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We start from quantum chromodynamics in a finite volume of linear size L and examine its color-dielectric
constant ~&, especially the limit ~„as L —woo. By choosing as our standard xL = 1 when L = some hadron
size R, we conclude that ~„must be & 1; furthermore, from the fact that a free quark has not been
observed we can estimate an upper bound: x„g 1.3 && 10 'n where n is the fine-structure constant of QCD
inside the hadron. A permanent quark confinement corresponds to the limit ~„=0. The hadrons are viewed

as small domain structures (with color-dielectric constant = 1) immersed in a perfect, or nearly perfect,
color-dia-electric medium, which is the vacuum. The Feynman rules of QCD inside the hadron are derived;

they are found to depend on the color-dielectric constant v„of the vacuum that lies outside. We show that,
when v„~0, the mass of any color-nonsinglet state becomes oo, but for color-singlet states their masses and

scattering amplitudes remain finite. These new Feynman rules also depend on the hadron size R. Only at
high energy and large four-momentum transfer can such R dependence be neglected and, for color-singlet

states, these new rules be reduced to the usual ones.

I. INTRODUCTION

In a recent paper, ' it was emphasized that in
order to give quantum chromodynamics (@CD) a
well- defined meaning, a convenien t method is to
first contain the whole system within a volume of
size L3. At a, finite L, there is the usual perturba-
tion series which is finite to every order of the
renormalized coupling constant g. Assuming that
the limit L —~ exists, one expects the existence
of a long-range order in the vacuum for an infin-
ite volume. Because of relativistic invariance,
such a long-range order must be a Lorentz scalar.
It is then suggested that this long-range order can
be expressed in terms of the (color) dielectric
constant ~ of the vacuum. In this approach, a per-
manent quark confinement is simply viewed as the
vacuum of an infinite volume being a perfect "dia-
electric" substance with its dielectric constant
v-0, while the vacuum" inside a hadron is nor-
mal (lr =1). As we shall see, such a, description
leads to a set of Feynman rules that is quite dif-
ferent from the usual ones given in the literature.
The propagator of the vector gauge field inside the
hadron has an explicit dependence on the dielectric
constant w of the vacuum that lies outside the ha-
dron. In the limit z- 0, the mass of any color-
nonsinglet state, such as a single quark or a single
vector gauge particle, becomes infinite. On the
other hand, as will be shown in this paper, for
color-singlet states, their masses and scattering
amplitudes remain finite when v -0.

In the following, we begin in Sec. II with a brief
summary of what is currently known about the

(color) dielectric constant of the vacuum. In order
to take into account the long-range order of the
vacuum and its long-wavelength fluctuations, we
adopt the standard soliton description by introdu-
cing a scalar field to represent the dynamics of
such collective motion. The related phenomenol-
ogical Lagrangian is given in Sec. III. This en-
ables us in Sec. IV to write down the appropriate
Feynman rules and to analyze their properties.
These new Feynman rules are different from the
usual ones because they are applicable to config-
ura, tions near a sofiton (or bag) solution, while the
usual ones are for perturbations near a sPatially ho-
rnogeneous solution, such as a pure infinite vacuum
without the soliton (or bag). [Since in our picture all
hadrons are solitons (or bags), it is difficult to
have small perturbations around such a pure vac-
uum. ] As we shall see, the Feynman rules derived
here have an explicit dependence on the hadron
size R. Only at very high energy and four-momen-
tum transfer can one neglect the R dependence and
thereby reduce these new rdles to the usual ones
as an approximation.

In a relativistic theory, the dielectric constant &

of the vacuum is always the inverse of its magnetic
susceptibility p, because the velocity of light c/
(ep, )

~ must equal c itself. Thus, v«1 means
p, »1, and a zero dielectric constant is the same
as an infinite magnetic susceptibility. It is inter-
esting to ask whether there exists a critical tem-
perature at which the infinite-volume (@CD) sys-
tern can undergo a phase transition in its dielectric
constant (or magnetic susceptibility). This and
other questions related to the long-range order, the
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scale determination of the hadron mass (or radi-
us), and the experimental limit of the (color) di-
electric constant are briefly discussed in Sec. V.

f':.. DIELECTRIC CONSTANT

j. a o j. a
4 ~gvVff v 4KVgv+@v~ (2)

where g is the renormalized coupling constant, the
subscripts p. , v denote the space-time indices, and
the superscript a is the color index. But when we
consider two different volumes, say of sizes I and
L', the ratio x~/xz, is, of course, physically
meaningful. Because of (1), this ratio is equal to
the inverse of the corresponding ratio of the square
of the renormalized coupling constants. By using
the well-known properties of the P function, one
can readily derive

KL &KL lf I &L.

Furthermore, if

(3)

For simplicity, let us consider in this section a
pure @CD system consisting of only color gauge
fields V„' (a=1, 2, . . . , 8). We first contain the sys-
tem within a finite volume I 3. So long as I is
fixed, the (color) dielectric constant xl. of the vac-
uum has no absolute meaning, since the transfor-
mation

Va K& /2Va

K-1/2g

brings the covariant field derivative V'„„-K' V~„,
and therefore the Lagrangian density

Let

or at least

K„«1. (8b)

In the former, the vacuum for an infinite system
is a perfect dia-electric, in the latter, a nearly
perfect dia-electric. By following the arguments
given in Sec. II of Ref. 1 (and as will also be shown
inAhe following), one sees that, the mass of any
color-nonsinglet state diverges when K„-0. Thus,
(8a) implies a permanent quark confinement, while
(Hb) implies a nearly permanent confinement.

At present, it is not known whether P(g) =0 has
only a real root at g = 0. From (7), we know that
K„must be &1. But as yet, we are not able to
decide by pure theoretical deduction how small K„
actually is.' Now the fact that a single free quark
has never been observed puts a, lower limit on its
mass m, . As will be shown in Sec. V, if we set
m, & 5 GeV, which is a rather lenient lower bound
of the free quark mass, then we can estimate an
upper limit of K„:

K~ = llm Kl, (8)
I,» oo

From (3) and (5), it follows that the dielectric con-
stant of the vacuum for an infinite volume must be
less than unity, i.e. ,

K„+1.

Furthermore, x„ is zero if (4) holds. In the follow-
ing, we assume

(8a)

P(g) =0 only atg=0, (4) K„&1.3 &&10 n,

then

lim KI. —0.
t» co

Throughout our discussions, we assume Kl. is a
smooth function of I, and that the limit L —~ ex-
ists. For completeness, a proof is given in Appen-
dix A. [Although the mathematics given there is
essentially identical to that used in deriving asymp-
totic freedom, ' its application to the color dielectric
constant focuses on a new aspect of the physics in-
volved. As we shall see, this leads to the conclu-
sion that domain structures (soliton solutions)
should develop whenever there are quarks and
antiquarks present; thereby one bypasses the usual
difficulty of strong coupling in the so-called "in-
frared slavery. "]

For small I, because g is «1, Kl. is clearly
4 0. As a convention, we may define when I.=some
hadronic radius R,

where n =(4v) gR, with R chosen such that t&R =1,
in accordance with our convention (5). Thus, we
can regard that as an exPeximental determination
K„mus t be «1. On es thetic grounds, one may con-
jecture K„=0. The otherwise puzzling phenomen-
on of quark confinement, or near confinement, now
receives a natural "explanation".

III. SOLITON (OR BAG}MODEL

A. Phenomenological Lagrangian

In order to incorporate the long-range order of
the vacuum and its long-wavelength fluctuations
into the dynamics of the hadron, we adopt the soli-
ton description' through the use of collective co-
ordinates. The dielectric constant K will now be
represented by a scalar field 0. The simplest
form is

0 ~1 —K.

