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SL(3,C) elementary instanton configurations
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Several SL(3,C) self-dual instanton solutions of the Yang-Mills equations are presented which have very

striking properties. While one of them is regular and SU(3) inside (outside) a sphere of arbitrarily large

(small) radius, another one has all the characteristics of a meron solution (in particular its topological charge
is concentrated at one point) although its Pontryagin number equals one. Their continuation to Minkowski

space is also studied.

The recent work of Atiyah et al.' on the construc-
tion of all instantons for several gauge groups has
been extended by Corrigan et al.' and by Christ
et al.' Corrigan and collaborators have been able
to construct the general solution in the SU(2) and

Sp(n) cases, although they did not concern them-
selves with the SU(n), n) 3 case. The last-named
authors have taken advantage of the hint provided
in Ref. 7 and reduced the problem of the construc-
tion of 0(n), Sp(n), and SU(n) solutions to that of
solving a finite-dimensional, nonlinear system of
matrix equations. Using more direct methods,
Bais and Weldon have obtained a family of SU(3)
multi-instantons with cylindrical symmetry, al-
though they recognize that their solutions are much
like the ones already found for SU(2), and that it
is thus not probable that they can provide deeper
insights into the problem of quark confinement.
Finally, Meyers et al.5 have dealt with the SU(3)
case as well, which presents an obviously great
physical interest, and have given explicit criteria
to decide whether a particular self-dual SU(3) solu-
tion is merely an embedding of an SU(2) one or not.

Instead of focusing on the multi-instanton con-
figurations, whose contribution to the action is
essentially proportional to that of a single pseudo-
particle, it is physically more interesting to look
for new elementary instanton (and meron) solu-
tions. As is known, all the configurations with unit
topological charge in the SU(3) case are embedd-
ings of the corresponding ones for SU(2). However,
I prove here that this is not the case for the group
SL(3, C). In fact, starting with an appropriate
ansatz, I derive several nontrivial, ' self-dual
solutions of the Yang-Mills (YM) equations for
this group. One of them is SU(3) inside a sphere
of arbitrarily large radius and SL(3, C) outside.
Through a conformal transformation it gives rise
to an alternative solution which is SU(3) outside
an arbitrarily small sphere. At the same time, a
regular, self-dual SL(3, C) configuration of unit

topological charge is also obtained. Finally, a
further solution with an allowed singularity (cf.
de Alfaro et al.' and Jackiw et al.') is constructed
which has all the characteristics of an instanton,
but, surprisingly, its topological charge is con-
centrated at one point as in the case of the meron
conf iguration. ' Its analytic continuation to Minko-
wski space has finite energy and action. All the
solutions can be combined with the configurations
of 't Hooft' and Jackiw et al.' to provide other non-
trivial SL(3, C) solutions with higher topological
charges.

As in the SU(2) case, when one deals with the
gauge group SU(3), it is convenient to define a
matrix-valued vector field A (x) related to the
gauge potentials A;(x) by A„=A;T', where
T' =-A'/2 and the X's are the Gell-Mann matrices.
The field-strength tensor is F„v =B„A.„—B,A„
+ [A„,A„] and its covariant derivative is D„F„
=B,E „+[A„E,„]. The pure gauge field theory
is defined by the Euclidean action

S =--,' Tr F„„F„„d4x;

which leads to the YM equations of motion

(2)D.F,v
=0.

When the field under consideration is (anti) self-
dual

F
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Eqs. (2) are an immediate consequence of the
Bianchi identities for the connection D„F,„=O. A
very interesting question is that of the exhaustivity
of these solutions (3). A local statement about it
has been given recently by Daniel et al. ,' but the
general problem of finding all the solutions (self-
dual or not) of the equations of motion (2) still re-
mains open.

