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Phenomenological equation of state for quark matter
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A model for quark matter, similar. to the SLAC bag model, is used as a phenomenological basis in view of

astrophysical illustrations. This model, although crude, is expected to be sufficient for this type of
application where orders of magnitude only are required at this stage. This model consists of colored quarks
interacting via scalar gluons (responsible for the confinement) and colored vector gluons. Although color-
singlet states are assumed to be the states physically realized in nature, this assumption is not essential and
can easily be relaxed. A covariant statistical-mechanical formalism based on the use of techniques similar to
those of plasma physics is given. A Bogolubov-Born-Green-Kirkwood-Yvon hierarchy is obtained for the
relevant statistical quantities (i.e., covariant Wigner functions, moments of the gluon fields, etc.). It is
truncated at the third order (neglect of three-body correlations). The thermodynamical quantities are then

evaluated and the resulting equation of state is applied to neutron stars.

I. INTRODUCTION

The success of the quark hypothesis in elemen-
tary-particle physics has led to the natural idea
that the main features of elementary-particle in-
teractions could be used —via a specific quark
model —in a (more or less) realistic theory of rel-
ativistic dense matter. Such a theory is particu-
larly needed in relativistic astrophysics where ex-
tremely high densities are supposed to take place
in dense stars (neutron stars) or in the early uni-
verse. Several attempts have been performed in
this direction either in order to get a "third family
of dense stars"'- constituted of a conventional neu-
tron star containing a quark phase' " (or. a pure
quark star") ox in connection with problems of the
early universe in its hadronic era (or before). ""
Other applications in astrophysics are related to
quasars" "or solar neutrinos. "

The most recent papers on the subject generally
rest heavily on the property of asymptotic free-
dom": high-energy experiments (deep-inelastic
scattering) suggest that for large momentum trans-
fers quark parton' are quasifree inside hadrons.
In the framework of quantum chromodynamics
(QCD) it can be shown that this property holds true
for ultradense matter. Once this property is ad-
mitted, it is assumed that there exists a quark
phase inside hadronic matter (and hence a first-or-
der phase transition between these two phases) so
that the quark chemical potential and the pressure
are obtained (see Fig. 1) through an assumed Max-
well's construction that links a hadron (e.g. neu-
tron) equation of state to the free Fermi gas equa-
tion of state satisfied by the free quarks. It goes
without saying that such a phase transition from
quarks to hadrons depends strongly (both the tem-
perature-density regime at which it occurs and its
very existence) on the model of interactions be-
tween quarks put at the onset of the derivation of

the thermodynamical properties of the system.
For instance, one can choose the MIT bag model'
or the SLAG bag model" or a gauge model, '" etc.
Qn the other hand one can also adopt a different
point of view in which one tries to reproduce the
main feat" res of quark interactions known from
elementary-particle physics (i.e., "low"-energy
data) in a relativistic and semiphenomenological
way while requiring that they are still true at high-
er densities. Doing so one can reasonably expect
to obtain plausible results at densities slightly
higher than the nuclear density or than the highest
densities obtained in collisions of elementary par-
ticles (10"-10"g/cm').

In an interesting paper such an approach has in-
deed been performed by Bowers, Gleeson, and
Pedigo' on the basis of a model developed by these
authors'"" and designed to describe baryonic mat-
ter. In their model the interaction between quarks
is mediated by a scalar gluon field, supposed to
take account of the quark confinement, and a gluon
vector field: the two free parameters of their
model are chosen so as to reproduce the typical
binding energy of a nucleon inside a nucleus and
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FIG, 1. Matching of the nuclear equation of state
(curve 1) and of the quark equation of state (curve 2)
via a Maxwell's construction (assuming the existence
of a first-order phase transition between the nuclear
and the quark phases).
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the nuclear saturation density. It is also assumed
that the same model (suitably rescaled for quarks)
applies both to nuclear and quark matter. Next
these authors discuss some astrophysical conse-
quences and, in particular, the stability of dense
stars involving a quark phase.