KR ——1. (5) If we assume (8a,), then
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4&-V'„„V~„—Pty4(y„D~ +fo +m}g

1 Ba —U(o) + counterterms,
2 8 xi'

(10)

where the superscript dagger denotes the Hermi-
tian conjugation, x„=(r,it),

Bx~
" Bx„

pc Vc
ax.

the X"s are the standard Gell-Mann matrices re-
lated to C' '

by the commutation relation

0'
=1—K

&VM,

so that for an infinite volume, K =0 and therefore
o =o,. In the soliton picture, one. has outside the
hadron 0'=o„„, but inside the hadron o'=0 which
gives v —=1, consistent with our convention (5).
The phenomenological Lagrangian density is as-
sumed to be (see, however, the modification given
in See. IIID).

need to have the direct quark-o coupling; it suf-
fices to have the vacuum be a perfect dia-electric
(v„=0). The origin of the f coupling lies in the
dichotomy that only inside the hadron is the coupl-
ing between the quark and the vector gauge field
really g, which is relatively small; outside the
hadron, because of (1), it is actually g/v„' . For
K « 1, g/a'„' becomes very large; on the one
hand, this has the desirable effect of preventing the
quarks from moving outside the hadron, but on the
other hand it also presents a technical difficulty
for a diagram analysis iri powers of g2. In (10) the
direct quark-cr coupling f with

fo„,» hadron mass

is introduced phenomenologically to give a conven-
ient alternative formulation of the same physical
effect, but bypassing the above difficulty. As we
shall see, because of (13) the f coupling restricts
the quarks to staying always inside the hadron,
and that enables us to take full advantage of the
relative smallness of the quark-V~ coupling g.
With the f coupling we may now expand any physi-
cal observable, say the hadron mass M, in a pow-
er series of o.'= (4v) 'g'.

[X', X j =2iC' 'X, M =Mp+aM(+a M2+ (14)

the y~'s are the usual Hermitian Dirac matrices,
and the function U(o) has an absolute minimum at
0 =0,~, and a local minimum at 0 =0 with

U(o„„)=0

If f were zero, it would be difficult to derive the
zeroth-order term Mo, since when n =0 both g
and g/v„'t~ should be zero; hence, without the f
coupling quarks would be unconfined. (See Sec.
III D for further discussions. )

and (12) B. Zerothwrder approximation

U(0) —=p & 0.

As we shall see, the detailed form of U(o) is not
important. If one wishes, one may assume U(o') to
be simply a, quartic function of o. In (10}and (ll),
|}I denotes the quark field which, besides being a
color triplet, also has I flavors, m is the mass
matrix for quarks inside the hadron, and g and f
are both renormalizable coupling constants. Since
0' is only- a phenomenological field, describing the
long-range collective effects of @CD, its short-
wavelength components do not exist in reality. The
counterterms in p are for renormalization; they
consist only of those due to loop diagrams of the
vector gauge field V~ and the quark field g. In the
following, we shall ignore all 0 loops, i.e., v will
be approximated by a classical field.

In our phenomenological Lagrangian density, the
0 field is coupled to the quarks in two ways: One
is through the quark- V~ coupling g and —4K Y„„V„'„
which, because of (9), couples V~ with o, the other
is a direct quark-o coupling f. So far as the quark
confinement problem is concerned, there is no

With the direct quark-o coupling f, we can now
in the zeroth-order calculation neglect the ex-
change of V'„. The description of the hadron re-
duces to that of a simple soliton model, consisting
of the scalar o field and the quark P field. The
relevant part of the La.grangian density (10) now
consists simply of

a 1 Ba—g~y4 y~ + fo +m g —— —U(o). (15)'Bx, 2 BXi/

As mentioned before, since 0 is only a phenomen-
ological field that has no short-wavelength com-
ponents, we shall neglect all o-loop diagrams. The
remaining o diagrams are all tree diagrams, which
correspond to the quasiclassical approximation
that has been extensively studied in the literature.
Here we give only a summary of the results for
light quark hadrons, with m=0. In this case, g
and 0' can be reduced to c-number functions which
satisfy

( iu ' V +fPo) g =-eg
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and

-V'o+ U'(o) = fN-giPP,

(16) n = -(u'+v')d'p

where U'(o) =dU/do, n and P are the usual Dirac
matrices, e & 0, g satisfies f gtgd'r =1, and N is
the total number of quarks and antiquarks,

N =2 for mesons

and

over the region p ~ po. As the initial value u(0)
-0, one has n-0, but as u(0) u, =1.7419, n

The physical desc ription of the soliton solution then
resembles that of a gas bubble (i.e. , the hadron) in-
side a medium (i.e. , the vacuum). The hadron
mass is determined by three parameters:

N = 3 for baryons. p, s, andn, (20)

As shown in Ref. 7, for fo„,»hadron mass and
under very general assumptions, the hadron ac-
quires a well-defined surface S. One has

=0

o =0„«outsider;
on the inner side of the surface 8,

—iPo. ng=(tI,

where P is defined by (12) which represents the
pressure of the medium on the bubble, s is the
surface tension which arises because 0' changes
from 0 to o„across the soliton surface, and n
determines the gas pressure inside the bubble
which is due to both the kinetic energy of quarks
and the excitation energy of 0. In either of the
limits n 0 or n ~ the hadron mass has the
form, . in the notation of (14),

where n is the unit vector normal to S, and inside
~ the field v is —= 0, with its devia. tion from zero
proportional to gtPg. For the s, » orbit, 8 is a
spherical surface of radius R. Inside 3, (16) can
be further reduced, through scaling, to a simple
system of two coupled first-order differential
equations:

M = —+ 4mB P + 4mB s

where

po
—2.0428 when n —0

and

po
—1 when n

(21)

(22}

—=(-1+u —v )v
dM 2 2

dp

dv 2V—+ —=(1+u —v )u,
dp p

(19)

The double limit n-0 and s —0 gives the MIT
bag, ' and the double limitn ~ and P-0 gives
the SLAC bag."

When n-0, the field o' assumes a simple form:

o' =o„, outside 8
v

where p is related to the radius x by p=n, and (23)

itv r/v)v)
~

~

@=0 inside S.

For n&0, though 0=0'„«outside S, o is only =0
inside; as mentioned before, its deviation from 0
is proportional to gtPV~.

o' is the usual Pauli spin matrix, and the variables
p, u, and v are all dimensionless. Although (19)
does not contain any explicit parameters, its solu-
tions form a one-parameter family. As p 0, one
has v-0 and u u(0). For every u(0) between 0
and a critical value u, =1.7419, there is a solution
of (19). The solution can be obtained by direct in-
tegration from p = 0 to p =po. At p =po, one has

u(po) =v(pp) and therefore the boundary condition
(18) is satisfied. The radius of the hadron is given

by

R = po/E.

A convenient parameter to label these solutions
can be either u(0) or the integral

a.lid

v(r) =1 inside 8,
(24)

where the precise form of the surface I is to be
determined by minimizing the energy of the hadron
state under consideration, as is done in the above

C. Coulomb gauge

To simplify our discussions, in the following we
shall regard o(x), and therefore also z(x), as a.

given function of r. Let us consider a single ha,-
dron system so that its surface 5 is simply con-
nected. We assume further that o'(r) has the sim-
ple form given by (23); hence, because of (9)

v(r} =v„- 0 outside 3
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zeroth o-rder calculation. [It is quite straightfor-
ward to extend our analysis to the more complicat-
ed case in which z(r) is only =1 inside I, as in the
general n 40 solutions examined in the preceding
section. ]

From (10), it follows that V~ satisfies (neglect-
ing the counterterms)

through

—V (gVVO}=gI',

where on account of (28)-(33)

(35)

The function Vp will now be regarded as a func-
tional of V', V', and

(34)

(vV~„) =—gJ„',

where

Ja a + CabcVb Vc

(25)

(26)

I'= Jo+ IcC' 'V 'VVo.