I will consider self-dual fields only. My ansatz
for.the gauge vector potential A, (x) is
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A„(x)=o„,a (x) ((u=0, . . . ., 3; n=0, . . . , 8), (4) Q
p(x) =- —(x'+ b)32 (12)

where the matrices o„are antisymmetric and de-
fined by

o„=-iZ,/2, a,„=-ix„/4, o,.=[X„X,]/4

(j=1,2, 3; u=4, . .. , 8; a=1, . . . , 8). (5)

The self-duality condition F „=F„„provides the
following equations for the potentials a (x):

where, without loss of generality, I have set a =0.
We 'have

2x.a x'+b '

a„=+ " [- (x'+b)]-'~' (u=4, . . . , 7),
4P2 n

B„a„+a„a„+-,'(a~'+a, '+a, '+a, ') =0, a8 =0 (13)

f„„=—B„a„—B„a„=f „(p,v=0, 1,2, 3),
B,a, =82as = B,a, =0,

~3
D,a, +D,a, +D,a, +D,a, — a,a, =0,

D a —D,a, +D a, -D,a + a a, =0,vS

(6)

When b is positive, say b =a2, we obtain an
everywhere regular solution, but one (at least) of
the a„must be pure imaginary. When b =0 an
(acceptable') singularity at x =0 appears. Finally,
if b =-a2 the solution is real in the hypersphere
x2&a' and has a singularity at its surface. The
gauge potentials are given by

D,a, +D,a, —, D,a -D,a, — a,a, =0,&3 A (x)—
x +b

W3
D a, -D,a -D a, +D,a, + a,a, =0,6 8 9

where D„=28„+a„.To find the general solution
of this system of partial differential equations is
not easy. But let us consider the restriction

(28, +a, )au ——0 (u=4, . . . , 7), a, =0, (7)

p=0. (10)

Equation (10) already appeared in the SU(2) case,
where it led to an explicit (5n+4)-parameter solu-
tion' in the n-instanton case

n+1 2

l4(")=g
( ). .

Notice that corresponding to any of these solutions
(11) there is one (9) for the SU(3) gauge group.
Moreover, this correspondence is not a, trivial
embedding, as we shall see in a moment.

Let us concentrate in the non-SU(2) part of (9),

which, together with the assumption that the a„'s
can be written in terms of a scalar superpotential
p(x), a, (x) =B,p(x)/p(x), reduces the set of Eqs.
(6) to

a„=n„p 'i', p+ —,'(n, '+ n, '+ n, '+ n, ') =0

(8)

(the n„are arbitrary constants) which have the
solution

Q2 7

p(x) = p, (x) ——[(x-.a)'+ b], n'= g n„', (9)
g=g

where a and b are constants and p, (x) is the gene-
ral solution of the homogeneous equation

4v 2i
~ ). i2 (neo~4+nso) 5+ neo 6+ nvo~v) ~~(x +0)

(14)

q=-, Tr(F „F„„)d'x,1
(15)

i.e., 8 =2m'q. Actually, the correct way to calcu-
late q (valid also when F,„has singularities) is to
use the expression

1
q„=—,e,„„Tr[A„(B,A, +-', A, A,)]do

q = lim q„(16)

where the integration is performed over a sphere

These solutions are nontrivial for all values of
b, in the sense that they are not embeddings of
SU(2) or SU(2) x U(l) configurations. In fact, for
example, in the case b t0 and for x =0, F„ is al-
ready diagonal while the potential A does not have
any of the possible blocklike structures which
would indicate' that it was an embedding of some
subgroup solution. One can also argue in a direct
way. A similar reasoning shows that this is also
true in the case b =0. At the same time, this ar-
gument excludes the possibility that A, can be
converted into an SU(3) potential by means of a
convenient gauge transformation, because then we
would obtain a nontrivial SU(3) one-instanton con-
figuration.

The self-duality of F„„for any value of b implies
that in all three cases which I have distinguished
before, the Euclidean action (1) is proportional
to the topological charge or Pontryagin index
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in E4 of radius x. One gets in our case

96b'
Tr(EgvE, p) =-

(x2+b)4 2

& „,Tr[A„(B A, +-,'A A,)j=—,', +
12x„8x2x

(17)

A„'(x) =A,'„—,
1

",', + r„,(I,x)
1 2o„,x. 4~2

~" x2 1 —atx2

x2 i/2
x g2x2 1 P

7

o,„o.„(19)
g=

where r,„(x)=2x,x„/x' —b„„and A, „ is a matrix
representation of I,. The new field strength tensor
is

