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Mass perturbation around the exact solution of a two-dimensional field-theoretical model
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The exact solution of a massless spinor field interacting in two dimensions via a derivative coupling with a
massive pseudoscalar field is perturbed by a fermion mass operator. We resum the resulting infrared-singular
perturbative series and show that for dimension dim(iPQ) & 2 the Green's functions can be made finite by the
addition of one counterterm. Equations of motion and Ward identities are derived.

I; INTRODUCTION

In a previous paper' we discussed the two-dimen-
sional model described by the Lagrangian density

Z =—0 P4'-M4'4+-&, y& "p --,'m'y -~y "y +&,y

(1.1)

from the point of view of perturbation theory in the
coupling constant g. In particular we have shown
that Green's functions can be subtracted according
to a modified Bogolubov-Parasiuk-Hepp-Zimmer-
mann (BPHZ) subtraction scheme, such that no

new interactions are induced. These Green's func-
tions reduce to the exactly soluble model of Rothe
and Stamatescu, 3 when the fermion mass I goes
to zero.

In this paper we want to investigate a different
approach to the perturbative treatment of the mod-
el (1.1): Take M = 0, and then treat the mass
term M%4 as a perturbation. In this way certain
features, such as softly broken scale invariance,
are taken into account from the very beginning.
Perturbation theory in g never reveals scale in-
variance, unless one sums up logarithms.

The equivalence between the massive Thirring
and the sine-Gordon model discovered by Cole-
man4 is another feature illustrating the relevance
of mass perturbation theory: In the sine-Gordon
language it corresponds to perturbing about the
free massless theory.

In lowest order of perturbation a convenient
definition for the normal product associated with
[44](x) is, as we will see,

N[44](x) =:exp[ 2pgy happ(x)]::Vy 4yp:(x) (1 2)

where yo is a free pseudoscalar field of mass m,
and 4& is a free zero-mass fermion field. Since
the unpertrubed fermion field is massless, mass
perturbation is highly singular in the infrared re-
gion. To circumvent this difficulty we partially
resum the perturbative series, transfering a

term proportional to:%f4&.. to the unperturbed
Lagrangian.

Our main results concern the ultraviolet be-
havior of the resulting Green's functions in the
Euclidean region: The theory is renormalizable
for g'&7t, i.e., the Green's functions are made
finite, in a sense to be made precise later, just
by the addition of the counterterm (:cos2y:-1).
If such a term is absorbed into the definition of
the normal product N[4'C](x) then the following re-
sults will emerge:

(a) For 0 ~g & p the Green's functions are
finite.

(b) For g'~ m the theory is apparently meaning-
less. For g'&m the theory is nonrenormalizable
in the sense that there will be divergent graphs of
arbitrarily high order. At g =m the propagator
associated with the exponentiated field in (1.2) de-
velops a nonintegrable singularity at short dis-
tances. It is not clear what modifications, if any,
should be done to overcome this problem.

The above results correspond to what one would
expect since the mass operator has dimension
dim(44') =1+g'/m and therefore the interaction
becomes nonrenormalizable for g' ~ m [i.e. ,
dim(44) ~ 2]. Extension of these results to the
Thirring model are currently unde& investigation
and we hope to obtain some results in the inter-
esting region 2 & dim(j@) ~ 1,

The equation of motion for the fermion field can
be easily derived. For g'&7t is has the classical
form, if all orders of perturbation are considered.
We also derive Ward identities showing that in
every order of perturbation y' invariance is bro-
ken, as expected.

The paper is organized as follows: In Sec. II we
collect some basic results of the M =0 theory.
Section III contains a discussion of the ultraviolet
behavior of the perturbed model in the Euclidean
region. Finally, in Sec. IV equations of motion and
Ward identities are derived.
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II. THE UNPERTURBED MODEL

i&~~(x) =g[y'y'3. V Pl(x),
(&&'+m')yp(x) =ZB"[0'y„yP](x) .

(2.1)

(2.2)

As discussed by Rothe and Stamatescu3 there are
various possibilities for defining the normal
product associated with [4'y y 4](x). However,
this ambiguity is in our case irrelevant since it
manifests itself only by different mass and wave-
function renormalizations of the yp field. Thus we
choose a definition producing a divergenceless
axial current. From (2.2) it results then that &(oo

is a free field of mass m. Furthermore, it is
easily seen that

ig'P &Pp .@~ f y (2.3)

where 4f is a free massless spinor'field, solves
Eq. (2.1).

