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The dual transformation discovered in the )wo-dimensional Ising and planar Heisenberg models is applied to
gauge theories in four dimensions. It is shown that after the dual transformation the Abelian Higgs model

gives the same partition function as the relativistic hydrodynamics of Kalb and Ramond and of Nambu
coupled to the Higgs scalar, and that these tko theories have various dual relations. In our hydrodynamics a
quantized vortex is created by the phase component of the Higgs scalar in a similar manner as the magnetic
string of Nielsen and Olesen is created in the Abelian Higgs model.

I, INTRODUCTION

In solid-state physics, dual transformation plays
an important role. ' ' For example, the critical
temperature of the two-dimensional Ising model
was obtained explicitly' with the help of this dual
transformation without calculating the partition
function explicitly. This dual transformation re-
lates the Ising model defined on a square lattice
to the same model defined on its dual lattice. Re-
cently, Jose et al. ' have shown by using the dual
transformation that the two-dimensional planar
Heisenberg model (the XF model) is transformed
into a spin-wave theory with a vortex excitation.
In their dual transformation a Fouxier transform
forrnuIa plays a key role [see Eq. (2.7)]. So, it
is not too much to say that the dual transformation
is a kind of Fourier transformation performed in
the integrand of the partition function. There is
also an interesting work by Savit' studied indepen-
dently of the work of Jose et al. in the U(1)-invar-
iant lattice theories in arbitrary dimension. Since
then, this dual transformation has been studied' in
the Abelian lattice gauge theory in connection with
Mandelstam-'t Hooft duality. '

The purpose of the present paper is to study this
dual transformation in conventional gauge theories
in four dimensions. Using this dual transforma-
tion, we show that the Abelian Higgs model gives
the same partition function as the relativistic
hydrodynamics of Kalb and Ramond' and of Nambu'
coupled to a scalar field. In this new type of hy-
drodynamics, a vorticity source is created by the
phase component of the Higgs scalar g(x). The
strength of this vorticity source is proportional to
the integer n if g varies by 27tn in a full turn around
a specified string S.

For simplicity, we identify S with the x' axis and
search for a simple classical solution. We find
that there exists as a classical solution a static
circulation flow of fluid around the x' axis and that
the total flux of the velocity potential is quantized.

This classical solution found in our hydrodynamics
corresponds to the Nielsen-Olesen vortex solu-
tion" in the Higgs model. In our classical solution
an "electric' flux, a flux of the (Q, 3) component of
the velocity potential, is squeezed in a manner
similar to that of the magnetic flux in the ¹elsen-
Olesen solution.

We also derive various dual relations between
the Green's functions of the Higgs model and those
of the hydrodynamic model. In order to derive
these relations, it is necessary to prove a dual
relation between the partition function of the Higgs
model and that of the hydrodynamic model in the
presence of an external tensor source.

In the next section, we show that the Abelian
Higgs model has the same partition function as the
relativistic hydrodynamics of Kalb and Ramond and
of Nambu coupled to a scalar field. A generalized
formula in the presence of a fermion is also given
there. In Sec. III, we obtain a classical solution
in the hydrodynamic model and give various dual
relations between the Higgs model and the hydro-
dynamic model.

II. THE DUAL TRANSFORMATION

In this section, we will show that the Abelian
Higgs model gives the same partition function as
the relativistic hydrodynamics of Kalb and Ra-
mond' and of Nambu' coupled to a scalar field.

The Higgs model is described by the Lagrangian
density

(2. I)

where

(2. 2)

As usual, P and A„denote a complex scalar field
and an Abelian gauge field, respectively, and
E„„=g„A.„—3„A„. Using the path-integral method,
the partition function of the Higgs mode1. is given
by
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»x(„(x) ee p(x) ]p(x) f e(x(x) Ie(e(x)-xe(x))exp (f e'xx(x),

w'ith~(t)(x)
~

and y(x) defined by

y(x)= y(x)~e'x(")

(2. 3)

(2. 4)

(2 3) we fix X(x) «be n&(x), where e(x) is the azimuthal angle of x around the specified string ee,

and n is an integer. When n= 0, this fixing corresponds to the unitary gauge condition. For n pe0, e(x) is
not well defined on the world sheet of that string 8, but the measure of this string is vanishing so that
II,5(y(x) —n&(x)) is useful to make the partition function (2. 3) finite.