Because xC"'V' &VO =&' (vC"'V'Vo), the total
"color" charge is

(36)

and

~ a az, =a&4 r4rv& 4. (27)

D'=r&E', and H'=xB', (28)

where the roman subscripts denote the space com-
ponents, e;» ——+1 if ijk is an even permutation of
123, -1 if it is an odd permutation, and 0 other-
wise. Equation (25) becomes

&' D'=g Jo

and

VxH'- 0'=gJ',
(28)

It is convenient to introduce the three-vectors E',
O', B', and H', as in the case of the usual electro-
magnetic field in a medium:

a ~ a a a
V4a

—
ZEST, V]; —e; sqB

Q' =- Jpd3x = I'd3x;
4t

furthermore, it is a constant of motion. Let
G(r, r') be the Green's function defined by

-(7 I)(VG(r, r')] = 5 (r —r'},
where V operates on r. The solution Vo of (35)
satisfies

(38)

F;(r) =g fG(rr )I (r ,)d'r'''
Since I' depends on Vp, the functional dependence
of

(38)

V', = V,'(V', V', j', ) (40)

can be obtained from (36} and (39) by iteration.
From (24}, one sees that as )(:„—0, the Green's

function G(r, r')- ~ everywhere. We may expand
G(r, r') in powers of v„:

where the dot denotes a time derivative, Z~
= (J', iJ()),

J' =—
)I) tX'))) )(C' 'V E'

G(r, r') =~„(G,(r, r')+G, (r, r')

+)(: G, (r, r')+ ~ ~ ~ . (41)

and

J'= tPo(A'-(I)
——AC (V()E +V xB ).

(30)
As shown in Appendix B, for arbitrary surface S,

In the Coulomb gauge, V' is chosen to be diver-
gence-free,

Go(r, r') = constant (42)

V @a=0,

and it satisfies

V'n =0 on 8,

(31)

(32)

when both r and r' are inside S; furthermore,
Go(r, r') is independent of r when r is inside 3 (but
r' may be outside). Likewise, owing to symmetry,
Gp(r, r') is independent of r' when r' is inside 3 ~

Hence for a color-singlet hadron, because Q' =0
and jp ——V'=0 outside 8,

V V'g =0. (33)

where, as before, n is the normal of S. Because
the Lagrangian density (10}is locally gauge-in-
variant, one sees readily that (as will also be
proved in Appendix B) both (31) and (32) can be .
satisfied. According to (24), z(r) has a finite dis-
continuity across 3, which together with (32) gives

lim Vo(r) = finite.
a~

(43)

The Green's function G(r, r') for a, spherical sur-
face of radius R can be readily derived (and is
also given in Appendix B), from which one sees
that, e.g. , when r and r' are both inside the sur-
face Go(r, r') =(4vR) ' and
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]1 1 " l+I (r~'~'
G, (r, r )=(4~)-', + —-1++ —~-~ I P, (cosa)Ir-r'I 8 I iR~ j

/~i
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(44)

where the magnitudes of r and r' are r and r',
respectively, the angle betw'een them is 8, and the
P, 's are the standard Legendre polynomials. [The
sum in (44} can be easily carried out. See (B22)
and (B23) of Appendix B.]

In the Coulomb gauge, ( and V' are regarded as
independent generalized coordinates. Their con-
jugate momenta are, respectively, i)~ and

Ii', =- [6„-(V,V,/v2}]D,' . (45)

It is useful to resolve E' and D' into their trans-
verse and longitudinal components:

a a aE = Etr + Elona

self-coupling. Likewise, we would also like to
restrict

V', =0 outside I . (50)

For simplicity, let us assume that, as in the pre-
ceding section, v(x) is given by (23). Within the
context of a relativistic local theory, the above
restriction can be achieved most simply by modi-
fying the Lagrangian density from 2 to"

2' = 2- 3«(f'o}2V~V'„, (51)

where, as before, «and o are related by (9) and
2 is given by (10). Like (13), this additional coupl-
ing f' satisfies

and f'o, = p, » hadron m— ass. (52)

rI'=- D'„. (47)

By using (35) and (36), one can readily verify that

JDlona Elona d =8' Pg 2p + C V II' d'r,

(46)

and therefore, through partial integrations, the
Hamiltonian density can be set to be

X= 2Dtr Et, + 2Dlo g' Elo~ + gB"H'

+g ~c7. —.V+fo+ mg- j' V'+-, (Vo) +U(o),i
(49)

which is valid in the approximation that o(x) is a
given time-independent classical field.

D. A modification

As mentioned in Sec. IGA, the quark-V~ coupling
has the relatively small value g only inside the
hadron; outside, it is g/«„' which —~ when
&„-0. In order to develop a series expansion in

g, but not in g/«„' ~2, we introduce a direct quark-
o' coupling f in the Lagrangian density (10). When

f »ohadr moanss, the quark field g becomes 0
outside the hadron surface g, in accordance with
(17}; thereby we avoid the very large coupling
g/«„' . The same problem also arises between
the vector gauge fields themselves because of

D'=Dt, +Dlong,

where ~' Dtr —~ Etr =0 and ~ ~ Dlong — ~ Elong —0.
Equation (45) becomes

The modified Lagrangian density 2' is no longer
locally gauge invariant, though it remains globally
invariant. Hence the total "color" charge Q' is
still conserved. Furthermore, as we shall see,
since

f'v=0 inside 8, (53)

—(«V~„) —«(f'o)'V„'=- gJ'„, (54)

we retain almost all the physical consequences of
the locally gauge-invariant Lagrangian density Z.

[One may wonder: Why not directly set in the
Lagrangian density (10)f=0, or in (51)f=f'=0,
and simply impose "(=0 and V~ =0 outside 3" as
constraints '? Although such an approach will be
discussed in Sec. IV, in principle there are sever-
al advantages in starting from a Lorentz-invariant
Lagrangian density. (i) By using its soliton solu-
tion, one can then derive these constraints. This
way it ensures the self-consistency of the con-
straints, especially since Vo is not an independent
variable. For example, without the f' coupling,
even if /=V'=0 outside S, according to (39) there
is still a tail of nonzero Vo outside S, and that
might lead to a Van der Waa, ls-type force between
hadrons which would be in violation of experiment-
al observations. However, in the classical limit,
one can show that when K„O the long-range force
between hadrons must vanish. (ii) A covariant
Lagrangian theory allows one to study the motion
of the hadron surface I and to ensure relativistic
covariance. ]

Instead of (25), V'„now satisfies
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and instead of (35}, Vo satisfies

—V (xVV&) + g(f'o)'Vo gI—', (55) Ec yc Cobcybpc V yc

where J'„and P remain given by (26) and (36), re-
spectively. Because the local gauge invariance is
broken in g', it is not possible to impose the di-
vergence condition (31); all three components of
V' are independent variables. However, since Vo

is absent in 2', only g and V' can be regarded as
independent generalized coordinates; Vo remains
a dependent variable. Just as in (39}, we may
write

and

V p'= —gV (C' 'V Vo) .

(62)

Equation (47} now becomes

II'=- E;, inside S. (63)

As will be shown in Appendix C, one can always
choose P' such that

Etr n 0 on 8 ~

V0(r) =g G(r, r')I'(r')d3r', (56)

where, instead of (38), G(r, r') is now defined by

[-V ~ (aV) +a(f'o) ]G(r, r') =6 (r —r'). (57)

Outside the surface, when fo, -~ and f'o„,
~, we have

)=V'=0. (64)

At any fixed p, =f'o„„, when v„- 0, this new
Green's function G(r, r') ~ everywhere, as be-
fore. We may again expand G(r, r') in powers of

Therefore, the modified Lagrangian (51) provides
a self-consistent device to exclude the quark and
the gauge fields from the outside region.