Using (2.3), normal products associated with
formal products of the fields 4, yp, and their
derivatives can be constructed. In particular, we
define the current as

N[y 'e](x) = e (x)e """"~ "y"e"'o'"0q(x}:

=:4q(x)y "4q(x): . (2.4)

Consider a two-dimensional model of a massless
spinor field interacting via a derivative coupling
with a massive pseudoscalar field, so that the
formal field equations are

= e '"~"o '"4 4' (x) (2 5)

III ~ MASS PERTURBATION

Perturbing the model of Sec. II by a fermion
mass term will produce highly infrared-singular
Green's functions. In order to prevent their oc-
currence, we rewrite the interaction MR[4+] as

MN[4&I ]=M(:e """p:- I):&I'z4'&.

+M. 4 f4'f. (3.1)

and consider the last term as being part of the
unperturbed Lagrangian. The result of this step
is to give a mass to the unperturbed fermion field

-igy5vwhich now becomes: e "' "P:4p with 4„a free
Dirac field of mass M.

The perturbed Green's functions are formally
defined by the Gell —Mann-Low (GML) formula

The above definition implies immediately that

B„N[+y "y 0'] =0 as promised.
In the next sections the effect of a mass pertur-

bation in this model will be examined. Since

y( + )q (g g && (6&, (gY &f)op(x ee &eo)op &e3,

x[:Of(x+o)4f(x):+ (0 I @gx+o)e~(x) i 0)],
with n (x) =(Olyo(x)po(0) IO), we see that a con-
venient definition for the mass operator is

N[4+](x) = lime" "V(x+ e)4(x)
gwp

Pl' L

( &o ' ' ' )XN)3&y ' 'oyNo~&) ' ' ' )~L) T][I~(X&)~(y&)II~(e)o

N
T():exe&-(O)y'*,.ooo(x )):eo(x;)()cob';):«e( (Xy',, roo(yr)&: ()er(o )ex)r((& ' -r)( x)eo)e& o)

' '

T ex p[if I'x&2 „,( 94&o)]

'(3.2)

where g„,(&pp)(l(o)=-M(:e &~~ "p:-I):(1(o4'o. is the
effective Lagrangian density (i.e. , the Lagrangian
density after the resummation process indicated
above). In what follows it is convenient to use

. -$}ty~fi&p, 1 . ilep +iA&Pp. + 5, e 3)typ +iXlPp.

(3.3}

and Wick's theorem for exponentials of free fields,

&o&(~ &&&~o&*&& ... *), & & i &p&

= exp —QX)&x&n(xp —x,), (3.4)

where n(x) = 'o'(Tpo(x)p&o(0)) 'o'.

Equations (3.3) and (3.4) can be used to furnish
a Feynman graph representation for the ampli-
tudes contributing to a Green's function. A

Feynman graph G consists of the following:
(a) External vertices: These are the vertices

associated with the points x„.. . , x~.; y&, . .. ,y~;
z&, ... , zl. of the Green's function under consider-
ation. The external vertices associated with
fermion fields are of two types corresponding to the
plus or minus signs in the exponential (3.3), with
X =g.

(b) Internal vertices: These are the vertices
associated with the interaction Lagrangian. They
are of three types corresponding to
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; 4'p4'p .' or to .e* '«'p. 4' 4

(c) A set of lines connecting different vertices.
These lines are of the following types:

(1) fermion or scalar lines;
(2) lines associated with the contractions of the

exponentiated fields. These will be called expo-
nential lines. A given exponential line joining
vertices x and y can be of one of the six types

yg b, (x -y). +2« a(x "y) d +4« b, (x -y)
7

2 ' 2
Q x~-zQ xq

]
4(x, m ) &(x, m ) =

2
~

=
2

I~p(mp)
2vj k +m 2~

o. k II+M
S(x, M)-S(x, M)=

(2 )2 k2+Mpe

with n(x, m ) and S(x,M) the pseudoscalar and
fermion propagators, respectively, k =(k& +k& )

p = (x~ + x,')' ', and p;, y~ j=-26;q.
The Fourier transform F',"'(k) of e'"

form

F,'"'(k) = 6(k) + G,'"'(k),

where asymptotically G,'" (k) & [(k )""
result that will be extensively used.