In Eq. (2. 3), we perform the following transformation using antisymmetric tensor fields W„„:

exp i e' (=,'xp„„p ") "ee)p (x)e„x„pI(f e'x(--', (m'tp„„ee""eemep„„p"")]I,

with

(2. 5)

(2. 8)

where e,„~, takes the value +1 or -1 according to whether (pvgp) is an even or odd permutation of (0123),
and m is an arbitrary mass parameter. It is instructive to understand that Eq. (2. 5) is a Eouyiey trans-
form formula in the path-integral method. Recently Josh et a/. ' have shown that the planar Heisenberg
model is transformed into a spin-wave theory with a vortex excitation with the help of the Fourier trans-
form formula

v ~e &p& -e (t'))
pee

e
v' ~8 (r, r' & ~ i s &P, r' ) ( e (r) -8&r' ) )e

g (p, z" )=-~
(2. 7)

where we have used the notations in Ref. 3. Our transformation (2. 5) corresponds to the transformation
(2. 7) in solid-state physics. Now, substituting (2. 5) into (2. 3), we perform an integration over A, (x),

SA„x exp i d x e' 'A„x A." x +A" x mB"W„, +ie

2

~exp i d'x -4,
I

I, [V„(x)+i(e/m)&fP 8„4]'+4i5"'(0)in(e
~

(t (/m)4 e'I(t) I' (2. 8)

(2. 9)

where we have introduced the velocity vector V„(x) of relativistic hydrodynamics using the velocity poten-
tial ~„„,'

V„(x)—= 8"IV,„(x) .
In Eq. (2. 8), the 5 ' (0) term represents

[I/(e2
~ y ~

2/~R) I/2]4 (2. 10)

(2. 11)g"V„=0,
C

which holds automatically because of (2. 9). Integration over A„(x) corresponds to integration over the
phase component 6)(r) of the classical spin in the planar Heisenberg model. ' In our case, however, Eq.
(2.8) gives no constraint because there exists the bilinear term e'~ Q

'A Q' in Eq. (2. 8). From Eqs.
(2. 3), (2. 5), and (2. 8), we obtain

and 3„=3„.—p„. In the hydrodynamics, the velocity vector is a physical quantity and satisfies the equation
of continuity

Z +W„„x, n &X OX

1 2 2

xexp i (i'x --,
I

I, [V„(x)+i(e/m)(t) B„(t)]'—
4

(& „)'
4 e'I(t) I'

+
]
e „p]' - p(p) e»e "'(p)»(e] p I /m)), . (2. 12)
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Integration over y(x) leads us to

z z = sR'„„(x)Jzt~y(x)~exp i d x'c'„(x)

where the effective Lagrangian density ZP&(x) is defined by

&:„(x)=a*(x)+si5"'(0)ln(e
I y I/~)

(2. 1s)

(2. 14)

2~*()=-, , —,'(v„)'--,' '(w„,)'+- ' w„„""+(a„I@I)' v(I~I) (2. 15)

e"""(a,a, —a, a, )y( ).gv ~ „vip (2. 16)

Of course, &o'"= 0 where y(x) is regular. In our
case, however, y(x)=ne(x) and is singular (for
n '0) on the world sheet of the specified string S,
so that ~""10 on this world sheet. If we parame-
trize a position y„on this world sheet of the string
by timelike and spacelike parameters 7' and 0', we
have"

=n d~ dc'5

a(y", y")
a(~, o)

(2. 17)

Here it is necessary to discuss a relation (2 ~ 14)
between Z~~q and 2*. Let us remind the reader
that the original path-integral formula is written
in terms of dynamical variables q,.(x) and their
conjugate momenta p,. (x),"

@g ~ X +P ~ x

xe~p g g P g ~ —+ pg
$

(2. 18)

where'R„(P, q) is a Hamiltonian density. In the
case of a nonlinear I agrangian density ZN such as

&„(x)= —,
' P q,.f, (q)q, +Q g,. (q)q,. +h(q), .

with a vorticity source co"". This vorticity source
is created by the phase component y(x) of the Higgs
scalar

and Z„(x),z& is derived from Z„(x) by the following
formula" ":

&„(x)„,=~„(x)—H"'(0) g [ln[f(q)]"'), ,
5 (2.21)

Let us show that the relation (2. 14) between 2*,«
and 2* is nothing but an example of (2.21). If we
introduce e(x) and b(x) as'

e$ —~t
5 =—2qo, ,kS'i —& gk

(2. 22a. )

(2.22b)

we have

(2. 23a, )V, = V'=V b,
V, = V'=[b+(VXe)]*.

So, there are four dynamical variables b(x) and

I
P(x) I, and three nondynamical variables e(x) in

our model described by 2*. The coefficients f,
of Eq. (2. 19) are in our case

(2.23b)

m'
, 6', (z, q=1, 2, s). (2.24)

Then we obtain Eq. (2 ~ 14) from Eq. (2.21), and
we have proved that Z* [Eq. (2. 13)] is a partition
function of the nonlinear I agrangian density 2*
[Eq. (2. 15)].