However, while reproducing nuclear matter fea-
tures, their model does not reproduce the main
"low"-energy elementary-particle data. Let us
specify this point more precisely. First, their
quarks are not colored" and hence the correct
symmetry properties of the lowest-lying baryons
cannot be obtained. ' Next, in order to get the
correct hyperfine splitting of mesons and baryons
spectra (both in signs and relative sizes), the vec-
tor field must necessarily transport color" and be-
long to a SU, (color) octet. Furthermore, their in-
terpretation of the first-order phase transition of
their model gs a quark-baryon transition is not
correct. The correct interpretation can be ob-
tained by looking at the curve (Fig. 2) showing the
effective mass of the quarks as a function of the
chemical potential. ,The Mmrwell's construction
induces in this diagram an analogous construction
which shows that the two phases consist of (i) par-
ticles with a heavy mass, referring thereby to a
quark Phase and (ii) particles with a light mass
forming a confined phase That t.he latter phase is
not a baryon phase can be seen from the nature of
their approximation: the Hartree approximation
provides a collective bound state while it is neces-
sary to deal with three-body correlations to obtain
a baryon phase.

In this paper we adopt a semi-phenomenological
model that is an extension of the model of Bowers,
Gleeson, and Pedigo. ' The. spirit in which the con-
finement is made in our model is analogous to the
one at the origin of the SLAC bag modeP' (see also
Lee"). The basic assumptions are given below and
are taken from elementary-particle-physics data:

(i) Quark confinement is obtained by using a real

Effective mass

)

I

Chemical. potential
FIG. 2. Qualitative behavior of the effective quark

mass as a function of the chemical potential: the first-
order phase transition considered by Bowers et al.
(Bef. 8) amounts, in this diagram, to replacing the
dashed line by the vertical straight line (constancy of
the chemical potential in both phases).

scalar quantum field mediating the interaction be-
tween quarks as in several models. "" It should be
noticed that such scalar gluons give rise to correct
orders of magnitude for the nucleons magnetic mo-
ments. '

(ii) Quarks are very massive whenever free and
have loco effective masses as a result of the scalar
interaction, in conformity with, e.g-. , deep-inelas-
tic scattering experiments.

(iii) Correct symmetry properties are taken into
account by colored quarks, the color group being
SU, (color) = SU;.

(iv) A colored vector gluon-field —belonging to
the regular SU,, representation —takes account of
the hyperfine structure of the spectra of baryons
and mesons.

(v) The physically admissible states are color
singIets as suggested by the presently observed
elementary particles. This assumption can be re-
laxed. without any particular problem.

The difference between this model and the SLAG
bag model occurs mainly in the confinement mech-
anism: in the SLAC bag model there exists a com-
plex scalar field, a component of which gives
rise —as in our case —to the quark confinement
while the other is used to make the vector-gluon
field (a gauge field) a massive field via the Higgs
mechanism; in our model the vector field is mas-
sive from the beginning.

In this paper we have adopted a strictly phenom-
enologi, cal point of view so that our results are
probably valid at densities higher than the nuclear
density, although a precise estimation of their do-
main of validity is difficult to assess. In principle,
this model describes the baryori phase as well as
the quark phase. However, owing to the nature of
the statistical assumptions used in the calculations,
it is probably well suited to the quark phase or-
possibly —to a meson phase. Among the possible
drawbacks of this model is the fact that it does not
contain —at least explicitly —the asymptotic-free-
dom property. However it will be shown that a
similar property is contained in the model. One
can also think of our massive vector-gluon field ag
being an approximation for a non-Abelian gauge
field and hence asymptotic freedom might show up.
This is discussed in the last section of this article.

In Sec. II the basic dynamical equations of the
model are given and also the basic statistical-me-
chanical techniques are provided. In Sec. III the
equations of a Bogolubov- Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy for our quark plasma are
obtained and applied in Sec. IV to the case of ther-
modynamical equilibrium. In Sec. V numerical re-
sults are obtained in some particular cases of as-
trophysical interest and these results are dis-
cussed in Sec. VI. All the notations are standard.
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H. BASIC EQUATIONS OF THE MODEL

The system described in this paper consists of a
quark plasma built up from colored quarks [de-
scribed by a spin-2 field g, or by g„„, (x) where n
is the usual spinor index, where 2 is the flavor
index (here SU,), and where A' is the color index
(here SU,')] interacting via scalar gluons (described
by the field )II), a scalar both in SU, and SU', ) and
colored spin-1 gluons (described by the field A~s).

The basic dynamical equations follow from the La-
grangian

L = T))„(x)fiy ~ [8 —ig «As (x)As] —m +g~ Q (x)}g„(x)

+(I/8r)[8„$(x)8"y(x) —pg'y'(x) ——,
' Xy'(x)]

p (I/8v)[8„A „~(x)8"A"s(x) —p «'As(x)As), (x)] .
(2.1)

In these equations the matrices A~ are the usual
Gell-Mann matrices.

