&~,
while the intensity tensor G„„, composed of
D; and H&, is related to F~„by'

n~o
I

E~v=(1+4& X)Ggv= pGgv ~ (44)

In terms of p, the usual dielectric constant e is,
as a direct consequence of I orentz invariance,
just e= p, '. Note that, for g&0, e= p. "'&1 and
the interaction energy between real time static
charges, qq /er, is increased. This is the Min-
kowski space version of the antiscreening of
current loops in four Euclidean dimensions.

Consider now a static bag, with sharp bounda-
ries, inside of which n = 0 and e = I/g = 1 and out-
side of which n and p. take on their normal, large,
vacuum values. Just as in ordinary electro- or
magnetostatistics, in the presence of sharp
boundaries there will be boundary conditions on

E„„. Equations (16) and (17) imply that in the
static case, the curls of E,' and H&" = (I/p. )B, , and
(in the absence of sources on the boundary) the
divergences of D& ——(I/p)E&' and B,' vanish.
Therefore, across the boundary between two re-
gions with differing p, , the normal components,
D„and B„, of D and B and the tangential compo-
nents, E& and H„of E and H are continuous.

I et us now use these continuity conditions to
express the field energy density 8 just outside
the bag in terms of the fields E and 8 just
inside the bag

~ =- —
V (E.)'+ (Et )'+— (B.)'+ N—(Bt )' (46)

In the limit g-~ (we have so far only succeeded
in making p, large outside the bag, but it is so
large that p. = is probably a good approximation
for discussing boundary conditions), it is clear
that on the interior surface of a bag we must
have [see Fig. 3(a)]

(46)

The covariant form of this boundary condition is
simply E""n„=O. n„ is the (spacelike) normal to
the bag surface. These are, in fact, the boundary
conditions of the MIT bag model. "

For this picture to make sense, it is necessary
to establish two things. First, it must be the
'case, as we have argued above, that the normal.
state of the QCD vacuum is indeed a very good and
possibl. y perfect paramagnet with large or infinite
permeability p, . Second, it must be the case that

(a) (b)

FIG. 3. (a) The boundary conditions at the surface of
a perfect paramagnet (QCD vacuum). (b) The boundary
conditions at the surface of a perfect diamagnet (super-
conductor or Higgs vacuum).

then the quantity one would normally call p, is just
d(0). Obviously, if the Higgs mechanism is
active, D,„has no pole at k' =0 and p, =d(0) =0.
Many people have suggested that the QCD vacuum
should possess a "magnetic Higgs mechanism"—

in the presence of color sources (quarks), a
first-order phase transition will occur. Indeed,
the above bag picture is that of two phases in
equilibrium, the normal vacuum phase outside
the bag with l.arge instanton density and large p, ,
and an abnormal (although quite familiar) phase
inside the bag with small instanton density and
small p. . These phases can be in. equilibrium due
to the existence of the color field produced by
the quarks, so that the pressure of the vacuum
outside the bag (which will tend to collapse the
bag) is balanced by the chromodynamic pressure
(plus the kinetic pressure of the quarks) inside
the bag.

Note that the boundary conditions E„=B&=0 are
just the opposite of those at the surface of a
superconductor where B„=O (the Meissner effect)
and E, =0 (since it is a conductor) as in Fig. 3(b).
In other words, a superconductor is a perfect
diamagnet (i.e., has p = e ' = 0) and manifests
perfect screening. The QCD vacuum, on the
other hand, is at least a very good and possibly
a perfect paramagnet with p. = e ' =~, manifesting
perfect antiscreening (to produce confinement).

It is well known that the field-theoretic analog
of perfect diamagnetism (possessed by supercon-
ductors) is the Higgs mechanism. If we represent
the gauge field propagator as follows,

d(k')
D,„(k)=, (g,„+gauge terms),
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i.e., that e = p.
' should vanish and that the boun-

dary conditions on E and B should be reversed
from the electric Higgs, or superconductor, case
as in Fig. 3(a). We think we have demonstrated
that this happens automatically in QCD by virtue
of straightforward mechanisms generated by the
theory itself.

These boundary conditions are of direct interest
only if rapid spatial variations in p, actually
occur in the QCD vacuum. Showing that they do
is the business of the next section.

In the following section, we shall show that
there is indeed such a first-order phase transition
in QCD. What we can establish with reliability is
that there exist two phases —a gaseous phase with
very low density of instantons and small g and a
much denser phase with large density and large
p. , which may be in equilibrium in the presence
of an external E field of critical. value E,. Al-
though the dilute (gaseous) phase is easily treated,
we cannot reliably calculate the properties of the
dense (normal vacuum) phase. Thus we cannot,
as yet, accurately calculate E„which determines
the bag constant or prove that' p. =~ in the dense
phase.

If, however, we assume tha, t g =~ (or is at least
very large in the dense phase) then a bag will
surely be formed if quarks are inserted into the

FIG. 4. (a) Quark in a uniform sea of instantons and
meron pairs. (b) Quarks in a bubble or bag in the shape
of a Qux tube.

QCD vacuum. Clearly, if such quarks are in-
serted into the normal (dense) vacuum phase
[Fig. 4(a)], they will have a very large energy
(infinite if p. is actually infinite). Therefore, a
bag, or flux tube, will be created, inside of which
the vacuum is in the dilute phase. For this to
happen, the field E, created by the quarks, must
be tangential to the surface of the bag and equal
to E, at the surface, so that the dense and dilute
phase are in equilibrium (recall that the tangen-
tial component of E is continuous across the
boundary). This will determine the size of the
bag. If the quarks are very far apart, a flux
tube will be created of transverse size f [see
Fig. 4(b)] so that roughly E,L' =flux, and the
flux tube will have an energy = E,'RL'.

VI. MAGNETOSTRICTION AND THE FIRST-ORDER
PHASE TRANSITION

In the preceding sections, we suggested that the
QCD vacuum responds to the insertion of external
color sources (quarks) by creatirig a region of
space-time' around the source in which the instan-
ton density is substantially reduced. We further
suggested that there might exist sharp boundaries
(occurring presumably at some critical field
strength, E,) between a low instanton density
phase and the normal dense phase. The occur-
rence of such a first-order phase transition
would of course provide a fundamental QCD
rationale for the bag picture of hadron structure.
Our aim in this section is to show that the desired
phase transition does occur.

In order to explore this question we will eval-
uate the instanton density as a function of a static
external field E. There are two competing ef-
fects at work to determine the density (beyond
the coupling-constant renormalization effect
which determines the dilute-gas instanton den-
sity). On the one hand, the instantons have long-
range dipole interactions which can be attractive
and will drive the instanton gas toward collapse.
(Since the instantons are not point objects, the
collapse is not to a catastrophic infinite density
state, but simply to a configuration where the
instantons overlap significantly and are probably
not too well described as instantons. ) On the
other hand, the presence of an external field
brings a phenomenon (shortly to be explained in

detail) much akin to magnetostriction into play:
The external field drives the dipole density
down, the reduction factor being greater for
dipoles with larger moment (scale size). For
strong-enough external field, the increase of
density suppression with scale size dominates
the ideal gas growth of density with scale size
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and renders the net instanton density not only
finj.te, but small enough that the tendency toward
collapse due to the dipolar interactions is de-
feated. Not surprisingly, as the external field
is reduced, the density increases and eventually
becomes large enough that the dipolar interactions
take over and cause an abrupt collapse to a dense
phase. Fortunately for us, the critical density
is so low that the approximations we must make
to explore the critical region appear quite reason-
able. For the same reason, the properties of the
dilute phase, which is where the quarks reside
in the bag model, wil. l be amenable to quantitative
calculation. To explore these questions, we must
work out the thermodynamics of inst3ntons in an
external. field with special attention to the condi-
tions which must be met at a phase boundary.

As we have noted in Sec. II, the Euclidean
vacuum-to-vacuum amplitude, in the semiclassical
approximation, is equivalent to the grand canon-
ical partition function,

Z(g) = e

—((p)s.(p)
4p
p

=2 I

—n, (p) for (=1.I dp

p
(52)

Therefore,

n(p) = $(p)n, (p)

=no(p) for $ =1,

and

(53)

E,(n) = —2n(p) 1'n —1
dp n(p)

n.(p)

( —2n(p)
I dp

p

when

(54)

tivity and using Kq. (49) or minimizing the free
energy with respect to the density.

For the perfect gas of instantons and anti-
instantons, the pressure is simply

where P is the pressure of the gas,

~.(p) = D(p) Cy'e-"

(48)

P= 4(p) sg(
(49)

It is therefore possible to introduce the free en-
ergy per unit volume, F(n), which is simply the
Legendre transform of the pressure

~(~) = f (»((~)]2 (~)—-pN).4p
p

It then follows, by definition, that

(50)

is the bare density of instantons, and g(p) is the
activity'of an instanton or anti-insianton of scale
size p, mhich we introduce to simplify some
arguments. Of course, we must eventually set
((p) equal to l.