In the above discussion, we have used terminol-
ogy in hydrodynamics such as velocity field, vel-
ocity potential, and vorticity source since *
represents the massive relativistic hydrodynamics
of Kalb and Ramond' and of Nambu' coupled to a
scalar field

I P(x) I. The relativistic hydrodynam-
ics discussed by Kalb and Ramond and by Nambu
is described by the following Lagrangian density'.

(2. 19) 2, = ——,'(v„)' —kw„„(u"" (2.26)

integration of (2. 18) over p,.(x) gives

z„s&q,.(x)e p i jr&'xn„(x).„ (2.20)

or

z, = —:(v„)' —,'I'(w. „)' uw„.-"".
It should be stressed that the Lagrangian density
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2*(x) obtained above [Eq. (2. 15)] is the relativis-
tic hydrodynamics of a, massive version (2.26)
coupled to the Higgs scalar

i Q(x), and that the
partition function Z* [Eq. (2. 13)] of 4*(x) is
proved to be proportional to the partition function
Z of the Higgs Lagrangian i:(x) [Eq. (2. 1)]. Fol-
lowing solid-state physics, we may call the trans-
formation of Z(x) to Z*(x) a dual transformation,
and these two theories described by il(x) and Z~(x)
may be called dually related to each other.

In concluding this section, we register a formula
in the presence of a fermion. If we add a term

b Z=$(ig —M)P+e+„(A" (2.27)

to 2 [Eq. (2. 1), we obtain an additional term to
Z~ [Eq. (2. 15), namely

&&*=g(iP-M)g nay~(6-~8

s —&

(dp = 26pigy(d o (s. sb)

For simplicity, we identify the specified string S
with the x' axis and study a static solution of (3.2).
In this case, we have

(o,
' =n5 (x') 5(x'), (s. 4a)

and

=0 for '8=1~ 2 (s.4b)

= 0, (3.2c)

where a&, (x) and ~,(x) are introduced by

(3.3a)

and

where

2' ~p& F
2 PP

1 1

I y I
2 (7 r.4)g r"P), (2. 26)

(3.4c)

Therefore, we can search a static and axially sym-
metric solution with the following assumptions:

S,e'=3, y =O, e'="(r), /@(=(y/(r),

(S.5a)

(2.29)

III. THE VORTEX SOLUTION AND THE DUAL RELATIONS

and

e'=-0 for i=1, 2

b -=6,

(s. 5b)

(3. 5c)

In this section, we will search for a most simple
classical s'olution of hydrodynamics described by
g*(x) [Eq. (2. 15)], namely, a static circulation
flow of fluid around the x' axis.

The field equations obtained from Eq. (2. 15) are
2

x m p 2 2'
e e

where r=-[(x')'+ (x')']' '.
Under these assumptions, the field equations

(3.2a)-(3.2c) are reduced to

1 d m' d ~ ~ 2'
e +me Cdr dr 2e'I gl' dr e

(S.6a)

(S. la)

(V )' 0
5 I y I 2e'I y I' (s. lb)

If we rewrite Eqs. (3. 1a) and (3. 1b) using e(x) and

b(x) analogous to electric and magnetic fields'
[Eqs. (2. 22a, ) and (2. 22b)] we have the following
equations:

and

1 d d Gal I

m d+, , —e' = O. (S.6b)2e'I y I' dr

It is easy to solve the above equations for very
large r where e'= 0 and

i P i= v hold, with v a
minimum point of the Higgs potential V(i P i),
namely,

Vx, , (b+ Vxe) +m~e —™~&@,=o, (3.2a)2e'
I p I

' e
2 0

v ~, , (g b) +s. . .(b+vxe)2e'lgl' - ' 2e'l&l'

+m'b — &u, = 0, (3.2b)
e

5~(l y I) = 0 for v = (-2 p'/y)'i' .

Then we obtain

e' ~ a&,(Wevr)

~a e-&2ev~
M evr

(3.7)

(s. sa)

(3.Sb)
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and

I yI ~ v+5K, ((-2p')'~'r} (S.9a)

where Ko(ar) is the modified Bessel function satis-
fying

dr —r K—,(xr) —~'&, (xr) = 0dr dr (S.1Oa)

and

(s. lob)

V(r) = e'(—r)

If,(vr) —0.
+~00

As for the velocity fields V(r), they have only non-
vanishing component V(r)~, where 8 indicates the
angle direction of the polar coordinates on the
(x', x') plane. So we have a circulation flow around
the x' axis. The behavior of V(r)~ for large r is

Olesen vortex solution ' found in the original Higgs
model is a static and axially symmetric solution
with boundary conditions

I
~

I

= 0 and
I P I

= v for
large r. These conditions are similar to our con-
ditions imposed to find the classical solution in
the dually transformed Lagrangian density Zd'(x).
Therefore, it is interesting to compare these two
solutions. For an example, we discuss simple
relations between Green's functions of the Higgs
model and those of hydrodynamics.