In what follows we suppose that our Green's
functions are in Euclidean form and our results
are valid only in this region. The extension to
the Minkowski region will require an analytic con-
tinuation.

%e begin considering a special class of graphs
called generalized. A subgraph y LG is called a
generalized graph, if every line of 6 linking any
pair of vertices of y belongs to y. Let y be such
a generalized graph and let x&, s&, x2, and s2 be
the number of vertices of y associated with the
exponentiated fields: e' "0:, :e ' "0:, :e ' ' "0:,
:e '""0:, respectively. Furthermore let nz and n,
be the number of fermion and exponential lines in

y. Then, the ultraviolet degree of superficial di-
vergence of y is given by

(3.5)

The Feynman amplitudes associated with Eq.
(3.2) are not a Priori well-defined distributions.
If we restrict ourselves to the Euclidean region,
we are able to apply steinberg's power-counting
theorem to determine their possible singularities.
The Feynman rules in the Euclidean region are
essentially the same as above, but for the substi-
tutions

Using (3.7}, V= Vp+ V& + V2, where Vp ——number
of vertices of y without exponentiated fields, and

2n~+Nf=2V- V

N& ——number of external fermion lines of y,
formula (3.6}can be rewritten as

(3.8)

6(y) = 2 —deg V(y) -P(2 —6.)V. ,
g=p

(3.9)

6(y) &-1+o/4 —oA' -g(2 —6,) V, & 0 ~

(b) Nf ——2: If there is at least one vertex of type
0 (or one of type 1),

5(y) &-oA' & 0,
whereas if there are only vertices of type 2,

5(y) & —1+2o —' nA2 .
Thus if n &1 divergences can occur only if A, =0,
implying that V, is even [note, however, that
5(y) & 0, if o'. & —,]. Since, in this case, y contains
an odd number of fermion lines, the graph is
actually finite if a convenient regularization is
employed. See Fig. 1 for the simplest example.

(c) N& 1: Again ——as N& is odd there is at least
one vertex of type 1. Thus

5(y) & a/4 —oA' -P(2 —5.) V. & 0,

where degV(y)=N&/2+oA is the (ultraviolet) de-
gree of the vertex obtained by reducing y to a
point and where 6, denotes the degree of the ver-
tex of type a:
50 ——1 for vertices without exponentiated fields,
5&

———,+ o/4 for vertices with either exponentiated
field e "«~0,
52=1+~ for vertices with either exponentiated
field e'2'g "0

With the aid of formula (3.9) for 5(y) we now

analyze the possible divergences of generalized
Feynman graphs. Let o & 1. Then from (3.9) it
follows that graphs with N&~4 are superficially
convergent. Therefore we have to consider only
the cases where N& ——3, 2, 1, and 0:

(a) Nz ——3: Since N~ is odd there is at least one
vertex of type 1, therefore

5(y) = 2m nz —2n, —o. (A' —V& —~ Vq)-, (3.6)

m =n~+nf - V+ 1,
V=number of vertices of y. (3.7)

whe~e u =g /w, A=p', —s2+{r, —s, )/2, V, =p', +s„
and nz is the number of loops of y:

I

FIG. i. Lowest-order graph with two external fermion
lines. Solid and wavy lines represent fermion and ex-
ponential lines, respectively. For p =0 the term of the
fermion propagator containing g integrates to zero.
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~ ~
~ ~ ~

''~ ~ o ~
~I

FIG. 2. The simplest vacuum diagram.

since in this case A ~ 4.
(d) N~ 0: I—n this case 5(y) =2 —oA -p(2

—5,)V,. We have either
(i) There are at least two vertices of type 1.

We obtain

FIG. 4. Divergent diagrams without external fermion
lines. The + (or -) sign at the vertices indicates the
corresponding sign in the exponentiated field.

5(y) ~ —1+n/2 & 0 .
(ii) There is no vertex of type 1. There are

various subcases to be considered:
(1) There are two vertices of type 0 and other

vertices. This corresponds to the logarithmically
divergent vacuum graph shown in Fig. 2. It is
clear that, due to the denominator in the GML
formula, the contributions of this kind of graph
are canceled.

(2) There are one vertex of type 0 and one
vertex of type 2. We find a divergence associated
with the graph shown in Fig. 3. Its divergence is
~ independent and considering the contributions of
the denominator in the GML formula one sees
that a counterterm proportional to

(:cos2gyo. -l)
is necessary to remove it.