G(r, r') = v„'G0(r, r') + G, (r, r')

+K~G2(r, r )+' (58)

It will be proved in Appendix C that (42) and (43)
remain valid, i.e. ,

IV. FEYNMAN DIAGRAMS

A. Reduced Hamiltonian

To simplify our discussions, we again ignore
the surface motion, ' and assume 0 and w as given
by (23) and (24), respectively. Inside the surface
3, the equations of motion reduce to

Go(r, r ') =cons tant (59)

when r and r' are both inside 8, and for a color-
singlet hadron, Vo(r) =finite when g„0. Further-
more, for a spherical surface of radius R and for
r, r' inside the sphere, G, (r, r') remains given by
(44), apart from an additive constant. Since for a
color singlet the additive constant in G(r, r'), or
G, (r, r'), is of no importance, we may rewrite (44)
as

G, (r, r') =(4v) ' ~,—~+Q T—
~

-Y P, (cos8)
$+1 tax'

(60)

Outside 8, this new G, decreases exponentially;
hence, it is quite different from the old G, which
has only a power dependence on r and/or r'. [For
nonspherical surfaces, the new G, can be quite
different from the old G& even inside S. See ex-
pression (C17) of Appendix C.]

Insiders, since a =0 we have a'=1 and '=2;
hence, D' =E' and our Lagrangian density is lo-
cally gauge invariant. We may again adopt the Cou-
lomb gauge and require (31) and (32), i.e. , V V'
=0 inside the surface and n V'=0 on the surface.
As in (46), E' may be decomposed into E'=Et,

a+ Eio.g:

—V' =-gJ'pv v

(y~D~ + m)g = 0,

where D~ and J'„are given by (11) and (26). Out-
side 3, we impose the constraints p =V' =0, in
accordance with (64). We shall adopt the Coulomb
gauge: V' V'=0 inside S. In addition, t}I and V'
satisfy the boundary conditions (18) and (32), re-
spec tively. -

By following the discussions given in the preced-
ing section (and as will also be shown in Appendix
C), the Hamiltonian of the system can be reduced
to the form

00 —— gC d3x +sA,t

"a

where 0 refers to the volume within 8,

3C=-,'ll' ll'+-,'gV', (f', + C"'V~ 11') +-,'}3'a'

(66)

p is given by (12), s is the surface tension defined
in (20), and A is the area, of S. As before, II'
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and

»;(r) g fG(r, r')1'(r')d'»', (68)

=- Et, is the conjugate momentum of V', jo
=2)i) &'g, and j'= 2(|) nX'(j). Equations (37} and (56)
may now be written as

G'= fr d4 '= f ()t)»C"*V'll')d'», (67

+g'C"'C"'V'(r) V'(p)5'(r —p), (74)

(a, r ~fV
~
b, p) =gG"'V [V'(r) 53(r —p) ].

As before, a, b, . . . are the color indices, 5' is
the usual Kronecker symbol, and V' acts on r.

The Feynman diagrams can now be constructed
by using the "effective Hamiltonian"

I' =j () + C "'V (-E + VVO},
Hp+Hg, (75)

where G(r, r') is given by (57).
When )(:„-0, one has G(r, r')- ~. As shown in

Appendix C, for color nonsinglets, Q'0 0,

Ho —(2z„) 'g2GOQ'Q' -~, (69)

where ~ is the same as K, provided V', is replaced
by

(»r(r)—=g fG, (r, r')I (r )dr»'' (71)

where G, is defined by (58). The explicit form of
'K &s

(72)

From (69) and (70), we conclude that when x„-0,
the Hamiltonian operator is always divergent for
color nonsinglets, but for color singlets, it is al-
ways finite.

where according to (5S) Go is a constant. But for a
color singlet, Ho is finite and (65) becomes

EIO
— 'Xd3x +sA, (70)

D'„',g(x, x') = 5(t —t') 5"G(r, r'), (76a)

where G(r, r') is defined by (57). As mentioned
before, when v„0, G- ~, and that leads to di-
vergence whenever there are color-nonsinglet ex-
ternal lines. However, between color singlets all
amplitudes remain finite when I(:„-0, and we may
replace (76a} by

D'„'„(x,x') =5(t —t')O' G, (r, r'), (76b)

where G&(r, r') is defined by (58} and it is indejen-
dent of I(;„. Both G& and G are symmetric in r and
r'. For a spherical surface, G, is given by (44)
or (60). For a general surface, according to (C17)
of Appendix C, G, is determined by

-V'G, (r, r') = 5~(r —r') inside 3

and, when r is on the surface, the inhomogeneous
Neumann boundary condition

where Ho and H, are given by (65} and (73), respec-
tively. In the Coulomb gauge, the propagator of
the gauge field between two space- time points x
and x' consists of a longitudinal part Df,'„(x,x'}
and a transverse part D,(x,x'). (i) The longitu-
dinal propagator is instantaneous in time, given by

B. Feynman rules -n VG, (r, r') =A ' on I, (76c)

In the Coulomb gauge, the derivation from the
Lagrangian to the Hamiltonian follows the standard
canonical procedure. However, because the La-
grangian contains nonlinear terms which are V'
dependent, there must be some additional action'
which gives rise to new loop diagrams. The sim-
plest derivation is to follow the path-integration
method of Faddeev and Popov. ' '" The result can
be expressed in terms of an additional Hamiltonian

H, = —2i tr ln(1 —n, 'M) +i tr ln(1 —n 'jV), (73)

where 1 is the unit matrix

(a, r
~

1
~
b, p) = 5' 5'(r —p),

and the matrices 4, M, and R are given by

(a, r
~

b.
~
b, p) = 5"V253(r —p),

&a rlM Ib p) =g~"'[&'(r)+V'(P)] Vb'(r- p)

where r' is inside 5, A is the area of 8, and, as
before, n is the unit normal vector of S. (G, is
determined up to an additive constant, which is
immaterial for color-singlet states. )

To derive the transverse part of the gauge field
propagator D;,(x, x'), we need the various radiation
modes in a cavity of surface 3 (when@=0). The
boundary condition of the radiation field can be de-
rived most simply by integrating respectively. the
top equation of (2S) over a small volume across S
and the bottom equation over a small loop. This
leads to the conclusion that the normal component
of D and the tangential component of H should be
both continuous across 3. Since both are zero
outside g, they must remain zero'6 on the inner
side of S. Now inside ~, K=1; for the radiation
field and when g=0, D'=- V' and H'=&~V'.
Therefore, we have the boundary condition

1
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and for t &t',

iix('VxV') =0 on 8,
&(x, x') =- P (x.(r)) (X.'(r') p) s'""". (82b)

where, as before, n is the normal vector. (See
Appendix C for further discussions. )

In the special case that 8 is a spherical surface
of radius R, the usual TE and TB modes give the
complete solution. These radiation modes can be
expressed in terms of the scalar solution of

& Q+k /=0,
which may in turn be written as

(r) =constantxj, (kr)1', , ~(o.', p), (78)

where r, n, P are the spherical coordinates of

r, F,, is the usual spherical harmonics, j, is the
spherical Bessel function, k ) 0, and X =E or B
depending on the TEor TB mode. For the TE mode

V, , (r) = Vx(rg, , , ) (79)

and k is determined by

The various g-dependent terms in 80+8&, de-
fined by (75), give directly the great variety oi
vertices in this problem. These vertices, together
with the propagators D&,„„D&,', and S given above,
complete our discussion of Feynman rules.

We emphasize that the quark- vector and vector-
vector interactions are local in character, while
the color singletness of the hadron state is a global
property. This is why in (76a) there is an explicit
dependence on x„ in the propagator Di,'~(x, x').
When z„-0, our Feynman rules explicitly forbid
the appearance of external color nonsinglets, such
as free quarks or free vector gauge particles. The
propagators D;,"„„D„and S also depend on the
linear size R of the hadron surface. Only at high
energy and large four-momentum transfer can one
neglect the effect ofhadronsurfaces; in that case,
one recovers the "usual" Feynman rules used in
the current literature on QCD.