The pressure is a function of the activity. On
the other hand, so is the density of instantons,
or anti-instantons, via the relation

2n, (p) =2n (p) = —((p) inZ(()
1

F(n) D) = E,(n)+ ~ED,

F(n, D) =E (n) —'ED- (55)

(56)

[E,(n) at this stage is just the ideal gas free ener-
gy] whose first variations satisfy

&n(p)

To explore the issues raised in the beginning of
this section, we must introduce an external color
field and include the dipolar interactions between
instantons. The dipole-dipole interactions enter
in two ways: First, they change the electro-
static energy of the external field insofar as they
influence the way in which p, (permeability) de-
pends on density (this effect has been studied
in detail in Sec. IV). Second, even in the absence
of @n external field, the dipoles line each other up
and tend to increase the density. To obtain a
simplified demonstration of the phase transition
we shall provisionally neglect the second of these
effects. At a later stage, we mill include the
neglected interactions and find that the qualitative
picture is not altered significantly.

%e will study the dependence of the free energy
on a background Minkowski field, E, and instanton
density, n(p). Depending on whether one wants
the free energy as a functional of & or D, there
are tmo useful energy functionals'

&E(n)
s~(p)

=21nE(p) =0 (when ( =1). (51)
1

5E = 2 —lng(p)5n(p) + E5D,4p
p (57)

Thus, the density can be calculated by either
evaluating the pressure as a function of the ac- 6E = 2 —ln) (p) 5n(p) —D5E.

P
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As explained earlier, to obtain the equilibrium
configuration of the system, we must set $(p) =1.
Therefore, the equation to be solved to determine
s is either (BF/Bs)~ =0 or (BF/Bn)s =0—either
relation gives the same physics because E and D
are related to each other. At phase boundaries
of the type we are interested in, however, it is
P which governs the possibility of equilibrium
and for that reason we will henceforth consider
only E.

We also wish to explore the possibility of
equilibrium between two phases. For simplicity
we will take the phase boundary to be a plane
with E tangential to the boundary (Fig. 3). Ac-
cording to Sec. V, E, since it is tangential, must
be continuous across the boundary [hence our
interest in P(n, E)]. In equilibrium the normal
forces on the boundary. must balance. When
BF/Bn =0 the stress tensor is

8~& =EiD~+5~~ F(n, E), (56)

and, since E is tangential, the condition for
normal force balance reduces to continuity of E:

F(s~, E~) = F(nm, E,) . (59)

In what follows we will. study the response of the
system to "large" external fields —where "large"
means large enough to put the system in the dilute
phase. We will nonetheless assume that the
medium responds linearly, i.e., that

On the other hand, the linear magnetization in-
duced by a field E is

4m M= E. (62)

Therefore, the linear response condition is
p, -14m'm„, & E

or

Sv' —n(p)p'& E.dp, p. -1
p

(63)

%'e assume that this is also the appropriate condi-
tion for Minkowski fields.

with p. given as a function of local instanton den-
sity by Eqs. (42) and (43). This will be correct
as long as E is small enough that the magnetiza-
tion implied by Eq. (60) is less than the magneti-
zation, M„„obtained by aligning all the dipoles
in color space. Since the dipole moment of a
single instanton is essential. ly 2p', the saturation
magnetization is

M„, = —n(p)2p'.QP

%'e can now calculate the instaii~'on density,
n(P), in an external field by minimizing F(E,n)
= F,- (1/2p. )E' with respect to n(p), and using
Eq. (42) to obtain p, as a functional oi n(p). We
find that

BF s(p) E
Bs(p) s,(p) 2u' Bn(p)'

But since, according to Eqs. (42) and (43),

2g' & Bg 2p, ' &~a'

»(p) 1+»')»(p) 1+»'&' 2

(65)

this reduces to

s(p)=s, (p)exp -1, 6
«(p)p'

2 x E
1+ p~ 8 (67)

This means that the density can be expressed
in terms of E and a p. which itself is determined
by the density:

~ =7+(I+~')'",

'il = ——«(P)P +(P)
n' dp
2 3 p

= —t —p'«(p)s (p)
m' f'dp 4

p 0

x exp
2 v'E'

«(P)P

This amounts to a system of nonlinear equations
to be solved for p, (E), from which we can deter-
mine n(p}.

Before solving the equation l.et us discuss the
physical significance of Eq. (67). We note that
the density of instantons is seduced by the pres-
ence of the external field E, and the larger the
instanton is, the larger the reduction factor is.
This is simply the phenomenon of magnetostric-
tion, as it occurs in QCD. The thermodynamic
reason for this is that, while the (unperturbed)
free energy, E„ is raised by decreasing the
density of instantons, the electrostatic energy
(-E'/2p, ) is lowered even more since p de-
creases with decreasing n(p). Thus, in a para-
magnetic medium of the type we are considering,
with e =1/p, &1, the application of an external.
field expels part of the medium from the region
in which the field exists. This is the converse of
electrostriction in a dielectric medium, with
&&1, where the medium is sucked into the region
with nonvanishing E.

Furthermore, we note that E acts like an in-
frared cutoff, suppressing the effect of large
instantons, and causing the density, n(p), to
peak at small p and large «(p). This means that
for large-enough E we should be able to trust our
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semiclassical. treatment of the instanton gas, as
well as the approximation of replacing this gas by
a dipole gas.

These equations can easily be solved by intro-
ducing the variable (i], is the renormalization
scale parameter)

2 w '(Ey, ')'
1+ p.

' 8

and solving for q and E in terms of u. Equation
(68) becomes

2=(x'/22)C, J dxx'exp[-x((+pe "X')],
(70)

El] = - t~(1+ u')]~'.
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To proceed, we need a numerical value for C,
which can only be obtained by making an explicit
choice of coupling-constant definition. By a
simple extention of 't Hooft's results, ' we find
that C =1.51' 10 ' for his Pauli-Villars renor-
malization scheme and that CO=1.06 & 10 for- his
dimensional renormalization scheme (these num-
bers are for SU, and incorporate a correction
factor of 64 needed to compensate for a normali-
zation error in Ref. 14). Dimensionless physical
quantities should not of course depend on the
choice of coupling definition; we will in fact show
that the relative factor of 10' in density between
Pauli-Villars and dimensional renormalization
does not change the physics. For a first look at
the consequences of Eq. ('l0), we shall in fact
adopt an "intermediate" renormalization scheme
which leads to the value C, =0.097. (This is
largely a matter of convenience: The normaliza-
tion error mentioned above was brought to our
attention after the completion of this paper —we
had thought that Co =0.097 corresponded to
Pauli-Villars. ) Once the outlines of the solution
have been established, we will present the cor-
responding results for the true Pauli-Villars
and dimensional schemes.

The solution to these equations, presented as a
D versus E curve, is shown in Fig. 5. In Table I
we have listed the values, at representative points
along that curve, of permeability (i(,), field (E),
actuaL magnetization (M), saturation magnetization
(M„,), and the value of x at which the integrand
of the integral for q is peaked (x~). Note that at
all points M&&M„, which verifies that the linear
response approximation. is adequate.

The outstanding feature of Fig. 5 is the existence
of a point (point 8) where the slope of the D versus
E curve changes sign. According to Eq. (57), if
we set t = 1 (thereby eliminating n as an indepen-
dent variable), the second variation of E with
respect to D is just (SE/&D). Therefore, the

FIG. 5. The equation of state, D(E), of the @CD
vacuum in the presence of an external field E, in units
of p (JLf= renormalization scale paramet r), without
instanton interactions taken into account.

condition for thermodynamic stability is

(71)

TABLE I. The values of the permeability {p), the
electric field (Ep, ), the magnetization (4z M), the
maximum saturated magnetization (4~ lg„,), and the
peak value of x in the q integral (x&) for representative
points of the D(E) curve (Fig. 5).

Ep 2
4m M 471 M, at

1 1.05 12.25 0.58
2 1.17 10.3 1.49
3 1.47 . 9.47 3.04
4 2.76 11.82 7.54
5 4.37 15.65 12.06
6 ~ 14.6

2.28
4.92

10~ 39
25.56
39.92

21
19.1
17.7
16
15

e

which condition is obviously violated below point
3. An important point is that the passage from
the stable to the unstable regime occurs at such
a small coupling and density that we should be
able to trust the ealeulation which establishes the
existence of the instability.

If the theory is not catastrophically unstabl. e, the
D versus E curve must eventually turn around,
signalling the passage to a new, stable and pre-
sumably much denser phase. Our notions of how

and where the turnaround occurs are rather con-
jectural, but our guess as to what happens is
indicated by the dashed line joining points 5 and
6 in Fig. 5. We will not go into detail here, but
the rationale for this is as follows: As one moves
along the unstable portion of the curve the den-
sity of instantons increases and the effective
coupl. ing decreases. At point 5 x~ is about equal
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to the value at which instantons ionize into
merons. ' We therefore expect p. to rise suddenly
and D to decrease correspondingly suddenly to a
very small value.

If the passage to the condensed phase is roughly
as described above, one will determine the
critical field, E„at which the two phases are in
equilibrium by the Maxwell. construction. Accord-
ing to Eq. (59) we must find an E, such that the
points in the two phases have the same free en-

E(n, E ) =E(n', E,). (72)

But, by Eq. (57), dE[&., =-D(E)dE and Eq. (72) is
equivalent to

f
E

D(Z)dZ = 0.

