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Systems containing derivative coupling and/or vector fields in augmented quantum field theory
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Minimal equations for Green's functions for systems of spinor and (pseudo) scalar fields with derivative

coupling are compared with those for systems with nonderivative couplings, and it is found that there remain

terms with explicit coupling constant. For systems containing vector (or axial-vector) fields, one cannot

derive Ward-Takahashi identities. Alternative choices (gauges) of two-point and three-point functions are
discussed.

I. INTRODUCTION

In this paper we extend the Green's-function
formalism of augmented quantum field theory,
proposed by Klauder' and developed in our pre-
vious papers, ' to. systems of fields that involve
derivative couplings and/or vector (or axial-vec-
tor) fields. Those systems are, as is well known,
nonrenormalizable in the perturbative approach
of canonical quantum field theory, except for quan-
tum electrodynamics. As has been shown in our
previous papers, "a bare vertex term does not
appear in the equations for three-point (or four-
point) functions of the augmented quantum field
theory. Therefore, the situation concerning the
divergences and renormalization in augmented
quantum field theory (AQFT) is quite different
from that of canonical quantum field theory
(CQFT).

In Sect II, we consider scalar [with vector (deriv-
ative) coupling] and pseudoscalar [with axial-vector
(derivative) coupling] models of a "nucleon-meson
system, " and show that the presence of derivative
coupling alters essentially the structure of the min-
imal equations for many-point functions. In Sec.
III, spinor and scalar QED are considered. Section

i

II. "NUCLEON-MESON" SYSTEM WITH DERIVATIVE
COUPLING

In this section, we consider systems consisting
of a spinor field g ("nucleon field" ) and a spin-
less field y with derivative coupling. To be def-
inite, let us take a system with the action

d X iy„&"-M +2 e,ye"y —K'y'

(2.1)

Then the field equations read

e(t-j+ n')V +W s"((y.4) =0, (2.2)

(2.3)

(2.4)

((fy.e" ~)4 Ãy„4s-"y=0,

i(8"g)y„P+MIII(+g+, III&"y =0.
[In Eqs. (2.3) and (2.4) spinor indices of TII and p
are noi contracted, respectively. ] The equations
for the many-point functions read

IV is devoted to models involving spinor and mas-
sive vector (or axial-vector) fields. Section V con-
tains concluding remarks and open questions.
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(2.5)
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lim [(iy, s', -M)G,„„,„(x,x„.. . , x;x', y„.. . &y &z„.. . &z„)
x' ~x

a"Gf4 x 2m+2»&+1k & 1»' ' ' x»» & Xl»' ' X»» x& ~1& ' '
& ~&&)l

A 5 j:4iZ 2»» I( I»' ' ' »»&Pl»' ' ' 3J»' ' ' 3»»sl»' ' ' ») (x yj) 0
j

(2.6)

[here, an equation adjoint to (2.6) is omitted]. In terms of irreducible many-point functions, one

gets the following equations for Gp2 Gyp and G».

(2.7)

(2.8)

(2.9)

+ I ~ 4 + =0, (2.10)

+ 0 4 & + j=o, (2.11)

+ 0 1 s +

Taking appropriate linear combinations of these equations, one gets the minimal equations
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[In (2.15) transposed diagrams are omitted]. Similarly, one gets the following constraints:

k» d P Tr[y»G»(P —k; —P; k)] = 0, (2.16)

(2.11)

(2.16)

Some comments are in order. In this case, con-
trary to the case without derivative coupling, one
cannot eliminate terms with an explicit coupling
constant from the minimal equations for G,
(m e0}. If one interprets the terms in f ] on the
left-band side of (2.13) as subtracted, they do
not have a pole at p =M, but cannot be ignored
off the mass shell. On the other hand, if one in-
terprets them as they stand, they contribute to
the residue of G„even if G» has nice asymptotic
behavior. (Note that these terms resemble the
self-energy part in CQFT, but differ by a factor
G„.) Constraint (2. 16) implies that G» must be
chosen subject to this constraint if one treats
Egs. (2.13}and (2.14) as a descending problem, "4"
while other constraints do not affect the input
to this descending problem, because they are con-
straint on higher many-point functions.

One can repeat the same procedure for the
pseudoscalar [with axial-vector (derivative) cou-
pling] model with the action

8&» = d~x[g(iy» 8" —M)P+ —,(B„ps'X—z'X')

(2.19)

The only essential difference is that the con-
straint (2.16) is automatically satisfied if parity
is conserved.

III. QUANTUM ELECTRODYNAMICS

In this section, we first consider the electron-
photon system and later on proceed to deal with
charged scalar field. As we shall see, there are
some important differences.

Let us take the action

d'x[g(iy»8» -M)g —B„A„(8'A"—8"A") —iegy»(A "] . (3.1)

Then the equations for G „read
) 0 / o

i ~» } 2ttl+2y»y»y ~ ~ »» ( & 1& ' ' ' &+Mt x i)1& ' ' ' i ytNt sit ' ' ' 1 tl)
x' ~x

~ 4 A'I 41 ~ hz4(Z 2m, n, »i. ..»»(+1& ' ' 't mt'&J'1& '' '~Kg& '' '&pmtsl~ '' t )g»(6» gJ)