At this point it must be strongly emphasized that
our model is only a Phenomenological mode/: it is
not supposed to be a complete and consistent field-
theoretical model. If we have in mind the most
current bag models (SLAC's or MIT's), our vector
colored gluon field must be considered as an aP-
Proximation of a gauge field (the gauge group being
the color group) that amounts to a kind of lineari-
zation of the equations of motion. Let us specify
this last point more precisely (details are given in
Ref. 23) from the equations of motion satisfied by
a gauge field A~; they read

ig«(8"APc 8«A~a ig«Csc~A~~A~~)C~~sA~ 0 (2 2)

(plus a gauge condition). (The C's are the color
group structure constants. ) They can be approxi-
mated in the following way: If we are interested in
two-body correlations only (thus neglecting higher-
order correlations) the nonlinear terms of Eq.
(2.2) ca,n be approximated by

A)2ASA- g (AA))2)A,
permu tat ions

of A

leading thereby to a linear equation which can be
shown to reduce (in the Coulomb gauge and in ther-
modynamical equilibrium) or to be approximated
(in the Landau gauge) by a Klein-Gordon equation.
It should also be noticed that, within this approxi-
mation, l), « is connected to (A)2)A) and thus leads
to self-consistent equations. "

From this brief discussion it is clear that, e.g. ,
Eq. (2.1) should not necessarily be supplemented
by the usual transversality condition S„A~ =0 as it
should be if A~~ is to represent a true massive
spin-1 field. It is also clear that such a condition

A. Statistical description of the quark plasma

Such a statistical description, needed to obtain,
e.g. , an equation of state, is based on a covariant
signer" function and connected functions. A for-
malism using covariant Wigner functions has been
developed and discussed elsewhere"'" so that, in
this paper, we only adapt our previous definitions
to the quark plasma and give the minimum neces-
sary for the understanding of the remainder of the
article.

(1) The basic tool is the one-particle Wigner
function defined by

Fggrr)) ssr))(xr P) =
4 d R exp( —iP ~ R)

1

x(T)), (xiR/2)

)1)~~. , (x -R/2)), (2.4)

where the angular brackets ( ) denote a quantum
statistical-mechanical average

&
~ ~ )-=Tr&&" ], (2.5)

p being the density operator which describes the
statistical state of the system. One can easily
check [from Eq. (2.4)] that the quark four-current
J'~ and momentum-energy tensor T~ are given by

J"(x)= Tr Tr Tr' (2.6)

T""(x)= Tr Tr Tr' (2.7)

cannot be imposed since the color current trans-
ported by the quarks is not conserved. However,
in the sequel, it will be shown that, within our
(statistical) approximations (e.g. , neglect of three-
body correlations, thermodynamical equilibrium)
the following two equations are satisfied:

8 (A") =0, 8„(A"(x)A" (x')) =0.
Therefore, there will be no inconsistency (and no
ghosts) of our phenomenological model with a
gauge model within the approximations effected
(see Appendix A).

From Eq. (2.1) it is seen that the dynamics of the
system are determined when the six constants m,
p.~', p.„', g~, X, g~ are known. These constants
have to be determined from elementary-particle
data (see below). It should also be noticed that
since SU, does not play any dynamical role in the
model, this latter is valid as well for SU'4 or other
groups. The masses of the various quarks have
been taken to be alike and it is in fact easy to ac-
count for the heavier mass of the strange (or the
charmed) quark by putting instead of m a mass ma-
trix in Eqs. (2.1).
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(Ti(x)ll (x)) = Tr Tr Tr'(fd'FF(x 4)) . (2.8)

The symbols Tr occurring in these last equations
respectively indicate the trace over spin, SU3$ and
SU3 indices. These. quantities are of primordial
importance in the following.

(2) Besides F(x,p) an important quantity is

F(x,p) =, d'R exp(-ip R)p(x+R/2)

(3 P(x —R/2), (2 8)

-2gs
(2v)'

d'x'd'p' exp [-ip' ~ (x —x')]

x F(x,p —p'/2) t((x)')

which is nothing but the covariant signer operator.
From Dirac's equations a straightforward calcula-
tion shows that F(x,p) satisfies the equation

[iy a+2(y p n)]F—(x,p)

S.(x,p; x', p') =(F(x,p) eF(x', p')) . (2.18)

For instance, fluctuations of color current are giv-
en by [(Z~ (x)) —= 0 since the average value is taken
over color singlets]

&~"( &"( ')&-&~" &&~')=& -"( ) "( ')& ~ (2 ~ 1'f)

wi. th

takes the average value of both sides of Eqs. (2.10)
and the adjoint equation: the left-hand sides in-
volve F(x,P) while the right-hand sides contain y
or y. In turn X is obtained by multiplying, e.g. ,
Eq. (2.10) from the right by A~s(x') and averaging:
X is then connected to the more complex quantity

(F(x,P )A~q(x')A" (x")) (2.15)

and the process can be indefini. tely repeated, lead-
ing consequently to an infinite hierarchy of equa-
tions for more and more complex quantities.