In the case b& 0, using indistinctly (15}or (16) we
obtain

r '(r '+ 3b)
(r'+ b)' (18)

which gives the distribution and the total value of
the topological charge in the Euclidean space. 'The

value q =1 is typical for an instanton solution.
Now when b =0 and owing to the singularity of F„„
at x =0, we find ourselves in the situation de-
scribed by de Alfaro et al.' for their meron solu-
tion. Making use of (15) we obtain q =0, but (16)
tells us that q„=1, for any value of x. The situa-
tion in this c@se is very curious because, on the
one hand, we still have a self-dual instanton but,
on the other, instead of being spread over all
space (as in the case b& 0) its topological charge
is concentrated at the origin, as is known to be
typical for the meron solution in SU(2).'

When b = —a' we still obtain from (16}the charge
distribution (18), but now it is only proportional
to the action for x& a. Owing to the singularity on
the surface x' = a', the Euclidean action (1}is no
longer finite, while the total topological charge
[given by (16)—notice that it has positive and nega-
tive contributions which cancel out j still has the
value 1. By means of a conformal transformation
consisting of an inversion y, =-x /x' followed by
a space reflection z =I,y, where I,(y„y„y„y,)
=(y„—y„-y„—y, ), one obtains a new solution of
the self-duality equations I „=F„,given by the
vector potential

r 4(r' —3a')
(r2 a 2)2 (21)

Notice that q'(x' & 3/a') = 1 and that a can be made
arbitrarily small.

Finally, let us study the behavior of (14) in the
Minkowski space. In the case b 10 both the Minko-
wskian action and the topological charge vanish.
With respect to the energy one encounters the
same problems as in the case of the pseudopar-
ticle solution of Belavin et al.": Singularities
develop and no direct information can be pro-
vided.

The singular case deserves more attention. In
what follows I will apply the procedure developed
in Ref. 7. Let us go back to E(I. (14) with b =0. A
conformal transformation takes the singularities
of the solution to two arbitrary points u and v,

z =z(x) . (20)

This new solution of the YM equations is regular
and SU(3) outside the sphere x'(1/a'. Taking the
constant a& 1, the two open charts R, ={x(=E»ix'(a')
and R, ={x(=E, ix'& I/a') constitute a covering of
E». The solutions A. (x) and A„'(x) are regular in

R, and R„respectively, but, unfortunately, in the
intersection they are not related by a gauge trans-
formation. It is easy to see that the topological
charge distribution of the new solution is given by

2 ]

A,'(s) =q„,(s) 4(T„s~v —(2s ~)'i'r,
Q

p', „(s)= 2„,(s)p„(s)I22 [s's„s (s s„—s,p„)s,]

s . (22 ) (s(s T —TT ) —22 ([ T ]—[ts T]))——22 [2,T]I(P s 2p=p ) 2 2)
16i 2 x/2 64

(22)
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where E=l d'x8 (x)=0.00 (26)
1 (x —u), (x —v),
2 (x —u)' (x —v)'

Sn"-=8
u=4 ex,. 8

Without loss of generality we can set -u„=v„=a„
and orient a„along the time direction a„
=(1,0,0, 0). The analytic continuation to Minkow-
ski space amounts now to setting xp ixp. In this
way a perfectly regular solution in the physical
space is obtained.

As an immediate consequence of the self-duality
of the solution, its Minkowskian action and topo-
logical charge are zero, as in the former cases.
The energy-momentum tensor is given by

(24)

and, again making use of self-duality,

(26)
I

After some calculations it is not difficult to see
that the total energy is

We see that to this Euclidean singular instanton
solution corresponds, in Minkowski space, a
regular one whose associated energy and action
remain finite.

The exact significance of these 'solutions, with
their unavoidable imaginary part, is not com-
pletely clear. Nevertheless I hope that their
striking properties [so different from the usual
ones known to us from explicit SU(2) instanton
configurations] may prove useful in order to throw
some light into the problem of finding the appro-
priate pseudoparticle configurations which can
actually lead to the comprehension of quark con-

finementt.
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