For the TB mode

(r) =&x[ix(rla, i, dl (80)

V. REMARKS

A. Phase transition

and k is determined by

The constant in (78) is chosen so that the integral
of ~V, , &, ~

over the volume r (R is unity. At
r =R, in either mode V~, , has only tangential
components while &&&V„'„&, has only a normal com-
ponent, in accordance with (77).

The Feynman propagator Di', (x, x') of the radia-
tion field is given by

[D'„'(x,x')];, = 5" Q (2k) '[V, , (r)];
}t,y, l, m

x [Vx ( l)]4 +iA(t t~) (81)

where the minus sign in the exponent is for t & t'
and the plus sign for t & t'.

To derive the propagator of the quark field, we
need the complete set of c-number solutions (X„},
of the Dirac equation in a cavity:

Z. —. v+ pm (x„),=we„(x„), ,

where e„ is ) 0 and (X„},satisfies the boundary con-
dition (18). The Feynman propagator S(x, x') of the
quark field is given by, for t) t',

(82a)

In our picture, at low temperature, an infinite-
volume @CD exists only in a single phase. A good
analogy is to think of an infinite ferromagnet below
the Curie temperature, which has a long-range
order and also exists in a single phase. The ha-
drons are then analogous to some small-domain
structures within the infinite ferrornagnet. Anoth-
er analogy that has been used frequently in the
soliton (or bag) model is to regard the vacuum as
a liquid and hadrons as bubbles. It seems reason-
able to assume that there should exist a critical
temperature at which the infinite-volume QCD sys-
tern can undergo a phase transition in its dielectric
constant ii (or magnetic susceptibility p, =1/ii}.
The value of the critical temperature and the na-
ture of the phase transition depend sensitively on
the excitation curve of hadron spectroscopy. If
one follows Chodos et al. and approximates the ex-
cited hadron system as noninteracting bubbles of
an ideal relativistic gas, then not only does there
exist a critical temperature T„but T, is also the
maximum temperature that the system can attain. ' '

However, as the size l of such bubbles grows, its
dielectric constant v& should decrease, and there-
fore the effective coupling g/ii, ' would increase,
which makes the quarks behave less and less like
an ideal gas. Furthermore, as the bubbles in-
crease in size, their mutual interactions should
become more important. Hence, it remains an
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interesting open question whether the idea. of a
maximum temperature is really correct.

B. Long-range order

Let us leave our problem for the moment and
consider a. ferromagnet of volume L3 at a nonzero
temperature below the Curie temperature. The
magnetization per unit volume M(H, L) under an

external magnetic field has the following familiar
properties: At any finite volume, M(H, L) is an
analytic function of H and lim„oM(H, L) =0. Thus,

this apparent contradiction, let us introduce, as
in Appendix A, an ultraviolet momentum cutoff A
and denote go as the unrenormalized coupling con-
stant. Inside a hadron of radius R, let a be the
relevant fine-structure constant of the color gauge
fieM. Clearly, n must be a function of RA and

go:

a =f(RA, go).

When A- ~, one must vary gp accordingly so that
the limiting function

lim limM(H, L) =0. (88) a(R) = lim f(RA, go)

On the other hand, if we take the infinite-volume
limit first and then the H-0 limit, a finite non-
zero magnetization results:

lim lim M (H, L) 0 0;
H-o L-~ (84)

this is why we usually say the infinite ferromagnet
carries a long-range order, which is character-
ized by its magnetization and given by the double
limit (84).

In our problem, we may take the ratio of the
(color) dielectric constant between two volumes of
sizes l~ and L3 with l &L. By using (A2), (A5),
(A7), and (A16) in Appendix A, we find, after
neglecting O(a'),

11
zz, /v, = 1+—a ln(L/l)

2w
(85)

where a =(4v) 'g, 2. The approximation of neglect-
ing O(a ) is, of course, not a good one, but some
insight into the long-range order in QCD may be
obtained even in such a crude approximation. Let
us keep the small size l always fixed. At any fin-
ite L, we have, according to (85), lim, 0(v~/v, )
=1 and therefore

lim lim[l —(vI/w, )] =0.
1~ ac at~ (}

(86)

On the other hand, limz, „(w~/v, ) =0 at any aW 0.
Hence,

lim lim[1 —(gz/g, )] = 1
fM~ P J ~ g~

(87)

in analogy with (83) and (84). Hence, we may re-
gard the long-range order in @CD to be character-
ized by the perfect dia-electric property of its
vacuum when the volume becomes infinite. (See
Ref. 1 for further discussions. )

C. Scale of hadron radius

Let us consider a @CD system in the limit of
quark mass =0 inside the hadron. At first sight,
since there seems to be no mass scale in the prob-
lem, it may be difficult to see how the physical
hadron radius can possibly emerge. To explain

exists. This limiting function must contain a length
scale since R has a dimension but a does not. (In
a realistic theory, because the quark masses in-
side the hadron are not really zero, there are ad-
ditional mass scales. )

In a quasiclassical soliton (or bag) model, the
actual value of R is determined by minimizing the
hadron energy spectrum, of which the lowest level
is the pion. Its mass in a quasiclassical calcula-
tion is

~ =-4~PR +4~sR +~-——q
2p a(R)

3 R (89)

where P, s, po are given by (21) and (22), and qo
is a positive number. As discussed in Ref. 1,
since the minimum of M, ' =0, a(R) should be near
a critical value a, ; when a(R) =a„M, =0, and
that in turn determines the pion radius R.

~ (0.11)a(m~/m, ) ~', (90)

where m& is the proton mass and a =g /4v is the
fine structure for hadrons. Even without any de-
tailed search of the literature, we may set m,
& 5 GeV, from which we determine an experiment-
al upper limit of v:

y„& 1.9 x10"2n.
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D. Experimental upper limit of If,

As mentioned in Sec. II, according to (7) v„must
be &1; but as yet, no one has been able to deter-
mine through pure theoretical deduction just how
small K„actually is. Within our picture, the fact
that a single free quark has never been observed
sets a lower limit on the free quark mass mq As
shown in Appendix D,
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g. =G(LA, g,}. (Al)

I et us consider two different volumes l3 and I ~,

but with the same A and go. From (1), it follows
that,

(A2}

APPENDIX A

The proof of properties (3) and (4) concerning the
(color) dielectric constant of the vacuum, which
are stated in Sec. II, will be given in this appen-
dix. As in Sec. II, let us consider a pure QCD
system consisting of only color gauge fields V~.
For clarity, we introduce an ultraviolet momen-
tum cutoff A, and denote go as the unrenormalized
coupling constant. The whole system is then en-
closed in a finite volume L3. Let xr, and g& be,
respectively, the (color) dielectric constant of the
vacuum and the renormalized coupling constant.
Both xL, andgr. are functions of pp L and A.
Fro~ dimensional considerations, they must de-
pend only on g, and the product LA, i.e. , ~1.
=F(LA, go) and

g(~, gi) =f(z),

where
dg'

z =ink+
g) Pr

(All)

(A12)

and g& is an arbitrary cons tant, which will be cho-
sen so that

and

P&g, «1

So far, ' the finite volume is just a device for the
infrared cutoff. Presumably, our physical result
should not be sensitive to the precise form in which
this infrared cutoff is introduced. In order to de-
rive the dependence of P on g&, we assume l ' = the
usual momentum value M chosen for renormaliza-
tion. " The P function as a power series of g, is
then given by

p(g, ) =- 11(162/ ) 'g, 2 —102(167/2) 2g, s+O(g, ')

(A10)
for a pure SU3 gauge field system. The solution of
(A8) has the standard form

where, as in (Al), P(g')&0 for 0&g' g, . (AI8)

g, =G(/A, g, ) (A3)

or its inverse go
——gp(/A g, ). Eliminating go be-

tween (Al) and (AS), we may express g/ in terms
of LA, lA, andg&.