(3) There is no vertex of type 0 (i.e. , all ver-
tices are of type 2). We have

(a) V2 is odd (i.e. , V2 = 3, 5, . . .). Then
5(y) ~-I+ 2n since A'& 1. In principle there could
appear divergences. However, in this case the
fermion lines form closed loops, and as V2 is odd,
the operation of taking the trace lowers 5(y) by 1.

(b) V, is even (i.e., V2=2, 4, . . .). We have

and divergences can occur only if A' =0. Two such
divergent graphs are shown in Fig. 4. We can
proceed with the discussion as follows:

(i) If there is no external scalar line in y (i.e.,

lines not of the exponential type', but associated
with external scalar legs) then, as Nz and A' are
both equal to zero, the reduced vertex V(p) has
no lines. For the graphs shown in Fig. 4 the di-
vergences are partially removed by combining
these graphs with corresponding (disconnected)
diagrams coming from the denominator in the
GML formula. In Fig. 5 we show a graph, which
becomes disconnected when the upper bubble is
contracted to a point. For a & —, this procedure is
actually sufficient to remove all divergences of
this type. If ~

+ ~ & 1 a logarithmic d'ivergence re-
mains which due to covariance however can be
eliminated, by a convenient regularization (e.g. ,
Pauli-Villars on the fermion lines of the graphs
of this type).

(ii) If there a".e external scalar lines in y, the
most divergent part of the graphs obtained by the
permutation of these lines cancel among them-
selves. For example, the most divergent part of
the graphs in Fig. 6 cancels. For —,

' ~e &1, again
as in the previous case, the remaining logarithmic
divergence can be eliminated by a convenient
regularization.

We now consider the case of graphs that
are not generalized ones. Initially observe
that for an arbitrary y, 5(y) = a+ bn, with a & 0
except for the graphs containing one loop with
two fermion lines (i.e. , the graphs of Fig. 2,
3, and the first one of Fig. 4). One therefore
realizes that nongeneralized graphs can be regular-
ized by lowering conveniently the value of a. If

FIG. 3. The only surviving divergence in the regu-
larized Green's function.

FIG. 5. The lines connecting the vertices 3 to 1 and
2 (and 4 to 1 and 2) cancel, when the bubble is contracted
to a point.
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FIG. 6. Graphs with one external scalar (dashed) line.
The most divergent part of these graphs cancels.

this is done then as in the usual BPH formalism'
the divergence will not appear if the regularization
is eliminated only after the loop integrations are
made

Note also that, due to the 5(k) part in (3.5), all

remaining volume divergences from disconnected
graphs are canceled in the GML formula„

Summing up, we conclude that all divergences
of the regularized Green's functions can be
eliminated by adding to the interaction Lagrangian
a counterterm proportional to (:cos2gq 0.'-I).

A point'to be discussed is the arbitrariness in-
troduced by the counterterm:cos2gyo. '[the minus
one in (3.10) is actually irrelevant since it can-
cels in the GMI. formula]. The reason why this
arbitrariness arises can be already seen in
zeroth order of the resummed theory, if one con-
siders in more detail the construction of the mass
operator. In fact using 4 =:e " "0:40we have

lime' '' 4(x+e)4'(x) =lim[:e '"' "0'*:@0(x+e)4'0(x)]
e-0 ~-0

= lim:e """0':[4,(x)4,(x):+(%,(x+ ~)%,(x))]
&~0

=:e +" '0' "'. :40(x)C 0(x):+lim f(e ):cos2gyo(x):,
~-0

where f(e ) is logarithmically divergent as e -0.
From this one sees that the Wick ordering prescription is equivalent to the subtraction of the last term.

In higher order f(e ) receives an additional divergent contribution coming from the graph of Fig. 3. The
arbitrariness associated with the finite part of f(e') can be eliminated once and for all if the value of the
pseudoscalar physical mass is fixed.

IV. EQUATIONS OF MOTION AND WARD IDENTITIES

We now will derive equations of motion for the fermion and pseudoscalar fields, as well as Ward identi-
ties for the vector and axial-vector currents.

From the previous section, for n & 1 the only divergent diagram is the one shown in the Fig. 3 which for
definiteness we suppose has been eliminated by a convenient choice of the subtraction procedure.