Applying this condition to our conjectured ex-
tension of Fig. 5 to the condensed phase, we find
the critical field to be E, = 12.3~p. . At this field
strength a (very) dilute phase of instantons with
p, = 1.05 is in equil. ibrium with a dense phase with

Before we discuss the phenomenological impli-
cations of this phase structure of the QCD vac-
uum, we should verify that it is not significantly
altered when we include the instanton interaction
effects which were neglected in the foregoing dis-
cussion. What we neglected was the shift in en-
ergy of each instanton due to the fact that it is
embedded in a medium which can respond to its
presence and react back on it. To compute this
energy shift we make use of the sort of model
explored in Sec. IV: The medium is replaced by
a continuum with the same dielectric constant
and the dipole under consideration is placed in a
vacuum cavity of radius R within the continuous
medium. Since we are mainly interested in the
long-range dipole tail of the interaction between
instantons, the replacement of the instanton gas
by a continuous medium should be accurate. The
placement of the instanton whose chemical. poteri-
tial is being computed within a spherical cavity
requires some discussion since the end result mill
depend on the cavity radius. For the moment it is
probably simplest to regard the cavity radius as
providing a short-distance cutoff on instanton
interactions. In Appendix II we shall analyze in
some detail the instanton-anti-instanton interac-
tion as a function of separation. We find that the
dipole form is accurate as long as the separation
is larger than 2 to 3 times the instanton scale
size. At smaller separations the instantons actu-
ally turn into merons, and the action tends
smoothly to some finite limit at zero separation.
Therefore, if we wish to use the dipole inter-

action to characterize the interaction between a
given instanton and the instantons of the surround-
ing medium, we must prevent them from coming
closer than 2 or 3 times the instanton scale size.
This function will be served by the cavity as long
as its radius is taken to be 2 to 3 times the scale
of the instanton inside. This scheme neglects
the very short-range interactions between in-
stantons, a neglect which should not be too sig-
nificant so long as the overall density is low.

The shift in chemical potential of a dipole in
a cavity in a medium relative to vacuum is just

q4
4g2

-(2»(p) ( (-) (75)

A careful evaluation of Eq. (74) (supplied in Ap-
pendix C) shows that this is wrong by a factor of
two and that the shift in energy of the dipole due
to the presence of the medium is actual. ly

As expected, the chemical potential is yeduced
by the presence of the medium and the instanton
density is increased.

Since the chemical potential is just the variation
of free energy with respect to density, the above
result shows that the interacting free energy, F,
satisfies

&E sE,
&

p. —1 p
&n(p) &n(p) p, + 1 R (78)

where F, is the field inside the cavity, F is the
field (due to the dipole inside the cavity) in the
medium, and F, is the vacuum field af the dipole.
These fields are worked out in Appendix A where
we show in particular that

4 2,
(Es ) (E() )

P —l 4P 6a) )
pv c vv 0 ++1 R4

if the dipole within the cavity is an insta, nton of
scale size p and where p. is the permeability of
the surrounding medium. The difference between
E, and E, is a uniform field (which we call the
reaction field) generated by the response of the
medium to the dipole within the cavity. The shift
in chemical potential is basically due to the inter-
action of the cavity dipole with the reaction fiel.d.
A direct application of the expression [Eq. (25)]
given earlier for the interaction energy of a dipole
with a uniform field would give an energy shift
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where Eo is the perfect gas free energy [Eq. (54)]
(a factor of two has appeared because the varia-
tion is actually taken with respect to the common
density of instantons and anti-instantons) ~

An interesting check on this calculation is ob-
tained by comparing it with the standard virial
expansion. In the absence of an external field,
the condition for equilibrium is BE/Bs =0. If we

apply this to Eq ~ (V8) we obtain an expression for
n(p) which reduces, on expansion in powers of
density 'to

in Eq. (82), different physical effects.
If we choose R to be fixed (independent of the

scale size of the instanton inside the cavity), then
the equations for q and E are as easy to solve as
in the case where the back reaction of the medium
on the instanton density is neglected. We simply
compute q=(p. '-1)/2p. and E as functions of o.,

q=(m' /22)C, J
dxx'exp[-x(1+ cte ~~"}],

0 (83)
5 2,

-
~ 6 p 1 "s(2

—,= - (1+p') o. +

n(p) =s.(p) 1+3~(p)(p~ —1)Z~+O(n.'), (V9)
and eliminate n to get q (and therefore p, and D)

E
+ . .—~(p)p'.

1+p, 2
(80)

where p. no is given by Eq. (37) [note that: p, no-1
is O(no)]. We may compare this with the virial
expansion for the density, taking the interaction
between instanton pairs to be dipolar down to
separation B and excluding configurations with
smaller separation. The result is that the O(no)
and O(n, ') terms in Eq. (79) agree with the virial
expansion, thus reassuring us that Eq. (78) is
correct at least in the low-density limit.

To find the instanton density in an external
field we must minimize E(n, E) =E(n) —8'/2p, .
With the help of Eqs. (V8) and (66) we find that

BE =21n n(P) -12 ()~-I P
'

Bn(p) n, (p) p, +1

as functions of E. A safer procedure, given the
significance of R, would be to choose it propor-
tional to the scale size of the instanton inside the
cavity. The problem of solving for D(E) becomes
much more difficult, but the results are not much
dif'ferent than those which follow from Eq. (83).
The basic reason for this is that in the regions of
interest the instanton density is quite sharply
peaked in scale size and it does not much matter
whether we take 8 fixed or proportional to p.
We take the easy course and solve Eq. (83}.

Before presenting the solution we will review
the considerations which affect our choice of B.
Our basic picture of the significance of the cavity
leads us to set R equal to the distance at which
the instanton-anti-instanton interaction begins
to deviate from the simple dipol. e formula. Ac-
cording to Appendix B, this means

Therefore, the equilibrium density is

n(p) =n (p) exp[- nx(p)(pV)'], .

where

2 m~g 6 p, - 1
1+P' 8P' (R p.)' p + 1

'

(81)

(82)

A = 2.2p, (84)

where p is the scale size of the instanton in the
cavity. On the other hand, the cavity must be
small enough that the probability of finding a
second instanton inside it is small. . This will be
true if

Note that n, which governs the net decrease in
instanton density, is not of definite sign: The
effect of the background Minkowski field, E, is
positive, while the effect of the interaction with
other instantons is negative, corresponding to an
increase in density. In our approximation, the
interaction of a particular instanton with the
medium is through an induced uniform cavity field
and one might wonder why its effect is different
from that of the background Minkowski field. The
reason is that in the Euclidean picture, the fields
due to instantons are all real while the electric
fields due to physical charges (call them Minkow-
ski fields) are imaginary (this is because they are
'real in the Mir&owski picture and acquire an i on
continuation to the Euclidean picture). Conse-
quently, the square of Euclidean and Minkowski
electric fields have different sign and, as we see

t dpw'
J

—n(p)R'& 1'.
p

(85)

This condition can usefully be expressed in terms
of f=m' f (dp/p)n(p)p', the fraction of space-
time filled by instantons. If we substitute Eq. (84)
into Eq. (85) we have

= 0.043 .1
2.2 ' (86)

This condition is surely too strong, and we will
not be too concerned if it is violated by as much
as a factor of two. Ne must also require that the
linear response approximation be valid. This re-
quires two things. First, the external field must
not be so strong as to align all the dipoles of the
medium. This condition, which was discussed
previously, does not depend on R and requires that
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'E&4m2(M. .. f

(8't)

ILUTE
HASE

(As in our previous treatment it turns out that this
condition is well satisfied in the domain where our
other approximations are valid. ) Second, it
must be the case that the instantons themselves
do not completely align neighboring anti-instan-
tons. If, for example, the density were too high
and R very small, then the field produced by an
instanton might be so strong as to produce a mag-
netization (just outside the cavity) greater than the
saturated magnetization of the medium. Since the
maximum fiel.d produced by the instanton is at
the edge of the cavity, and equal to ~B~ =4v12 p'/
R', this condition is

L
—1 4~12P

l6-
POIN
INSTA

D ~o- ~ ~
~ ~ ~

( )

where M„, is the maximum magnetization attain-
able by aligning all the dipoles of a given self-
duality:

"dp
M„, =~12

J
—2n(p)p'.
p

(89)

This condition turns out to be extremely well-
satisfied in the domain where we trust our other
approximations.

To extract useful information from Eq. (83) we
make a specific numerical choice of Rp, con-
struct the corresponding D versus E curve, de-
termine the scale size p~ at which the instanton
density peaks, and vary R until R/p& is near the
value 2.2. In Fig. 6 we plot D versus E for the
values R, p, =0.34, R,p. =0.42, and R,p, =0.55. The
corresponding values of R/p~, determined at the
points where &E/&D =0, are 1.9, 2.3, and 2.9 and
therefore in the range of interest.

The general features of this curve are much
the same as in the case of no interaction. ' In
particular, we still find an instability in the re-
gion of very low density and small p, . Indeed, the

08

DENSE
PHASE~6' Q

10 12 &5 &7 20
Ec = l6.5p~ E(p.) ~

FIG. 6. The equation of state, D(E), of the @CD
vacuum in the presence of an external field E, in units
of p {p = renormalization scale parameter), with in-
stanton interactions taken into account. The solid curve
holds for a cavity size Rp= 0.42, whereas the dash-
dotted curves {labeled 1 and 3) refer to Rp=0.34 and
0.55, respectively.

effect of instanton interactions is to reduce the
value of p, at which the instability occurs. For
the values of R; p, cited above, we find that at the
instability points:

E, =11.87/ '
p p, =1.17, x, =19.1

y

E, = 10.85'. ',
E, =10.1g2,

p,, =1.23, x, =18.7,
p/3 1.30, x3 = 18.3

while in the case of no interaction we had

E=9.47', , p, =1.47, x =17.7.
In Table 5, we give the values of p, , Ep', 4v'~M~, .