Let f'(z) be the inverse of f(z), i.e., f '(f(z)) =z.
From (All}, one has z =f'(g(X, g, )), which at
X =1, because of (AV), becomes z =f '(g, ). Now
z is also given by (A12). By setting X =1, one de-
rives

g2, =G(I A go(/A gs)) (A4) l dgf (gr)= '

p( i) ~ (A14)

Since the theory is a renormalizable one, the limit
A- ~ of (A4) should exist; in this limit,

l
g/ —g —,g, -=lim G(I A, go(/A, g, )),

which may be written as

f '(gi} =-,', v'(g~ '-gi '); (A15)

its inverse function is

For g& sufficiently small, the O(g, 2) term in (A10)
may be neglected. Hence,

g/. =g (~~ gr) ~'

where

X =//L.

At X=1, (A5) becomes

(A5)

(A6)

f(z) —= [(8v ) 'llz +g ] '

and therefore

(8v2/II}g 2

I

1/2

g~ In~+ (8v2/I I} I

(A16)

g~ =g(1~gr} ~ (A7)

[-(a/a Ink) + p(a/ag, )]g(X,g, ) =0,
where

P =- ag, /a ln/.

(A8)

(A9)

Because gz, G(LA, go) is indep——endent of /, one has
(ag//a/)2„~, « —0; hence, g(X,g, ) satisfies the fam-
iliar renormalization-group equation'2 (but without
the usual y and 6 functions)

Since g(X,g, ) is an even function of g„we need
only consider positive values of g, . From (A14),
we see that (i) the physical value of g, can vary
from 0 to ~ if P(g') =0 only atg'=0, otherwise
(ii) g, can only vary between 0 and g where g is
the smallest positive-definitive root of P(g) =0.
When g, =g, the integral in (A14) diverges In.
either case, setting g& ——x, one has in the physical
region df '(x)/dx =1/P(x) &0; hence, the inverse
function f(z) satisfies
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df(2)
cEE

(A17)
and noting that the inhomogeneous Laplace equa-
tions

By using (All) and (A12), one finds

a—g(X, g, ) &0. (A18)
and

V28 2 =eV V'
0

V'8) =C' 'V' (gg (V') for i & 1

(B5)

(B6)
Since X =l/L, this means for L & l, gl, &g& and
therefore, because of (A2), which is «I, & «„ the
inequality (3) of Sec. II.

According to (A14) and (A15), as g, varies from
0 to g„ f '(g, ) decreases from ~ to 0. When g,
increases to &g&, f'(g, ) becomes negative. In the
above case (i), as g, —~ we have either f '(~) =-A
=finite or f'(~) =—~; in the former the inverse
function f(2) —~ as 2 --A+, which means that
because of (All) and (A12), at any fixed g„g~
=g(X,g, ) becomes singular at a finite X=I/L, in
violation of our 'assumption that «L, (therefore, also
gz, ) is a smooth function of L when L ~. Conse-
quently, we are left only with the latter: f '(~}
= —~ or f(-~) = ~. Since according to (A12),
2 ——~ means «= l/L - 0, we conclude that in
case (i} as L —~,, g~- ~, andtherefore«~-0.
Statement (4) of Sec. II is then established. .

In case (ii), f '(g, )- - ~ as g, -g-. 'Thus, f(2)—g as z ——~, and that gives limz, „g& —g.
Adopting convention (5} of Sec. II, we find

all have solutions. By using (B3}and varying e

continuously, we can transform V V' from any
value to 0. Hence, (31) is satisfied.

Next, we assume V' to satisfy (31) but not (32),
i.e., V V'=0, butn. V'+0 on S. Again, we con-
sider an infinitesimal gauge transformation V'
—V'(8), but now we want to choose 8' such that
(31) remains satisfied,

V V'(8)=0,

and, in addition

n V'(8) = (1 —b)n' V' on S,

(B7)

V2 gc (B8)

n V8;=e6 V' on &. (B9)

where c =0+. By using (B4), we note that in order
to achieve (B7) we must have

«-=(gs/g)', (A19}
Furthermore, besides (B6}, we also need (for
i~1)

where, as before, R is some hadron radius chosen
to set the scale tc~ —1, and g is the smallest posi-
tive-definite root of P(g) =0.

APPENDIX B

In this appendix, we shall prove a number of
technical points mentioned in Sec. III C concerning
the Coulomb gauge. As we shall see, all of these
proofs are quite elementary.

v'(8) =v'+ c"'e'v'- g-'ve'

and 8' is an infinitesimal. We first show that it is
always possible to choose e' such that

F28'-gV (C'"'O'V') =gbV V' (B2)

and therefore

V. V'(8) =(1—&)V V', (B3)

where e =0+. This can be readily established by
expanding

1. Conditions (31)and (32)

Suppose V' satisfies neither (31) nor (32). Unde".

an infinitesimal gauge transformation, V' becomes
V'(8) where

n &O'; =C' 8, , (n V') on S. (B10)

eb= ~~A; r'Y, ~(n, P),

where F, is the usua". spherical harmonics. Let,

n V'= Q B;„Y,„(n, P} at r=R,
where

+0 Occ n V'R sino.'d. o.'dP

V Vdy=P.
r~R

By choosing

A', =eB', /(lR' ') for l & 1

and leaving A0, 0 arbitrary, the above 6IO satisfies
both (B8) and (B9). I,et F, by any particular solu-
tion of

V2gc Cobe~ (gbVc).

For simplicity, let us first assume p to be a, spher-
ical surface of radius R. The general solution of
(B8) can be written in terms of the spherical co-
ordinates (r, n, P}

6}'=ge0+g 8& +g382+ ~ ~ ~ (B4)
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n(=8) —8) . now expand V (n =in or out) in powers of x„:
In order to have (B6) and (B10) for i =1, o,", must
satisfy

&n) ——0

and

n Vn', =n (C' '8 V' —&8'),

Equation (Bll) becomes

—V V,'„"=0for l ~ 2

(B13)

(B14)
which have exactly the same form as (BB) and (BS).
Consequently, n; exists and-so does 8j. Likewise,
we can construct 8'„83, .. . , and therefore (B7) is
satisfied. By varying e continuously, we can trans-
form n V' from any value to 0 on S. (When 3 is not
a spherical surface, by choosing the appropriate
curvilinear coordinates, we can apply identical
arg. ments as those given above. ) Conditions (31)
and (32) are then established.

—& V,'„,'=0 for all m.

The boundary condition (B12) requires that at the
surface 8

(B15)

and

2. Equations (42)-(44)

Consider a simple problem in classical electro-
statics:. A unit point charge is placed at r =ro
inside a simply connected surface S. 'The dielectric
constant is v = 1 inside 8, but K = v„-0 outside. The
electrostatic potential V(r) in this problem is the
Green's function G(r, ro) defined by (38). Let
V(r) = V„(r) or V,„,(r) depending on whether r is
inside or outside S. Hence,

Let E ' be the electrostatic field associated with
V (n).

Q ~

(n) g V(n)
Q ~ (B16)

Now E,'0 is, by definition, irrotational; from (B14)
it is also divergence-free, and from (B15) its nor-
mal component is zero on g. Hence, E,',' =0 and
therefore

—V V,„,(r) =0 V,','(r) =constant. (B17)

-V2V„(r) = 53(r —ro).