(4) The fluctuations of one-quark quantities can
be obtained from

2g d'x'd'p' exp[ ip' (-x -x')]y"A
dx(x)=Tr( d'FTTr„F(x, (r)) . (2.18)

x F(x,p — p' /2)As( x) (2.io)

and also an "adjoint" equation which must be
solved simultaneously. Once these equations are
joined to the equations of motion written in the
form

Therefore they are given by

(g"„(x)J"(x'))

=Tr Tr d'pd'p'y'y"A„A~% x,p; x', p'

(2.19)

X~s(x', x;p) = (A~~(x')F(x, p)) . — (2.14)

These quantities apise in a natural way when one

[ + X,'+xd'(x)]4(x) = 4xgr Tr (fd'FF(x, g)),
(2.11)

( +4„')4'"(x)=4xg„Tr( d'Fr"(r F(xg)), (4.14)

they constitute the set of the generating equations
of the relativistic quantum BBGKY hierarchy that
describes fully the quark plasma. This will be il-
lustrated in detail in the next section.

(3) Another quantity of importance is

lt~~(x, x', P) = (F(x,P)AB(x')),— (2.18)

to which one must add

where the first Tr refers to the first (implicit) in-
dices of 9' and the second Tr to the second (implic-
it) indices in this same quantity.

HI. BBGKY HIERARCHY FOR THE QUARK PLASMA

Let us derive the first two sets of equations of
the BBGKY hierarchy. If three-body correlations
had to be considered (and they should be in the case
where reactions like

baryon= three quarks

have to be dealt with) we should also derive the
third set of equations.

The first set of equations is easily obtained by
averaging both sides of the generating equations
(2.10) to (2.12) and found to be

2gv de'd p' exp [ ip' (x —x')]y"As y„(x,x', p —p'/2),
(2v)

+ 4, '+X (4(x)) = 4xg, Tr
( d'FF(xg)) .

[iy ~ a+2(y p —m)]F(x, p) =
2

~ d4 ' f'xp'(exp[-ip'(x x')](F(x,p-p'—/2)(p(x')&

(3.2)

There is no equation for (As), since this quantity vanishes identically, because of the fact that we have



1700 ENRIQUE ALVAREZ AND REMI HAKIM 19

restricted the physical states to be color singlets. Had we relaxed this assumption we would have found

( + (r„')(A"(x)) =4rg„Tr (f4'Ayd rr(xg)) . (3.3)

Note also that the average color four-current of the quarks [i.e., essentially the right-hand side of Eq.
(3.3)) vanishes for the same reason as for (As). Indeed, when the physical states occurring implicitly in
theaveragingoperation() are takentobe color singlets, the (color) tensor F„,z(x, p) is necessarily propor-
tional to 5„,s. and hence the trace on SU,, indices reduces to a trace on As [note that Az =—

(~ As „,s, ((, with
J3 = 1, 2, . . . , 8 and (A, ', B') = 1, 2, 3] which trac6 is zero. The second set of equations of the BBGKY hierar-
chy is much more involved, essentially because of the fact that the generating equations (2.10) to (2.12) can
be multiplied from the right or from the left by one of the operators [F(x",P"), (P(x"},A~s(x")] and next
averaged. Among the thirty equations of the second set of equations of the hierarchy one finds

[iy 8+2(y p —m)]Xc(x, x";p) = z~ d'x'd'p' exp[-fp' (x -x')] (F(x,p -p'/2)(p(x')A~c(x"))
I

d'x'd'p' exp[-ip" (x -x')]y"As (F(x,p -p'/2)A (x')A~~(x")) (3.4)

and similar equations for X~. For the scalar gluons one finds" "
(0y )r)x((4)x(4x)) xx(4( )x(4x)) = 4xgx Tr( d g(g(x(r)4(x ))) (3.5)

while there is no equation for ($(x)A~z(x'}) since this quantity vanishes identically when averaging over col
or singlets. This property implies the following condition on X~s(x, x",p):

Tr d Px~~ x,x",P =0, (s.8)

and a similar condition for xs [it represents nothing but the vanishing of the source term of the equation for
(y(x)A", (x'))].