We introduce an external source J„„in Eq. (2. 1)
through the replacement'

Z„„(x)—F.,(x) —J,„(x). (s. i4)

Starting from the Lagrangian 2(x, J„„)obtained
from 2 [Eq. (2. 1)] by the replacement (3.14), and
following the method given in Sec. II, we easily
obtain the formula

z[J„„] z*[J„„]. (s. 15)

In this formula. , Z[J„,] and Z*[J„„]are defined by
replacing z(x) and Z~(x) with Z(x, J„„)and Z *(x,J,„)
in Eqs. (2.3) and (2. 13), respectively, where

~ avYevX,'(Wevr)
f''t 00

= -avYevK, (vYevr)

(s. i la) ~(x, J.„)=g(x)+ ,'Z""J„„-,'-(J" )',
I

ZP(x, J„„)=a*(x) + ,'m W"'J„—„.

(s. 15)

(3.1~)

From the formula (3. 15), we have a, simple rela
tion

(3.11b) (F"'(x))= (mW'"(x)) „ (s. is)
Integration of (3.2a) in the domain D of the

(x', x') plane leads us to
2

, V 'deem'f e'dS

between a vacuum expectation value of the Higgs
model and that of hydrodynamics. This relation
is easily checked with the help of Eqs. (3.15}—
(3.17) and the following formula, :

0 for (0, 0) gD,

n for (0, 0}cD,

(3.12) and

(S.19a)

where C is the boundary of the domain D. If we
choose D to be a very large domain D„ including
the origin, the first term in Eq. (3.12) does not
contribute due to Eq. (3. 11b) so that we obtain a
flux quantization rule:

m e dS= —n (n is an integer).3 2m

D~ 8
(3. 13)

Now we have found a static and axially symmetric
classical solution in the hydrodynamic model de-
scribed by Z~(x) [Eq. (2. 15)], the dually related
model with the original Higgs model described by
&(x) [Eq. (2. 1)]. In this solution there appears a
circulation flow of fluid around the x' axis owing
to a vorticity source w,

' created by the phase
component )t(x) of the Higgs scalar. The Nielsen-

(mIVu"(x))„= lnZ*[J]
5J.„(x) J=0

(3.19b)

Decomposition of Eq. (3. 18) into "electric" and
"magnetic" fields reads

(E(x))= -(mb(x))

(H(x)) =(me(x))„,

(S.2Oa)

(s.2ob)

where

(3.21R)

H=2goyyE. (321b)

Equation (3.20b) shows that H(x) in the Higgs mod-
el corresponds to me(x) in the hydrodynamic mod-
el. So it is easy to understand that the behavior
of e'(r) for large r corresponds to that of II'(r) in
the Nielsen-Olesen vortex solution for large r.
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From Eqs. (2.9) and (3. 18) we have also

(8„Z""(x))= &m V"(x)), .
Introducing an electric current j"(x) as

j'(x) -=8„E"'(x)

(3.22)

tive of Eq. (3.15) successively. For example, we
have a dual correspondence

&T*&.»&.,(»)+ f(S.,g., -g.,a:)5"'( -y)
=m'&r+W„„(x)W„(y)), . (3.24)

=2"Ill' +')"')+-&"x6c))
e

(3.23)

where we have used the field equation of the Higgs
model, we obtain from Eqs. (3.22) and (3.23) the
following correspondence. Conservation of j"(x)
in the Higgs model corresponds to that of I'"(x) in
the hydrodynamic model, and

X(x) —(I/e) vq(x) = 0

in the Nielsen-Olesen solution corresponds to
V(x) „„=0in our vortex solution. As for the flux
quantization, the quantization of the "electric" flux
[Eq. (3. 13)] in our hydrodynamic model corre-
sponds to that of the magnetic flux in the Higgs
model through Eq. (3.20b). We may eall these
relations (3.18), (3.20), and (3.22) as dual rela
tions. Of course, it is possible to study further
the dual correspondence between the Green's func-
tions of the Higgs model and those of the hydro-
dynamic model by evaluating the functional deriva-

Therefore, there is a possibility of finding the re-
normalizability of the hydrodynamic model de-
scribed by Eq. (2. 15) by using the dual correspon-
dence between this hydrodynamic model and the
renormalizable Higgs model.

&ote added. After completion of this work we
learned of a work dealing with a problem similar
to ours in the lattice gauge theory by M. B. Ein-
horn and R. Savit [Phys. Rev. D 17, 2583(1978);
19, 1198(1979)]. Their treatment is, however,
considerably different from ours.
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