TABLE II. The values of the permeability (p), the electric fieM (Ep ), the magnetization
(47t M}, the maximum saturated magnetization (4x M„,), the peak value of x in the g integral
(x&), and the fraction of space-time occupied by instantons (f ) for representative points on
the D(E) curve for Rp =2.3 with instanton interactions taken into account (Fig. 6).

E/V' 4~'[ M[ 4w'[M„, f

1.016
1.051
1.17
1.67
2.7
00 Q

16.3
12.9
10.85
12.94
20

Ec =16

0.26
0.63
1.58
5.2

12.6
?

0.7
2.3
6.3

13.5
25.6

?

22.6
20.7
18.7
17.7
16.8

?

0.0014
0.005
0.02
0.06
0.15

?
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TABLE III. The values of selected quantities (refer to
Table II for definitions) at points 1—6 on the D vs E curve
for the Pauli-Villars scheme plotted in Fig. 7.

E/ —2

1.01
1.06
1.16
1.62
2.12
3.16

6.4
4.5
3.8
3.8
4.5
6.4

0.29
0.24
0.23

. 0.20
0.20
0.20

17
13
13
12
12
13

0,002
0.008
0.02
0.08
0.13
0.22

I I I I

5 6
E /P.

7 8 9

4w'IM„, I, x~ (the value of x at which the q inte-
gral is peaked) and f (the fraction of space oc-
cupied by instantons) at representative points
along the curve for R =R, . All of these results
are not sensitive to the fact that we have taken
R to be independent of p. If we set R = 2.2p in
Eq. (83), we find slight changes in these numbers
[p. is slightly larger (smaller) in the stable (un-
stable) phase].

We should also determine the effect on the insta-
bility of changing the coupling-constant definition.

)50-

)00—
Cl

FIG. 7. The D vs& curve for the Pauli-Villars renorm-
alization scheme. Values of P, etc. , at the labeled points
are tabulated in Table III.

As explained earlier, the above numerical work
was done with a coupling-constant definition in-
termediate between 't Hooft's version of Pauli-
Villars and dimensional renormalization. We
have therefore determined the D vs E curve for
the more conventional Pauli-Villars and dimen-
sional renormalization schemes (with the variable
cavity radius fI =2.2p). The results are presented
in Figs. 'l and 8 and Tables III and IV. The D vs
E curves are quite similar in shape to those of
Fig. 6 and the values of the dimensionless quanti-
ties p, and f are about the same at similar points
on the curves. Qn the other hand, - the values of x
suffer an overall shift (for intermediate renor-
malization, the instability occurs at x-19, for
Pauli-Villars it occurs at x -13 and for dimen-
sional renormalization it occurs at x-29) while
the values of E (and P) suffer an overall rescal-
ing (for intermediate renormalization the value
of E at the instability point is -11', , in Pauli-
Villars it is -3.5p. and in dimensional renormal-
ization it is -56M'). The physics should of course
be exactly invariant to changes in coupling-con-
stant definition and we would presumably find it
to be so if we could include the effect of quantum
corrections to instanton effects. The present
exercise shows that it is not unreasonable, for
the conventional coupling-constant definitions, to
believe that the physical effect of quantum correc-
tions on the properties of the instability is small.

Returning to Fig. 6, we see no sign of the D

50—
TABLE IV. The values of selected quantities (refer to

Table II for definitions) at points 1-6 on the D vs E curve
for dimensional renormalization plotted in Fig. 8.

I~I/l~ ~l

50 )00 150

FIG. 8. The & vs & curve for the dimensional renorm-
alization scheme. Values of p, etc. , at the labeled
points are tabulated in Table IV.

1.00
1.01
1.06
1.44
1.98
2.59

127
90
64
64
90

127

0
0.43
0.45

. 0.39
,0.40
0.41

35
33
31
31
30
31

0
0.0004
0.003
0.025
0.048
0.070
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vs E curve turning around a second time [actually
Eq. (83) leads to such a turnaround, but st a value
of E and p, so large as to be ridiculous]. How-

ever, it is clear that at some point along the
curve, our approximations are no longer valid.

Where do our approximations break down'P If
we examine the various conditions enumerated
above, we find that the first problem that arises
is that the density of instantons becomes too
large. (There is no problem at all of saturation
of the magnetization. } For example, in the case
of R =R„ it is roughly at point 5 (E= 20, g =3)
where Eq. (85) fails indicating that instanton den-
sity has grown too large. At this point, the gas
is sufficiently dense that, by virtue of the argu-
ments of Appendix B, the .instantons must be
replaced by merons. In practice this means that
Abelian techniques can no longer be trusted and
truly non-Abelian physics takes over. We assume,
without any very detailed justification, that the
new "phase" is one in which p is very large and
make the guess that at point 5 the D(E) curve
drops rapidly to zero as illustrated in Fig, 6. If
this is the case, then (by Maxwell's construction) at
E,- 16.3p. ', we have two phases in equilibrium,
one extremely dilute (x'-23, p, -1.02) and the
other, avery dense phase with large, if not infinite,

The instantons density profile in the dilute
phase is pictured in Fig. 9. We can then calculate
the zero-field difference in free energy density
between t,'he dense and dilute phases, which we
shall see below is equal to the "bag constant" B.
The equilibrium condition is

E( nE, )=F(n„E=O)— E,'
2g~

=P(n„E,}

=P(n E=O)- E1 2
2& 2p

' c
2

where n, (n, ) is the density in the dilute (dense)
phase. Since p.,='0, p,, = 1,, we have that

ever, that this qualitative picture of the phase
structure of the QCD vacuum must lead directly
to something very closely related to the bag model.
Although numerical details may be off by factors
of a few, it seems to us that the methods of this
section give a convincing demonstration that a
dilute phase exists in a sufficiently strong ex-
ternal field and that the dilute phase must con-
dense when we lower the external field beyond a
critical value. This qualitative insight will surely
be the key to a quantitative QCD treatment of
hadron physics.

VII. A MODEL OF HADRONS'

We have seen that the QCD vacuum can exist
in two distinct phases. The normal vacuum in
absence of colored fields or quarks, is highly
paramagnetic due to densely packed instantons
and meron pairs (and presumably free merons)
with a very large, if not infinite, permeability.
In the presence of colored gauge fields, produced
say by static quarks, there can exist a dilute
instanton gas phase which is in equilibrium with
the normal vacuum phase. In the dilute phase the
susceptibility and the effective coupling are very
small. In this section we shall show how this
leads to the confinement of quarks, and to a bag
model of hadrons.

Let us first discuss very heavy quarks. We
consider a color singlet state consisting of a .

quark-antiquark pair, separated by distance R.
We wish to calculate the energy of this state.
This should be done, of course, by evaluating the
vacuum expectation value of the Wilson loop op-
erator, P exp(i g A"dx„), for a loop (L) of spa-
tial. extent L and time extent T, as T- ~. How-

E =P(n„E=0)-P(n„E =0) = -,'E, , (90)
2-

which yields the following estimate for the bag
constant:

8 E'-(3 4p)
1

2p, ~

(91)

We will have more to say in the' following sec-
tions concerning the phenomenological implica-
tions of a first-order phase transition between a
very dilute phase (where ordinary perturbation
theory notions are valid and the effective cou-
pling is small) and a very dense phase (where the
coupling is large and the behavior of the system
is essentially non-Abelian). It is obvious, how-

I I I

l5 l6 l8 20 22 24 26 28 30 32 34 X
.234 .l95 .(62 .135 .ll,094,078 .065 .055 .045 pP

FIG. 9. The density of instantons, 104f(x), in the di-
lute @CD phase. f(x)dx represents the fraction of space-
time occupied by instantons of scale size between p and
p+ dp, where pP=exp(-g/11), and f(x)= (0.17r /11)x
X exp[—x(1+ze 4"i' ~)](n —320).



1846 CALLAN, DASHEN, AND GROSS

ever, since the coupling, g /Sw2, is so small in-
side the bag, we ean treat the quarks as static
Abelian sources of charge Qg, where

0 =; =- Q(2Q')4~. ).i..i.~
~

Of=/

In the normal vacuum state p, =~ (or is at least
very large). Thus the color fields produced by
the quarks cannot penetrate this phase and a flux
tube must be formed surrounding the quarks in
which the dilute phase exists and which is j.n

equilibrium at the boundary with the dense vac-
uum phase [see Fig. 4(b)]. Thus we must solve
the linearized Yang-Mills equations for E

V D=gq[6(x) -6(x-ft)),
(92)

1vxE=O, D= —E,

where p, ,= 1 is the permeability inside the tube.
The boundary conditions are clearly that the
normal component of E vanish at the boundary,
and that the transverse component be equal to the
critical value E,.