4 2m+a, n+1. »i, ~ ~ »n( & +lt ' '
& +ms && y|~ ~ ' ' ii ymtt +~ sl&.' ' ' s sn) ( 3.2)
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r»m(6in n- S.S.)G2m. n.a, non, ....„(&i Xi& ~ ~ Sm'~&' si ~ ~

gag

1~4'
Rm&np&u,„,ny", n(~1&'''&~m&31&'''&3m&s&sl&'''&sf&'''&sn/. Ls s J)6gn

+ieygG2m~2 n~g pn, n (8&xy& ~ ~ ~ &xm&z&31$& ~ ~ &pm&8&8$& ~ ~ ~ &Zn) .0 (3.3)

[here, the equation adjoint to (3.2) is not written explicitly]. From these equations, one gets the minimal
equations for G„,G„,and G„asfollows:

(3.4)

=0, (3.5)

(3.6)

(here transposed diagrams are omitted).
Though one ean derive a constraint of the form

(2.17) and a constraint

k, dpTry G2 2 p;-p-k k =0, (3.V)

one cannot derive the Ward-Takahashi identity

PP-(p)G21.4 P O'P) =G20(-Q) -G2.(p+ q) -(3 6)

G„„(k)=(6,—k, k„/k')Gn, (k'). (3.12)

y.p+M y (p+k)+M
p'-m' " (p+k)

Situations are different in the Feynman gauge and
the Kalian gauge, but we do not go into details
here.

It can be easily seen that if G, ,„behaves like

If one assumes that G „(nx0) have the form

G ~ /V /V ~

2m, »»n&. ..nn(pl»' ' 'Pm» vi ~ ~ ~ » »qm»» ~ ~ ~
& kn)

=I]'(6,„-k„,k,„,/k, ')
j=l

~ /V ~ *
Gnm»tax. , ~ ~n(pl& ' &Pm&'V1» ~ .~ ~ »'xm&pl» ~ ~ ~ &Pn) &

(3.9)

constraint (3.V) is automatically satisfied, and the
second term on the left-hand side of Eq. (3.4) can
be interpreted as follows:

(3.10)

5n„—k„k„/k'
k2 (3.13)

@ngzD = d'~Is„kms"0 n'0*0 —4(s—„&.g)'

—(ieym5„y+2e'ymyA„)A"].

in the low-energy region, Eq. (3.6) gives the same
anomalous magnetic moment of electron up to a
small correction due to the contribution of the
high-energy region and the terms containing ir-
reducible higher many-point functions. This in-
dicates that AQED is not much different from the
conventional QED in the low-energy region.

Curtailing further discussion of spinor QED,
let us consider scalar QED with the action

where

0=(G„)', (3 11)

(3.14)

Then the minimal equations for G20 and G02 read
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-g -e (3.16)

~ g 4 + ]=o. (3,16}

The constraint corresponding to (3.7) js

(3.1V)

An important difference from spinor QED is the
presence of terms with explicit e in Eqs. (3.16}
and (3.16), which is a consequence of derivative
coupling. If one assumes that G„„(ne0)have the
form (3.9}with respect to photon momenta, con-
straint (3.17}is automatically satisfied.

IV. SYSTEM INVOLVING THE VECTOR OR

AXIAL-VECTOR FIELD

In this section, we consider a massive vector
and axial-vector field interacting with a spinor
field. In the perturbative approach to CQFT, such
an interaction is unrenormalizable and unrenorm-
alizable interactions, as far as divergences are
concerned.
The actions to be considered are

&V(~) d»n -~ + 4 (& v)

,'rPB„'—ig@—I'y—„gB„], (4.1)

with I' = 1 and I'=y, for the vector and axial-vector
cases, respectively. Here we do not write equa-
tions explicitly, but it should be noticed that we

have a constraint of the form (3.1V). In AQFT,
one can assume that G „(n40) has the form (3.9}
without affecting the integral equations, which
guarantees constraint (3.17). On the other hand,

in the axial-vector case constraint (3.1V} is auto-
matically satisfied if parity is conserved, so that

one can choose arbitrary G, , as input. to the mini-
mal equations for Go, and G„.

V. CONCLUDING REMARKS

As we have seen above, if the interaction in-
volves derivatives of fields, the minimal equations-

are explicitly different from those of nonderivative
interactions, and retain terms explicitly depend-

ing on the coupling constant.
In AQED, one cannot derive the Ward-Takahashi

identities from field equations, but constraint
(3.7), which is a consequence of conservation of

gy, P, can be satisfied if G, , „(;k) = G» „(;k)(5„„
—k„,k„/k'). Of course, it is not necessary that

G, , assumes this form, because the constraint
can be satisfied if G, , „(;p) = G, , „(;P)(j„p„
—5„„p')+G, , „(;p) with f d4kP„Tr[y„G,, „(k,
-k-P;p)]=0. This, however, means that it is
not easy to find a G, , in other gauges. Whether

G, , has a longitudinal component depends on be-
haviors of G, 4 and G, „butone can choose those
of the form (3.9) without conflicts, so that

G, , „„(k)=G»(k')(5„„—k k„/k'). Whether or not

the lack of the Ward-Takahashi identities is aseri-
ous deficiency of AQED is a matter of opinion,
but it is nice that G„„(nv0)can have abetter
asymptotic behavior so that the integrals in the

equations for many-point functions converge.
On the other hand, it is an interesting feature

of augmented massive vector field theory that one
can choose G, , „„(p)=G02(P')(5„„-p„P„/P')which

is a generalization of the massive gauge field
propagator G'„'„'""'(p)-=(5„„—P„p,/p') (P' —m' —i&) ',
without creating troubles in the Schwinger-Dyson
equations.

It seems that one can construct drastically in-
equivalent theories starting from the same system
of equations for Green's functions AQFT.
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