For the vector gluons one finds

( + 4, „')(A"(x)A (x"))=4rg„Tr (fd Py A (xgxg))x. , (3.V)

It shouM be noticed that the equation satisfied by the average value of commutator [A~~(x), Ac(x')] can
easily be obtained from the generating equation (2.12); multiplying this equation from the right and next
from the left, subtracting the result and averaging, one gets

+4 ')((Ar" (x)»r(x')I) =4 »rg(f 4'Py"A, IX",(x', x;4)-X",(x, x', P)I) . (3.8)

& [A;(x),A;(x )]) -O (3 9)

should be accompanied by

X~g(x', x;p) -X'g(x, xd; p), (s.lo)

and conversely. The use of such an Ansatz will be
referred to as a quasi-classical approximation.

It is clear, at this step, that in order to obtain
solutions of these equations the hierarchy must be
truncated at some order and with some physically
(more or less) plausible Ansatz as is the case in
usual plasma physics. This is the object of thp
next section.

This equation shows that the use of the approxima-
tion

F(x,P) -=F.,(P),

&~(x})=-~,

x'(x, x', p) = x",(x-x', p}, -
(A~s(x)A c(x') ) =—Q~z'c(x —x'),

(y(x)y(x')) -=C(x —x').

(4.1)

(4.2)

(4.s)

(4.4)

(4.5)

In order to obtain the basic thermodynamical
quantities such as the pressure, the energy densi-
ty, etc. , we must first calculate the momentum-

IV. EQUILIBRIUM AND THE EQUATION OF STATE

In a thermodynamical equilibrium state the
BBGKY equations can be somewhat simplified ow-
ing to the invariance of the system under space-
time translations, which requires
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energy tensor T~ of the system. From this quan-
tity we have

A. Gluons quantities at thermodynamical equilibrium

p= T u~u„q

I = —,' S~—(u')T„„

(4.6)

(4.V)

For the scalar gluons the first equation of the
hierarchy Eq. (3.2) reduces to

x
& (t)(x+R/2)$(x -R/2) &

(scalar gluons),

f~«)s c(x, k)=, d'R exp(-ik R)
1

(4.8)

[with 4""(u') -=g -u u"] (p is the invariant energy
density and P is the pressure. ) u~ is the average
four-velocity of the medium (see below). Equations
(4.6) and (4.V) lead immediately to the equations of
state of the system. To these equations one must
also add the normalization equation (2.6). This
equation relates the equilibrium particle density
n„ to the macroscopic parameters of F„(P). If the
igner distributions for the gluons are defined as

f(z)(x, k)=, d'R exp(-ik R)
1

rr' &+ r&&'(D))=4rrr Tr(f I'pF, ((r)} (4.11)

and P is known when F„(P) (the equilibrium one-
particle signer function) and &&t '(0)& are known.
In order to close the hierarchy for the scalar glu-
ons let us briefly recall their role in)he model:
they have been introduced only to obtain the con-
finement of quarks and thus, in this respect, only
the collective behavior of the scalar field is im-
portant at this first step. Of course, correlations
either of the scalar gluons or of the quarks with
the scalar gluons can play a role, but in a first
study they will be neglected and we shall focus our
attention on this collective aspect (the dominant
one as far as confinement is concerned). There-
fore, in order to express these approximations
analytically, the following Ansatze are used

x&A (xyR/2)A" (x-R/2))

(vector gluons),

then the total momentum-energy tensor of the
quark plasma reads

(4.9) &P(x,)(t)(x,) ~ ~ ~ P(x„)&- [] &P(x,)&,
]=1

&F(,~) j, e(,)&-F(.,p) „.. 8 (,)&,
I'= 1

g 1f 2 p ~

(4.12)

T""=Tr d'PP~y"F x,P

(quarks)

+ d kf&g )(k)[k k 2g (k pg )]

(scalar gluons)

dk ~) ~ k k"k"-p "k —p

(vector gluons), (4.10)

where use has been made of the stationarity and of
the homogeneity of the system.