E„=O, E, =E,=~8=16.43@'. (93)

The solution of this problem will determine the
actual size and shape of the fl,ux tube as well as
the magnitude of E inside the tube. This will de-
termine the density of instantons and the precise
value o

A particularly simple case arises when R be-
comes very large. In that limit the tube must
become a cylinder of diameter d, in which E has
a constant magnitude E, (since V x E =0). (See
Fig. 10.) Thediameter of the tube is fi..ed by de-
manding that the flux, gQ, be equal to ~md'D
= vd'E, /4p, Since the permeability in the dilute
phase, p,„ is essentially one, the diameter of
the tube is given by

d= ——g =3.04(Bx) "=0.4p, '.
mE (94)

Such a flux tube leads of course, for large R, to
a linearly growing interaction energy between the
quarks. The energy density of the flux tube is
simply the difference in free energy of the dilute
and dense phase, . B =E,'/2p, „plus the electro-
static energy density which also equals E,'/2p,
Thus the energy per unit length of flux tube & is

E ' gd' 8
e =2 ' - = E,go=14.5 — =33.'7p, '.

2p~ 4 x

(96)

This picture bears many similarities to the
string model. We might hope to use it to estimate
the slope of the Hegge trajectories, which should

only depend on the value of & and not on the char-
acter of the quarks at the ends of the tube. This
we can do by approximating the action of a mov-
ing tube by &LT, where L is the spatial length of
the tube and T the time of propagation. Com-
parison with the Nambu action for a relativistic
string" leads us to identify e with the proper
tension of the string. " The Regge slope, e', is
then determined by

1
2 77(Z

n' =0.011 — = 0.0047@ '.x
8

(96)

FIG. 10. A flux tube (of diameter d) for very-we11-
separated heavy quarks.

This is surely a crude approximation given
our rather fat flux tube. If we take a'=0.9 QeV '
then P =73 MeV, a value, as we shall see below,
reasonably consistent with the bag radius of the
nucleon.

In order to actually calculate a heavy-quark-
antiquark potential that could be used in a
Schrodinger equation to predict the spectrum of
heavy-quark bound states, one would have to
improve the above calculation. The effects of
instantons inside the flux tube, the finite thick-
ness of the surface of the tube, the resulting sur-
face energy, and the effects of massless quarks
and chiral-symmetry breaking would all have to
be taken into account. These issues will be dis-
cussed below after we develop the bag model for
light-quark bound states.

Turning now to light quarks we must confront
the question of quark propagation in the instanton
gas. Until this point we have been able to charac-
terize the net effect of the instantons as producing
a (possibly space-time-dependent) paramagnetic
susceptibility. However, the existence of a finite
density of instantons can have other effects. In
particular, as we have shown in Ref. 1, they can
induce dynamical chiral-symmetry breaking and
generate a dynamical quark mass. ' This will de-
termine the boundary conditions for the quark field
at the surface of the bag.
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Let us recall the mechanism proposed in Bef. i
for dynamical chiral-symmetry breaking. (We
shall assume two massless quarks. ) Instantons
generate an effective, nonlocal four-fermion inter-
action of the schematic form'"

(97)

where the determinant runs over the quark fla-
vors. This effective interaction breaks the axial
U(1) symmetry [thus solving the "U(1) problem "]
and renders the SU(2) &SU(2) chirally symmetric
vacuum unstable. ' This was discussed in detail
in Bef. 1, where we showed that even a moderately
dilute instanton gas generates an instability of the
chirally symmetric vacuum (the manifestation of
this instability is the appearance of a tachyon
in the v=gP channel).

Thus the true vacuum state will be a Goldstone
vacuum in which ( gg) WO. Within the dilute-gas
approximation one can actually construct this
vacuum by means of a Hartree-Fock equation (as
illustrated in Fig. 11). Our study of this equation,
as well as the much simpler case of one mass-
less flavor, leads us to conclude that once the
density of instantons is moderate, a large dynam-
ical quark mass will. be generated. By the dynam-
ical mass we mean, of course, the term m(p) in
the quark propagator S(P) ' =Z(P)[P+ m(P)]. This
mass is strongly momentum dependent, vanishing
rapidly for large p. For small P, however, m(P)
is very large. The inclusion of meron pairs will
increase m(P) even more. Although we are unable
to calculate the quark propagator in the true vac-
uum phase, due to the large density of instantons
and ionized merons, it is reasonable to conjecture
that in this phase m(P) will be very large for
moderate values of P. Thus if a bag exists, as
discussed above, the inside of the bag will be
chirally symmetric, since the density of instan-
tons is so low, and the quark masses will be
given by their small bare values. Outside the
bag, however, the density is so high that the
vacuum will exhibit spontaneous chiral-symmetry
breaking, generating a very l'ange quark mass
(for small momentum). Thus our bag acts also
as a mass bag, conf ining the quarks to a r egion
where they are light.

Let us now consider light-quark bound states.
Here again we expect that the quarks will create
a bubble in the dense vacuum phase in which the
dilute phase exists. However, now the quarks
have kinetic energy which will contribute to the
pressure on the surface of the bag helping to
balance the vacuum pressure of the dense phase
outside the bag. To treat adequately light-quark
bound states one would have to go beyond our

S = ~ —=---+ m~ +
P + ~ ~ ~ ~

FIG. 11. The Hartree-Pock equati. ons (dilute-gas
approximation) to the quark propagator. The instanton-
induoed determinantal interoction, represented by V,
generatea, for moderate instanton densities, a dynami-
cal quark mass m(pj.

previous discussion, which was restricted to a
time-independent bag surface. We shall not at-
tempt such a derivation in this paper. Bather
we shall assume that the phase boundary (the bag
surface) responds slowly to the fluctuating fields
created by the quarks inside the bag, and that we
can therefore treat it as a static surface. This
approximation must, of course, be justified or
superseded by an improved treatment.

We can now determine the conditions for phase
equilibrium. Given a collection of quarks in a
singlet state we again must solve the coupled
Yang-Mills and Dirac equations (with g /Sm'= —,', )
for the quarks and gluons inside the bag with the
boundary condition n"F„„=Oon the surface (where
n is the spacelike normal to the surface). Strict-
ly speaking, there are also instanton-induced
interactions inside the bag, but since the density
of instantons in the dilute phase is so small we
neglect these for the time being. The boundary
condition on the quark field is determined by the
discontinuity of the quark mass at the boundary.
According to the above discussion a reasonable
approximation is to take M,„„~=~ outside thebag.
This leads

toity/

=g on the surface, which coin-
cides with the MIT boundary condition for the
quark field, "and appears to introduce explicit
chiral-symmetry breaking. However, we must
now recall that the @CD vacuum phase outside
the bag is a Goldstone vacuum with zero-mass
(if the bare quark masses are zero) Goldstone
bosons. These will necessarily couple to the
quarks at the bag surface and will restore chiral
symmetry.

In lieu of a full treatment of chiral-symmetry
breaking in the dense phase, the construction of
the pion state and the evaluation of f, , we shall
a,dopt a, phenomenological approach. There must
be a chiral order parameter in the vacuum state
and for a certain class of phenomena (soft-pion
theorems, for example) we can rigorously rep-
resent its dynamics by a phenomenological non-
linear 0 model, adjusted to yield an infinite
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quark mass outside the bag. Namely, outside
the bag we consider an effective Lagrangian

Z = &[iP'- g(o+i w'7y, )]r/I

+ A (o'+ w'- o', ')'+ -,'(&„Tr)'+ —,'(&„o')', (98)

and adjust ~, g, and 0, so as to obtain in the
Goldstone vacuum ((o') = o'0) an infinitely massive
rluark and o and a finite f . We then make the
standard canonical transformation to the non-
linear 0 model.

Now we have, in addition to the quark and gluon
fields that live inside the bag, a m field that lives
outside the bag. In the limit M,-~ it decouples
from the quarks outside the bag and thus satisfies
D'„D",n =0, where D'„ is the chirally covariant
derivative, D'„=(1+Tr2/f, ') '&~. However, the w

field couples to the quarks on the surface of the
bag. Not surprisingly, this coupling is given by

the bag. The philosophy behind them is totally
different. " Our confining paramagnetic bag arises
dynamically due to the properties of the QCD
vacuum" and is not introduced in an ad hoc
fashion. Furthermore, the boundary conditions
on the quark field are also a consequence of the
dynamics of the vacuum and once the pion, present
as a Goldstone excitation of the dense vacuum
phase, is accounted for, chiral symmetry is pre-
served. Finally, the above equations are just
the first-order approximation to the QCD bag
for light quarks. An improved treatment will
take into account the finite surface thickness of
the bag (see below) and the fluctuations of the bag
surface. The finite density of instantons inside
the bag and on its surface will. induce new inter-
actions between the quarks. Finally, the energy
shift due to zero-point oscillations in the bag,
which arises from the instanton determinants

n "7/ry, ( 7'/2) g = r/r y, ( 7/2)P =f,n"D'„Tr (99) with interactions taken into account, is finite and

on the surface. This is exactly what is required
to ensure that the total axial-vector current

A~ = r/ry~y, ( r/2)$8(xaR) +f,D~w8(xgR) (100)

be conserved (R is the spatial region of the bag).
Finally, we have an equation which ensures

energy momentum conservation, balancing the
kinetic pressure of the quarks and gluons inside
the bag with the vacuum pressure and the pressure
of the n field outside the bag. This results in

B = 2E =
m~ "D„(gr/r) —2(D'„Tr) —4Tr(E„„F"")

(101)

at the surface.
To summarize, our semiphenomenological equa-

tions are

igloo =(iP'-gg)r/I =0, x~R
D"E„„=g y„,' A,'g, —

(D'„)'w=0, x gR
irrr/f =g,

n~E„„=O, x on the surface of R.
Qy, (r/2)t/r =f, n ~ D' Tr,

B = w'n D(gP)- ~(D'„w)'- ~TrF„„E"".