The boundary conditions at the surface $ are

V„(r)= V,„,(r)
and

n VV„(r) =x„n &V,„,(r),

(Bl1)

(B12)

where, as before, n is the normal vector of S. We

So far, r, is assumed- to be inside S. When r is also
inside 3, the Green's function G(r, ro) = V, (r) and

Gp(r ro) = V
g (r) where Gp is defined by (41). Thus,

(B17) shows that when r and r, are both inside 3,
G0(r, ro) is independent of r; by symmetry Go(r, rp)
is also independent of ro, and therefore (42) fol-
lows. By following exactly the same argument,
but for ro outside 3, we find GD(r, ro) to be inde-
pendent of r, so long as r is inside s. These prop-
erties may be summarized as follows:

Go(r, r') is independent of r (or r') whenever r (or r') is inside X. (BI8)

To determine the constant in (B17), we have to
examine V',0„',. Since according to (B14) and (B15),
-V' V,'„', = 0 outside S and V',0„'t —V,','=constant on
&, one sees that V',"„t(r) is the same as the electro-
static potential in free space outside a perfect
conductor of surface s. Let o(r) be the surface
charge density of that problem. We have -V'V', „',

=no on s. From (B14) and (B15) we see that

g2VIo 58(P
~

)

and

-n ~V",.'=~ on s.
Hence,

(B19)
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a'd S=- ~ Vg„"d

where d S is the surface element of S and 0 is the
volume inside 3. From (41}, it follows that
G((r, ro) = V",„'(r) when r is inside 3. Consequently,
inside l), G((r, ro) is the electrostatic potential
generated by a positive unit charge at r =rp with
the boundary condition (B19) on 2. '

If (r =V'=0 outside S, then jo=J~=I' =0 also
outside 3. Hence, according to (3?), (39}, (41),
and (B18), as «„-0,

V;(r) = « '@GO(r, R,)Q'

(B20)+g G'( r, r'/' r' dsr'+0 z

where 8 is any position vector on 8. According to
(B18), Go(r, r') =Go(r, R) whenever r' is inside l) .
Now, for a color singlet Q'=0, Vo(r) is finite as
« —0. Equation (43) then follows.

To derive (44), we assume 3 to be a spherical
surface of radius R. As before, a unit charge is
placed at r =rp inside &. It is straightforward to
show that for r&R

(, )= .(}=( )' 7- -~+g I I 1
"R' (o )

1 " (I+1)(1-«„) (rr, )'

and for r &R

G(r, ro) = V,„,(r) = (4') ' g —
I )

~ P, (cos8},
2=0

(B21)

where r and rp are, respectively, the magnitudes of r and rp, 8 is the angle between them, and the P, 's
are Legendre polynomials. Taking the limit «„-0 and by using (41), we obtain (44).

As «„-0, an alternative form of (44) can be given in terms of image charges. We observe that for x &R,
(B21}becomes

and for r &R

t1 —2g
l r —rp i

-I xp'r —R'rp l R
dx —— +0(«„)

Rg„p I r —xro I xt'0 " (B22)

G(r, ro) = V,„„(r)=(4)T) " + + — ——
~

+0(«„).-( 1 —2«„2 ' dx 1 15
K x Ir —rpl p x lx xrp I

Thus, as «„0, V,„(r), apart from an additive constant, is the electrostatic potential due to a unit charge
at r =ra inside the sphere, an image point charge of magnitude (R/ro) at r =R'ro/xo' outside the sphere,
and a continuous line distribution, also outside the sphere, along the ro direction from r =R2ro/r, 2 to ~;
V,„,(r) is that due to two point charges, one of magnitude 1 —2«„at r =0 and the other of magnitude 2«„
at r =rp, plus a continuous line distribution of image charges along rp from r =0 to rp, all inside the
sphere. The integrals in (B22) can be readily integrated. We find for r &R

(, )=,.( )=( )
1-2I(;„1 Rxp

lr- rpl l~p r —R rpl

and for x&R

1
-R ' ln ——

2 cos8+ 2(R —2R2rro cos+8r ro )'~ +0(«)
t

2
(B23)

O(r, r ) =(r,„,(r) =(88) + --r lo ——-OC coos+ —(r —2rr coss+r ) I+O(s„).
1 —2I(;„2 ) 1 y 1 2 1/2

lr —rp I „2 2r 2y' p p

APPENDIX C

Several properties of the modified Lagrangian
density &' and the related Green's function G(r, r')

are stated in Sec. IIID and Sec. IV; these will be
established in this appendix.

1. Equations (59} and (60}. The proof is essen-
tially identical to that given in Appendix B2. Let
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V(r) be the solution of

[-V («V) + «(f'o) ]V(r) = 5p(r —rp) (Cl)

Hence, (59}follows.
If ()) =V' = 0 outside &, then j() =Jp =I' = 0 also

outside s. Hence, (56) reduces to (B20), i.e.,
that equals the Green's function G(r, rp), defined
by (57},

G(r, rp) = V(r). (c2)

Denote V(r) =V„(r) or V,„,(r) depending on wheth-
er r is inside or outside the surface S. Fog ro in-
side &, because of (23), (24), and (52), (Cl) be-
comes

V', (r) = «„'gGp(r, R)Q'

{c10)+g t"& r, r' I' x' de'+0 x

where, as before, R is any position vector on S.
According to (C9), Gp(r, r') =Gp(r, R) whenever
r' is inside S. For a color singlet, Q'=0; hence
(C10) becomes

(V'- p') V..t(r) =o

and (c3)
) r(r)=r JG,(rr )P(r, )d''r +O'(r )', „(C11)

—O'V„(r}= 5'(r —rp)

with the boundary conditions a,t the surface s:
V„(r}= V,„,(r)

n V V„(r) =«'„n V V,„t(r),

(c4)

which is finite when v„-0.
To derive (60), let us assume & to be a spherical

surface of radius R. By using (C6}-(C8), one sees
that V',0„', is given by

(C12)

where q is a constant. The function V",,' satisfies

where, as in (B12), n is the normal vector of s.
Just as in (B13), we may expand V (n =in or out)
in powers of K„:

—V VI,"=5'(r —rp)

—n &V",„'—= 0 =constant on&.

(C13)

where because of (C3)

—V' V,'„"= 5'(r —r, ),
—V' V,'„' =0, for /~ 2

and

(VP-p')V, '„t ='0, for all m.

The boundary condition (C4) becomes

(C5)

(c6}
Gp(r, rp) = V',P,(r) = (4') '(1+PR) '

and for x)R

(C14)

Gp(r, rp) =V(P„„(r)=(4') '(1+PR) 'e
(C15)

Because of the Gauss theorem, o =(4vR2} ' when
8 is a spherical surface of radius R. Since n V'V",,'
=n V'V,'„t on S, we determine the constant in
(C12): q =(4m) '(1+pR) ' exp(pR). For r&R,

(C7)

at the surface S.
Since V',„'satisfies exactly the same equations

here as in Appendix B2, by following identical
arguments as those given after (B15), one estab-
lishes, as in (B17),

By setting p, = 0, we recover the previous form of
Gp(r, rp) discussed in Appendix B.

In the present case of a spherical surface, (C13)
is identical to (B19); the solution V",,' must also be
the same, apar t from an additive cons tant which
is not determined by (C13). Thus, (60) is estab-
lished.

For an arbitrary surface and assuming p. » ha-
dron mass, one has

V',,'(r) = constant,

and, as in (B18), '

Gp(r, r') is independent of r (or r') whenever

r (or r') is inside s.