We begin by considering the fermion s equation of motion. The graphs contributing to (TP(x~)Q
where

have the structure shown in Fig. 7 where V is the vertex at x&.
The field P(x) can be written alternatively as

P(x) =:e """'*'.4(x) =lim:e "~"'+:4(x+q),
gwp

where in zeroth order y and 0 are free fields.
Applying ig to the Green s function under consideration and using Eq. (4.1), we get

i'ff, (TQ(x()+ =limig„(T:e '~ "&':@(x(+g)~)

= lim(T[g: gy(x, )y'e "~""&'.p(x, + e) +:e"'~"'*~"if+(x, + c)]Xj .
Imp

Now

lim(T:e '~ "*&"[i/4(x + e)]X)=lim(T:e "~" "~& [(iP -M)C (x e)++4M'( +xe)]X)
g wp (~0

(4.2)

We denote the vertex at x& with the positive sign in the exponent by V. The right-hand side of expression
(4.2) is shown graphically in Fig. 8, where the operator (iP -M) has been used to amputate the fermion
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FIG. 7. General structure of a graph contributing to
a Green's function. The vertex V corresponds to the
field P(x&).

FIG. 8. Graphical representation of the right-hand
side of Eq. (4.2).

line, which may link V to either an external vertex p(y;) or to an interaction vertex (:e 2" '::2104'0. or
M:)f5 O4'0. ).

Now, if the amputated line links V to an interaction vertex of the type M:4040. one gets a contribution
that cancels the second graph in Fig. 8. Of course this cancelation is among terms of different orders in
the perturbation scheme developed in Sec. III and the equation of motion to be derived is expected to be
valid in the summed-up theory, i.e. , if all orders of perturbation are considered. We therefore obtain

(55., -M)( 5( i)x) =2( zz[y'y'5. 55]ixi)x) -g(-')" '(»y'5(xi -y;), (4.3)

where X-, is X with the field whose argument is y,. deleted. The first term on the right-hand side of Eq.
(4.3) is defined by

(TN[y"y (]yg]( x&) X)=lim (T:(jk 'x '"'] ):21((x& +e)X) —(ex "' —1) 6(x& y, )(TX-„)—+.M(e "—1)(TQ(x&)X)
6w 0 f

(4.4)
The equation of motion for the pseudoscalar field is derived similarly. The result is

(2, —zx )(TT(z)5(x&)X) =-2iXM(yix[5y 5]( )5(x&z) )+iXg[ X(z —x5&)y, +5(z -y&)y, ](T5(x&)X)

5z —z„T x) X; (4.5)

where the Green's function containing N[5t2$$](z) is defined by

(TN[~ ~] @( X) F P (:+oe "'""Ol"+:()&'"( )X'"e p[ fd' &..(V'o, + )])'"
'"(T exp[( d'x Z „,(yo, e,)]) '" (4.6)

(4.7)

where F. P. is the prescription to delete graphs containing diagrams of Fig. 3 (where V stands for the
special vertex) type as s]'bgraphs. Equations (4.5) is valid order by order in the perturbation.

Ward identities associated with the vpctor and axial-vector currents can be derived in the usual way.
The Green's function(TN[PZ" (t)](x)g(x,)X) is defined analogously to the expression (4.6) replacing in it the
special vertex by:Coy'4'0:. There is no F. P. prescription necessary in the whole region 0 ~ n & 1. This
is so, because we calculate graphs containing (t)y'g first in the region 0& n &-, , where no additional di-
vergences occur and then continue to n ~ 2. We obtain

& "(TN[5t2y, TI2](x)5t2(x, )X) = [6(x —x;) + 6(x —y, )](TQ(x,)X),

whereas for the axial-vector current defined similarly results

5'(Tyz[5y, yz5](x)5(, )x) = 25M(Tyz [5y'5 l(*)5(x,)x) +/[5(x —x;)y', + 5(x —y, )y„](T5(x )x), (4.8)

where the Green's function containing N*[5t2y'Q] is defined by Eq. (4.6) omitting the F. P. prescription and
making the replacement

5 2fg7' Soy . g . 2' y Qo. 5@0+ e 0 0 e '+ 0

Equation (4.7) is valid in every order of perturbation, whereas to obtain (4.8) we must combine different
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orders as in the case of the fermion equation or motion. Equation (4.8) shows explicitly the expected
broken y' invariance.
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