(102)

Solving these equations will produce a bag model
which automatically satisfies all the soft-pion
theorems of chiral symmetry. Other ("nonsoft")
effects of the pion field should not be taken too
serious ly.

These equations are similar to those of the MIT
bag model, "differing only in the inclusion of the
Goldstone mode present in the vacuum outside

calculable.
Even at this level of approximation, there wil. l.

be differences between our model and the MIT
bag due to the coupling of "bag states" with the
Goldstone pion. This will have an effect on the
hadronic spectrum and will allow for a simple
calcul. ation of pion couplings.

The pion itself is not, strictly speaking, a bag
state but rather a Goldstone excitation of the
dense vacuum. Its properties (f, , for example)
are determined by this phase. For consistency,
howeve. r, one should be able'to see how a bag
containing a rluark-antiquark pair in an I (J )
= 1 (0 ) state would collapse to a zero-mass
bound state. Following Horn and Yankielowicz"
we include in the energy of the state the attractive
interaction (in the pion channel) due to the deter-
minantal interaction induced by instantons. For a
bag of radius R this has the form CR ', as long
as R is greater than the instanton size. A calcul. a-
tion similar to that performed in Ref. 1,6 shows
that, with the density of instantons that exists in
our dilute phase, this interaction causes the bag
to contract, and the mass to decrease, to a
point where the mass vanishes and the bag no
longer exists. This is hardly surprising since
this is simply a crude way of generating a bound-
state Goldstone boson by the mechanism proposed
in Ref. 1. An interesting open question is whether
there exists another metastable and heavy bag-
like pion.

Let us estimate the size of a hadronic bag. For
a crude estimate, we simply balance the vacuum
pressure, (S/&R)(4w/3BR') of a spherical bag
with the kinetic pressure of the quarks. For
massless quarks this is simply 2.04' ',"where
N is the number of quarks. For the nucleon
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therefore

612 ~'
~025- 1

4mB
(103)

x(p)
8 (I+y)' (105)

This expression is accurate only if the instanton
is far enough from its image for the dipole ap-
proximation to be valid. According to the results
of Appendix 8, this requires that y ~0.1. This
causes the density of instantons of scale size p

This should be compared'with the peaked instanton
size inside the bag, which is (see Table II)

p~ = exp(- —,",x~)P ' =0.12' ". (104)

Thus the bag is roughly twice the size of the in-
stantons inside it. One might worry that such a
bag could hardly be treated as a sharp bag. How-
ever, one must remember that the fraction of
space-time occupied by instantons inside the bag
is very small (f= 0.0014). Thus the probability
that an instanton of size p~ is actually inside the
bag, per unit time of order p~, is fR/p~ = 0.01.

A final point which must be discussed is the
question of the thickness of the bag wall. Like
any other phase boundary, the bag wal. l has a
finite thickness, &, and we must convince our-
selves that this thickness is small compared to
the radius of the bag. Although many mechanisms
are simultaneously at work to determine &, we
shall assume it to be entirely due to one effect
we understand rather well. . This effect is an in-
crease in instanton density near the surface due
to the attraction exerted on the dilute-gas instan-
tons inside the bag by their images in the bag sur-
face. This image attraction causes the dilute-gas
instantons to pile up near the boundary with a
scale distance for density increase which we will
show in the next few paragraphs to be equal to
0.2p= 0.025', ' or one-tenth the bag radius. This
is certainly small enough for us to expect surface
effects to cause only small corrections to the
naive zero-thickness bag picture.

To compute the wall thickness, we first assume
that there is a well-defined wall (i.e., a plane
boundary on one side of which p. » 1 and on the
other side of which p, = 1) and then study the ef-
fect of that sharp boundary on the spatial distribu-
tion of instantons in the dilute region. The effect
in question arises from the interaction of individ-
ual instantons with their "image dipoles" on the
other side of the surface: A simple magneto-
statics calculation shows that if an instanton of
scale size p is placed at a distance d = p(1+y)
from a sharp plane boundary between media with
p. =1 and p. =~, then its action is reduced by

to vary as a function of the dimensionless distance
y according to

n, (y) =exp —
~ n, (~),3 x(p).8 1+y4 (106)

where n, (~), of course, is the density far from
the boundary.

Our study of the first-order phase transition
has shown that in the neighborhood of the phase
boundary the dominant value of x is of order 23.
The exponentiai enhancement factor in Eq. (106) is
therefore extremely rapidly varying: at y = 1,
0.1, and 0 it takes on the values 1.7, 362, and
5570, respectively. Although the instantons which
stand off from the surface by one scale size (y =1)
are stil. l in the dilute phase, those which touch
the surface (y = 0) obviously are not.

To get a rough estimate of how far from the
surface the transition from dilute gas to con-
densed phase lies, we introduce a surface layer
density of instantons, n, (y,). This is the density,
per unit surface area per unit time, of surface
layer instantons of scale size p and with y&y, . It
is essentially a measure of the density of extra
instantons, over and above the background den-
sity, n, (~), induced by the surface. It is com-
puted by integrating n, (y) -n, (~) over the distance
normal to the surface, starting from a lower cut-
off p~. If po is reasonably small, one finds that,

2(1+y„)' 3x(p)s,(y, ) =
3 (

)" exp
8(1 )4 pn, ( ). (107)

16 (1+y„)' 3x,
9v x~ 8(1+yo)~

(108)

where x~ is the x value ai which the distribution
peaks (about equal to 23) and f is the fraction of
four-dimensional space covered by the dilute-gas
instantons inside the bag (about equal to 0.0014
according to Sec. VI).

In Sec. VI we found that the dividing line between
the dilute and strongly interacting four-dimension-
al instanton gas was marked by f equal to a few
hundredths. %e shall assume that the dividing
line for surface instantons comes at similar values
of f. If we choose y, =0.1 and 0.2, we find from
Eq. (108) that3(y, ) =0.025 and 0.006, respectively.
The former value appears to lie on the dividing
line between dense and dilute phases, while the

A convenient dimensionless measure of how dense
the surface instantons actually are is f, the
fraction of three-dimensional space covered by
surface instantons. A straightforward calcula-
tion gives

f(v.)=
~ Jv (v)'
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latter value appears to lie unambiguously in the
dilute phase. This means that the distance over
which the surface instanton density passes from
dense'-to-dilute values is on the order of one-
tenth the peak instanton scale size. If we take this
distance as a measure of the bag wall thickness,
we obtain the estimate mentioned at the beginning
of this discussion.

In real QCD with light (essentially massless)
. quarks there is another surface effect. In a
simple model where the dynamical quark mass is
zero in the bag and large compared to p

' out-
side, the fermion determinant will contain N&

(1V& is the number of light flavors, 2 or 3) eigen-
values which approach zero like 2 '(1+y) ' for
large y. Unless one or more of these eigenvalues
are absorbed by an interaction with light quarks
in the bag, n will contain an additional factor
2 "~(1+y) '"~ and n and fwill contain the same
factor with y replaced by yo. We note, however,
that even when massless fermions are present the
main surface effect is attraction by the image di-
pole.

Clearly much work remains to be done in de-
veloping the physics of our bag. The most im-
portant issue from a fundamental point of view
is the precise nature of the dense meron-dom-
inated vacuum phase. However, it would appear
that the dynamics of the quarks that live in dilute
bubbles are relatively independent of the exact
nature of this phase, at least insofa, r as we con-
sider the static properties of low-lying hadronic
states. Thus we can already contemplate develop-
ing a phenomenological theory of hadrons which
proceeds directly from QCD with perhaps only a
few parameters (B,f„.. . ) to represent the, as
yet, quantitatively unknown features of the denSe
phase. For heavy-quark bags this should be a
straightforward task. Of particular interest will
be the surface effects discussed above. The in-
stantons near the surface will be of moderate
density and will induce nonperturbative interac-
tions between quarks. Previous experience'4'
suggests that these will dominate perturbative
gluon interactions and will have important effects
on the masses, couplings, and interactions of
hadrons.

VIII, SHIELDING FROM LARGE-SCALE FLUCTUATIONS

Finally, we must show that fluctuations do not
destroy the bag picture. In studying this problem,
we will show that the QCD bag has the important
property that it shields the quarks inside it from
large color field fluctuations in the vacuum. In
four dimensions the bag is a long cylinder of
p=1 inside a medium with p. = p, „„=~.We will

L

where t = In(~xj/a) and the normalization of the
I"s is chosen so that (in Feynman gauge) the
linearized action is

S 8m ~ ~ Pg +v~gq
g' ~ „2p(t)

f

(109)

where /=de/dt, v~'=4L'+1, g is some fixed
coupling constant =g( p,), and p = 1 for t &0, while

= for t&0. Concentrating on a single
partial wave and dropping the subscript L, it is
straightforward to compute the partial-wave pro-
pagator, (P(t)Q(t')) = G(t, t') which satisfies

d 1 d—W(t) — —G(t, t') + v'G(t, t') = V, (t) g a(t —t') .«u(t)« ' ' sr'

show below that fluctuations are attenuated by a
factor p, „, '=0 at the bag surface, thus shielding
quarks (and anything else inside the bag) from the
ill, -understood and potentially dangerous large-
scale vacuum fluctuations. This is just the QCD
analog of the Meissner effect. The penetration of
a field into a QCD bag is governed by the ratio
p, ;„/p.,„, —I/g„„= 0 which is the same as the ratio
p, ,„/V.,„, =0/1 =0 that occurs at the surface of a
superconductor. From the point of view of the
vacuum, the QCD bag looks like a cylinder of
color superconductor.