(c8)

(C9)

(C16)

In this approximation, since n. VV', „t ——n V'V) and
V,'„'t —V',„'=constant ons, the normal electric field
defined by (C13) is a constant for any surface.
Hence for r and r, both inside S, G, (r, rp) = V",,'(r)
is the electrostatic potential generated by

a positive unit charge at r =ro, with the normal component of its electric field being a constant on
the surface. (c17)
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n VQ'=0 on S. (c19)

To see this, let us assume that (t' = Qp is a solution
of (C18) inside S, i.e.,

v yp =-Zv (C"'V'V', } (C20)

but n Vgp40 on& . For simplicity, let S be a
spherical surface of radius R and let (r, c(, P) be
the spherical coordinates of r. Expand

(t'p = P A&)wY))))(&) P) at r =&& (C21)

where the Y, 's are the spherical harmonics. Be-
cause of (C20) and (32),

We note that for nonspherical surfaces, even in-
side S the Green's function G&(r, rp) determined by
(C17) can be quite different from that derived in

Appendix B; however, their difference must be of
the form f(r) +f(rp) due to the reciprocity relation.
[Compare (C17) with the derivation following (B19)
in Appendix B.] As mentioned earlier, outside
S the G, (r, rp) function of Appendix B has a long
tail, which leads to a Van der Waals-type force
between hadrons, in violation of experimental
results.

2. Equation (62}. Inside S, since o' = 0 and x =1,
the Lagrangian density is locally gauge invariant.
In the Coulomb gauge, according to (31) and (32),
V V'=0 inside S and n V'=0 on S.

To derive (62), we first show that it is always
possible to choose a solution (l)' of the last equa-
tion of (61},

vp y() v (C() col Vc} (C18)

such that

Q(
—Q B', r 'Y, (a, P).

l, m

(c2s)

I() =V'=0 outside S, (C25)

in accordance with (64}. By using (10) and (51),
we find the total Lagrangian I =—fZ'dpr can be de-
composed into three parts:

k,„d'r —sA + ~out d'~,
Q out

(C26)

in which we omit the counterterms in (10), A is the
area of S, s is the surface tension defined in (20)
[due to the integration of —,(Ve) + U(o) over the sur-
face], 0 refers to the volume inside S and "out"
the volume outside,

Z,„=-dV'„&.—(C)'r4(r, &, +rn)4-P)

where P is given by (12), and

~out =k& [(VVp) +0 (Vp) ]

(c27)

(C28)

In the Coulomb gauge, the conjugate momentum
of V' is

II '= —Et, , (C29)

where E;, is given by (61) and it satisfies (62). The
Hamiltonian is given by

We shall set

=-A', j/8' ' for all 1 40; (c24)

therefore, for arbitrary Bpp, n V(pp+ (t)f) =0 on S.
Thus, Q'=—Qp+ g satisfies (C18) and (C19). Equa-
tion (62) now follows.

3. Heduced Hamiltonian (65). In this section,
we assume

App ~ V QpdPr = 0, (c22) a= rr'V'+~ ' d'r-i. . (cso)
where 0 denotes the volume inside ~. Now choose
(t)', to be a solution of V (t); =0 inside S; Hence Through partial integrations, we find

E~„,d ~= Vo~ Vlod S+~ +0 ~0+C"' (csl)

(
'. ' ()rd —r(dt)„)d3r= Jddd~r —-' J(V( .VV() d'd, (C32)

where K is given by (66), d'S is the surface ele-
ment of S, and ( )„refers to the value of the inner
side of S. Now, outside S, because of (C25), Eq.

(55) becomes (V —p, ') Vp ——0. Hence,

2,„td x=- —,z„Vqn VVO td S.
out

(css)
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Furthermore, at the surface (Vo),„,= (Vo) „and
x„(n &Vo),„,=(n &Vo),„. Hence, H is the same as
Ho given by (65).

4. "Radiation field" inside the hadron. The La-
grangian density &' given by (51) is not locally
gauge invariant. As mentioned before, inside the
hadron, o=O and therefore &'=& given by (10),
which is locally gauge invariant. Outside, a =0„,
4 0. Hence, local gauge invariance is broken. So
long as we restrict ourselves to the inside region,
we can perform local gauge transformations. How-

ever, in order to make a connection with the out-
side solution, it is sometimes necessary to trans-
form the inside solution to a specific gauge; only
then can one satisfy the continuity condition at the
surface.

As an example, let us consider the free radiation
fields V, , and V, &

of the TE and TB modes
discussed in Sec. IV B. For these free field solu-
tions, we may set g =0. Equation (54) becomes

a—V =0 insideS
ax. "

In order to connect the outside solution with the
inside solution, we set the outside solution V at
r =R+,

Vq —Vg, V~ = V~,

Vo —Vo —0,

and
(C40)

where V„ is the inside solution given by (C35), and

(BV„/Br)z refers to its value at r =R. The last
term in (C40) is needed so that at r =R+, neglect-
ing O(1/p, R), BV /Bx =0. To the zeroth order in

(y, R) ', (C40) and (C35) give the same field at
x =R. Hence, to that order the continuity condi-
tion at the surface is satisfied.

It is of interest to examine the first-order cor-
rection. To the first order in (pR) ', we must
modify the inside solution (C35) by a local gauge
transformation (which is allowed since the inside
Lagrangian density is locally gauge invariant):

V =V +IU,

and
a 2—V ~

—p, Va —0 outside S,

(C34)
and

V, = —9'X =+, I '(ik)X (C41)

Vo(x) =0,
where V, , &, (F)
ca 1 coordinates

is given by (79) or (80). In spheri-
r = (r, 6, Q), since V' V = 0 we have

P V)t 1 pe
ar r a6

+ 1 3V+ . — '=0r sin8 Bg
(C36)

and at r =R-, because of (77),

V„=0. (c37)

In the outside region, the lower equation in (C34)
gives

aV,
8xg

(c36)

for ic»R ', its solution near the surface (r =R +)
must be of the form

where for simplicity the color index is omitted and
since g=0, V 8=(BV~/Bx, ) —(BV /Bx~). Assume
~ to be a spherical surface of radius R. For x&R,
the solution for the TE, or TB, mode may be
written as (X=E or B}

V (x) =V~, &
(r)e '

and

where X is analytic inside the sphere (r &R) and. it
should satisfy the following boundary conditions at
the surface. '

X(R, e, y, f) =0

(C42)

Consequently, (C40) and (C41) satisfy the contin-
uity condition at r =R. [That such an X exists can
be easily seen by assuming, e.g. , X~r'(r —R )
x I', (8, P) for the appropriate TE or TB solution. ]

We note further that as w —0 the integral
tc (f'o) V'V' over the outside region becomes
zero. Hence, the constraint V' =0 outside S is de-
rived by using the Lagrangian (51) provided that we
take the limit tc„-0 first and then f'o„„—= p,

APPENDIX D

In this appendix, we give the derivation of (90),
which leads to the experimental upper limit of w„
discussed in Sec. VD. From (69), the mass of a
free quark is given approximately by

V (~, 8, y, t) = (R/~) V (R, e, y, f}e "'" ", (C39)
pa

3K~ 3
(D1)

where

M = p, {l+O[(pR) 2]].

where P is defined in (12). Here, for simplicity,
we neglect the surface tension s. According to
(C14)
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G, = (4') ' (1 + p,R) '. (D2)

We discuss the two limiting cases: p, «(4'/m, )'/3

and p, » (4'/m, )'".
1. p, «(4'/m, )~/3. In this case, Go ——(4') ~.

By setting dm, /dR = 0, we find

4 2~ 3~4
(4~p)'", (D2)

3 3K

where a =(4m) 'g . Likewise, the proton mass is

Taking pp = 2.0428, we obtain

~„=(0.109)n(m, /m, )"'. (D6)

(D7)

2. p, » (4'/m, )'/~. In this case, Go =—(4mpR )
'

and that gives

5I'4a
m, =-

~
(4')2/'.

4(I3p )3/4(4~P)i /4

where p, is given by (22). Hence,

2n (m, 4"K~=: —
~

9Pp ), rn~

(D4)

(D5)

By setting p0
—2.0428, we find, instead of (D6),

tc„=(0.012)o.'(m~/m, )5/3(m~/p. ). (D8)

Since (D8) always gives a smaller value than (D6),
we establish (90).
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