For the deep infrared fluctuations, a linearized
calculation is possible. Consider a bag of size a
and an infrared vacuum fluctuation of scale size
I.&&a. On its own scale we expect such a fluc-
tuation to be nonlinear, with ~~ =4 '=A,"~. How-
ever, near the bag boundary, typical derivatives
of the color field are of order a ' and large com-
pared to A, „which is of order J '. Thus the
typical infrared fluctuation is a small perturbation
on the bag fieMs, and the problem of its propa-
gation through the bag is essentially linear. Since
the linear response of the medium is determined
by p. , we can compute the correlation function

(A;„(x)A,"„(y)) (and consequently the field fluctua-
tions) by solving the problem of linear propagation
in a medium in which p. =1 inside a cylinder and
p, » 1 everywhere else. We will actually solve
this problem in spherical geometry in order to
simplify the mathematics, without, we trust,
changing the qualitative nature of the result. Con-
sider, then, a spherical bubble of radius a with
p, = 1 inside and p, = p, „„=~ outside. The propa, ga,-
tor (A (x)A"(y)) is most easily computed by de-
composing A.„ in partial waves. We choose
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Since G(t, l') =G(t', f) it is sufficient to compute
G for t(t'. In the limit of large g„„.one finds

(110)

Jlv(h) g
(»)' I

!

g„(h)
p2 0 PC

One sees that the correlation between fluctua-
tions at two points inside the bubble (t&t'&0) or
between one point inside and one point outside
(t & 0, t & 0) is of order g' /8m 2 and small. In con-
trast, the fluctuations outside (t'&t&0) are of
order (g'/8m')(p. „„.) and are at least very large if
not infinite. Note that (in the limit where y, -„, is
large) (S/Bt')G(t, l') vanishes as t'- 0- with t
fixed and less than zero, while G(t, t') vanishes as
t- 0+ with t' fixed and greater than zero. This
corresponds to boundary conditions g&(t)!~=, =0
and &P(t)!, ~ =0 on the partial-wave amplitudes and
can be shown to be equivalent to n"F""!,

0 =0
and n,"F "!,~ =0 for the full A". Thus the fluctua-
tions inside the bag see the bag wall as the edge
of a perfect paramagnet, while the fluctuations
outside see the wall as the edge of a perfect di-
amagnet, leading to the QCD Meissner effect
described earlier.

This decoupling between the bag (including, of
course, the quarks) and the large-scale vacuum
fluctuations is of great importance. If it were not
for this phenomenon, we could not understand
hadrons without understanding the detailed in-
frared structure of the vacuum.

The reader can also convince himself that the
correlation between fluctuations in two different
bags is of order (p„„) ' =0. Thus, whatever
the infrared fluctuations are, they wiI. l not lead
to significant long-range forces between hadrons.

The above calculation would, of course, break
down if the infrared fluctuations on large spatial
scales were to become so large in amplitude that
the probl. em could not be locally linearized. To
conclude the discussion, we would like to argue
that this is not likely to happen. A model of the
gauge field propagator consistent with asymptotic
freedom above a seal. e k = p, ' and linear confine-
ment at lower momentum is

where g»' is the one-loop running coupling con-
stant. Since we expect the hadron scale size to
be roughly p„a reasonable definition of what we
mean by infrared is A & p, '. From the assumed
form of the propagator one can easily find the
rms of the infrared part of A„(i.e., the part
constructed out of the Fourier components with
h&p, '). The result is (A,R) = p, '[g'(p, )/8w']''.
The criterion for linearization is that (bag size
= p, ) x(A«) -[i,'(p, )j(8w')]'' should be small. But
this condition is met since, as we have repeatedly
had occasion to point out, g'/8m' is in fact quite
small at the hadron scale size. One should not
take this model of the propagator too seriously,
but rather as showing that the shielding property
of the bag does not contradict general qualitative
information about the infrared properties of QCD.

IX. CONCLUSIONS

To summarize the main points, we have seen
that instantons and meron pairs are four-dimen-
sional (color) permanent magnetic dipoles, and
their presence makes the vacuum unstable against
collapse into a new (strong-coupling) phase which
most likely exhibits perfect paramagnetism. In
the presence of a critical external color field
(due to quarks, say), this phase can be in contact
with adilute-gas phase where instanton effects are
relatively small. This provides a derivation (not
rigorous of course but, we feel, convincing) from
QCD of a picture which in first approximation is
just the MIT bag, suitably modified to take chiral
symmetry into account. The bag both confines
(or very strongly binds if p. is actually finite in
the vacuum) quarks and at the same time shields
them from the large color field fluctuations in the
vacuum.

The key element in this picture is the existence
of a first-order phase transition in the presence
of an external field. Instantons alone are suf-
ficient to produce this transition. In this paper
the role of merons has only been to provide a
mechanism which makes it reasonable (although
not certain) that p, diverges in the vacuum phase.
To a certain extent it should be possible to com-
pute many properties of hadrons without under-
standing the detailed character of the vacuum
phase. Certainly more work (on surface effects,
etc.) needs to be done, but we feel that it will
soon be possible to do MIT bag-type calculations
gvhich follogv directly from @CD and are reason-
ably accurate (=10%?), a situation without prece-
dent in strong-interaction physics.

The theoretical situation will not be completely
satisfactory, however, until the vacuum phase
is under control. The most basic problem is to
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prove or disprove that p, actually diverges (we
have faith that it does).

In conclusion, we have presented an internally
consistent picture of QCD which at a qualitative
level agrees with what one expects phenomeno-
logical. ly. We have not, of course, proven in a
mathematical sense that this is what happens.
However, the phenomena described here occur
at such a small coupling (g'/8m~ =—„)that we
would find it very hard to believe that something
else happens first.

Note added in proof. After completing this paper
we received a report by E. V. Shuryak [Phys. Lett.
79B, 135~ (1978)] in which our basic notion that bag
formation is due to instanton expulsion by back-
ground color fields is also proposed. We refer
'the reader to his paper for a slightly different
perspective on these matters. Also, we inadver-
tently failed to refer to the paper of Chodos and
Jaffe [Phys. Rev. D 12, 2733 (1975)] on pions in
the bag model.
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APPENDIX A: SOME PROBLEMS IN MAGNETOSTATICS

In this appendix we shall work out two simple
problems in four-dimensional magnetostatics.
First we shall determine the value of the local
magnetic induction B„„inside a spherical cavity
which lies in a permeable medium (of permeabil-
ity p. ) when an external constant magnetic field,
H„'"„', is applied. (See Fig. 1.) This we will need
to know in Sec. V in order to ealeulate the mag-
netic susceptibility. Second, we shall calculate
the reaction field R„„acting on a dipole inside a
spherical cavity due to the fact that it polarizes
the medium outside the cavity. To solve these
problems we must solve the four-dimensional
Laplace equation

and in both cases

B =sA -sA =

gH, „, jx/ &R

and 2'H„„, x"B„„arecontinuous at [x~ =R.
We can treat both cases at once by taking the

vector potential to be
V

I l&R
A.,(x) =

V

x'

where C~„and P'„„are constant antisymmetric
tensors to be determined.

The resulting induction field is then

4Ta, (X)D„~T~'„(X)
y, v p, v+

4T„a(x)C sTs~(3i,')
. pH„„=B„"„+

g4 Qv g4

Matching x"H„„at ~x~ =R yields

(A7)

(A8)

Therefore, for case 1, where D~„=O, we have
that

() R g-1-„,4

4 p+1

(y) 2 ext
+gv ~ +pv

p, +1

(A9)

and thus

(A6)

Matching x"B„„at~x~ =R yields [where we use
the fact that X'T„(R)=-x and 3i' C ~T~„(%')
=RC~]

A.„=0 (A1) B(i)
inside the cavity and outside the cavity with the
following boundary conditions:

Case. 1: A„(x) is regular everywhere,

Ba~ + c Taa(X)BaaTsv(&) Ixl &R ~x' p. +1
(A10)

H„„(x) = Ha~p,
lxi~~

v

Case 2: A„(x) =-
x~0 X

H„„(x) = 0,
(A3)

The local magnetic field inside the cavity is then
equal to

~ local 2 I ~ ext

1+p.

In case 2, where the external field I3„'"v' van-
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ishes, we have

(2)C„„—. D~„1+ jJ,

(2) p. —1 4Di. v

p+1 R4 '

(A11)

4Tga(f)D g Tg, (2) g —1 4Dgv
x4 p+1 R' '

2p - 4+poi X Doig+gv ~ i i(x[&R .1+/, x

(A12)

Thus the reaction field inside the cavity, due to
the medium outside the cavity which has been
polarized by the dipole inside the cavity, is

p. —1 4Dp, v
(A13)

APPENDIX B

In this appendix we study the instanton-anti-
instanton interaction, with the goal of determining
the range of validity of the dipole approximation.
We will also discuss the relation between close
instanton-anti-instanton pairs and close meron-
antimeron pairs. The first calculation involves
a small instanton inside a large anti-instanton.
This yields a cheek on our computation of the
interaction of an instanton with a (nearly) con-
stant external field (provided by the anti-instan-
ton). A conformal transformation then produces
a separated instanton-anti-instanton pair.

The spherical symmetric ansatz, A,"
= [1+Q(t)]q,""x"/x', with t = ln~x[ is consistent
with the equations of motion -and produces an
action

8 =, [P'+ (Q —1) ]dt, (B1)

where Q =dQ/dt. The instanton (in the regular
gauge) is the solution to Q =2/(Q2-1) that goes
from P =-1 at f =-~ to P =+ 1 at f =+~ and the
anti-instanton (in the singular gauge) is the solu-
tion that goes from P =+1 at t =-~ to Q =-1 at
t =+~. In either case the scale size p is e'o,
where $(to) =0. Following Forster" and Poly-
akov' we will obtain constrained instanton-
anti-instanton solutions by requiring that p vanish
at two points t, and t, with t, &t,. Since we are
constraining only scale size and not orientation,
this will correspond to an instanton of scale size
p, = e'~ inside an anti-instanton of scale size
p, = e'2 with the relative orientation chosen so
that the interaction -SI is maximal. Let us

estimate this interaction in the dipole approxima-
tion. First we make a gauge transformation so
thy, t the small instanton is in the singular gauge
and Eq. (25) applies. The i.arge anti-instanton is
now in the regular gauge and the nearly uniform
field -4q, „„/p,'at its center appears as a constant
external field. The maximal. interaction occurs
when the rotation R„specifying relative orienta-
tion is 6,& and the dipole approximation to -SI
is 12(p,'/p, ')(8w'/g'). Below we will see how this
compares to the exact -S~ for a constrained
solution.

Thinking of the action in Eq. (B1) as that of a
particle in a potential V =-(P'-1)' it is easy .

to see the qualitative character of the constrained
solution. At t = -~ the particle starts out at p = 1
and roll.s downhiH. until. it reaches Q =0 at t =t„
at which time the constraint acts. The constraint
reduces the particle's velocity and after moving
uphill towards Q =-1 it comes to rest at some
negative Q greater than -1. It then falls downhill,
crossing Q =0 at t, at which point the second con-
straint acts and increases its velocity by just the
amount needed to arrive at Q =+ 1 at t =+~. The
interaction SI is the difference between the action
for this constrained trajectory and twice the
action for an instanton. Forster has computed
Sz in the limit t, && t, and finds precisely the dipole
form W, =12(p,'/p, ')(8w'/g'). "

The period for small oscillations around the
bottom of the well at Q =0 is R v and for t, —t,
& m/P2 the particle can no longer go uphill between
f, and t, . Instead it remains at Q =0 and the con-
strained solution corresponds to a meron-anti-
meron pair. The action for this configuration is
Sz =8 - 16w'/g' = -8w'/g'[I - 8 in(p, /p„)]. We will
comment on this conversion of instanton-anti-
instanton pair to meron-antimeron pair later.
Our goal here is to compare f=-(g'/8z')SI as a
function of y = p, /p„computed in three different
ways: (a) the dipole approximation f= 12/y', (b)
the meron-antimeron interaction f=1-8 In&,
and (c) an exact calculation which uses elliptic
functions for (t, —t, ) & s/P2 and the meron solution
for (f, -t, )&v/N. The results are shown in Table
V. Note that the exact calculation is continuous
and well-behaved at the transition y = e' ' = 9.22
between instanton-anti-instanton pair and meron-
antimeron pair. The meron result 1 —~ lny is of
course exact for y &9.22 and is not a bad approx-
imation for y out to ™12.What is remarkable,
however, is that the dipole approximation 12/y'
works very well all the way down to y = 5, well.
into the region where the configuration has be-
come a meron-antimeron pair. Below y-4, on
the other hand, the dipole approximation fails
catastrophically and there is a rather sharp limit-
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APPENDIX C

In this appendix we evaluate the action of an
instanton in a cavity of the sort discussed in
Sec. VI. The strategy is to divide space into two
regions R, and R», to be chosen such that in

R& the Yang-Mills equations can be linearized
around the solution A. =0, while in R&& they can
be linearized around the instanton solution. For
the specific problem stated in Sec. VI we can take
Rzz to be a sphere of radius r (R &r & p) around
the instanton and R& to be the rest of space.

An integration by parts and use of the equations
of motion shows that the action contained in R&.
can be expressed as a surface integral

1 trE2 ~ 1 trE""A."
4g' s, u(x) 2g' s Jz(x)

where S is the boundary (the sphere ixi =r) be-
tween Rz and Rz, and it has been assumed (as is
the case for the problem in Sec. VI) that the field
4 falls faster than x ' at infinity. On S the field
can (see Appendix A) be taken to be the field of a
dipole in a constant external field; i.e.,

(CI)

ing value of y-4-5 where it breaks down. Phys-
ically, this means that an instanton of scale size
p, in an external field -4','"/p, 'responds linearly
as long as p, jpz 2 4-5 but is literally tom apart
into merons by larger fields.

As pointed out by Fox ster and Polyakov,
conformal transformation turns the spherical
instanton inside an anti-instanton configuration
into a configuration containing a separated in-
stanton-anti-instanton pair. The kinematics are
the same as those used to construct meron pairs
in Ref. 1 and will not be repeated here.

If the scale sizes of the instanton and anti-
instanton are p and p' and their separation is R,
then the variable y corresponds to R'/pp' and we
see that the dipole-dipole interaction is valid for
R /pp' &4-5, while for smaller R they must be
considered as a meron-antimeron pair.

This conversion of close instanton-anti-instanton
pairs to meron-antimeron pairs is just the inverse
of the instability in the constrained meron solution.
A meron-antimeron pair with core sizes p and p',
separated by R, is unstable against breakup into
an instanton-anti-instanton when R'/pp' & 9.22.
In the vacuum phase of QCD we expect densities
such that on the average R'/pp'(9. 22 and the
system is presumably a soup of merons. In any
cas e, the SI's for a meron-antimeron pair and an
instanton-anti-instanton pair are virtually iden-
tical for 12&R' jpp'& 5, and one can also show
that the net dipole moments of the pairs are very
nearly equal.

+"=+dipole ++ ext

p vD x —a+ extXx (C2)

It is then a matter of algebra to show that on S
the cross term between A. d'p ) and A„t integrates
to zero, and

tr(E""+")dS"=
2
. tr(E~&~&&e Afipol, )dS"

+ tr(E,„",A",„,)dS." .
2g

7T2
Ld x=, L,d x — --,-tr E,„",D""

4a zzx 4E acr 4

tr E,"„",A.'"„t dS
&s

(C4)

where L, is the action density of -a free instanton,
and we have assumed the convention that dS

points into (out of) Rzz (Rz).
The same method can be used to compute the

TABLE V. The interaction of an instanton of scale
size p& inside an anti-instanton of scale size p& as a
function of y = p2/p&. The exact and approximate forms
of f are discussed in the text.

Exact
fb)
12/y' 1-& lny

8

3.50
4.00
4.50
5.00
6.00
7.00
8.00
9.10
9.22
9.38

10.75
14.37
20.60
37.10

0.530
0.480
0.436
0.396
0.328
0.270
0.220
0.172
0.167
0.161
0.119
0.063
0.030
0.0089

0.980
0.750
0.593
0.480
0.333
0.245
0.188
0.145
0.141
0.137
0.104
0.058
0.028
0.0087

0.530
0.480
0.436
0.396
0.328
0.270
0.220
0.172
0.167
0.161
0.109
0.001

The method for treating region II was discussed
in Ref. 1. Here we will only outline the calcula-
tion. In R» the field 4 can be written as A, + 5A. ,
where A, is the field of a free instanton and 5A

is a small (in Rzz) perturbation which is regular
at the origin and approaches A,„, at large x. In
the action density it is sufficient to keep onl. y
linear and quadratic terms in 5A. , both of which
can (when the equations of motion are satisfied)
be expressed as total derivatives. Proceeding in
this way one finds
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Sz = —,tr[F,""(1)D,""+E,'"(2)D,"'],I . 4 2 (C5)

where D„(D,) is the moment of the instanton
(anti-instanton) and E,""(1)(F„""(2))is the field
of the anti-instanton (instanton) evaluated at the
instanton (anti-instanton). Since E,""(l)D,""

interaction of any number of instantons and anti-
instantons. Consider one instanton and one anti-
instanton. The region R» now consists of two
smail spheres, one surrounding the instanton
and the other surrounding the anti-instanton. It
is then straightforward to show that

=E,""(2)D,"", Eq. (C5) can be written as
2

S, = — tr[E,""(1)D,""]

7r2
tr (E ",„",D~"),

2

where E,""(1)is the external field seen by the
instanton. Note that this agrees with Eq. (25),
but the result used in Sec. VI is a factor of two
smaller. This factor of two appears because the
reaction field, unlike the field of a distant dipol. e
or a truly constant external field, is sourceless
and vanishes at infinity.
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