The expression of the momentum-energy tensor
for scalar particles in terms of a ssigner distribu-
tion has first beeri given by Cooper and Sharp. "
Note that in order to get, e.g. , the scalar gluon
part of T"", it is sufficient to know &P'(x)& since,
for instance, one has

&s4 sd& =-'«4'&+ p. '&4'& -&8'4&,

an expression occurring in T""(scalar gluons).
Note also that in Eq. (4.10) the Xg&'& term has been
omitted: in fact it necessitates a taco-body 8'ignex
distribution.

Let us now investigate the BBGKY hierarchy at
equilibrium and let us begin with the equations for
the gluons.

In other words, &(I))(x)& is a quasi-classical field (a
coherent state of the scalar gluon field). '""
Thence, Eq. (4.11) reduces to

rr )&&rr)'&&='4 rrr(rr&'(r. ,(()) (4»)

In fact, the only role —in this approximation —of
the scalar field is to modify the mass of the
quarks, a consequence of which is the existence of
peculiar phase transitions" "that are interpreted
in the next section. It can be shown (by a numeri-
cal analysis) that the &XP'& term only modifies the
numerical value of the effective mass of the
quarks" and not the qualitative behavior" of the
system as a function of its thermodynamical pa-
rameters. Therefore we can simply set X =0 and
rescale the coupling constant g~. In fact the Xp'
term is necessary to renormalize the theory.
However in the Hartree approximation there is no
gluon-gluon collision and hence no particular need
of such a t.ounterterm.

Let us look at the vector gluons. The situation is
now slightly more complicated since &A~s& =0 and
we are forced to go over to the second equations of
the hierarchy, i.e., to Eqs. (3.V) and (3.4). , Fourier
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transforming the latter equations we get

(X' p„')d)",', (X) = dy-d ry»(f d'p»X Xrv()X p)) .

(4.14)
A

It should be noticed that 6'~a~~t8~3. 'The caret
designates a Fourier transform.

B. Quarks quantities at thermodynamical equilibrium

(1) Owing to the aforementioned invariance under

spacetime translations, the equation for the on@-

particle Wigner function (3.1) (and the nonwritten

adjoint equation) is

M=m -gs((())) . (4.IV)

The general solutions of these equations have the
form

(y P M')-P.,(P) d f d P y'I(rx(,P;'P- P'lx )~

(4.15)

P .(P)(.» P M) -d, f=d'P. :(P'P.P. lX);X„
(4.16)

once all the possible (and elementary) integrations
are performed. In Eqs. (4.15) and (4.16), M is an
effective mass for the quarks, given by

p.,(pt=p, (pl+d, p. M. f 'p'r"x, x;(p'lp O'Ix), -

p.,(p)=p, (p)+d fd'p'~x'(prp'lxlv (» p"

(4.18)

(4.19)

where F, and F„respectively, are homogeneous solutions of Eqs. (4.15) and (4.16).' One can show that F,
—=I', and therefore that the following identity

(r p+M) d'p'r x,x.'(p', p-p'lx) fd'p'x.='(p';prp'lx)r x, (v p»M) (4.20)

is satisfied. Furthermore, I", is a solution of

(y P-M)F, (P)=F,(P)(y P-M)=0,
and hence is a "free" solution. .

(2) Let us now investigate the equation (3.4) for ys. It involves third-order quantities like

(F(x,p p /2)A", (x')A', (x")) .
We want, at least as a first approximation, to close the BBGKY hierarchy keeping second-order quantities
only. A possible ansatz to achieve this goal is a pairing approximation of the form

(FSA (2)A) F8, - (4.21)

where (A) =—0 has been taken into account. Such an approximation scheme somewhat amounts to neglecting
three-body correlations and is common in conventional plasma physics whether quantum or not." Including
now Eq. (4.21) into Eq. (3.4) and taking the Fourier transformation of the result, one obtains

[y (P —k/2) —M]lie(kp P) = -g Q~y"F, (P + k/2)8+~" (k) (4.22)

and also the similar equation

)('(&,P)[y (P+&/2) —M] =-8 F.,(P —&/2)8„'"(~)'&„r" (4.23)

Equations (4.22) and (4.23) resemblevery strongly equationsobtained elsewhere for QED plasmas'"" (apart
from the color indices and matrices) if one identifies 8 with the perturbed electromagnetic field (with re-
spect to a zero equilibrium background field), X with the perturbed Wigner function (with respect to the
equilibrium function F„). Therefore the system (4.22) and (4.23), to which Eqs. (4.14) and its adjoint must
be joined, will lead to dispersion relations (in the sense of plasma physics) very similar to those obtained
for QED plasmas. To show this briefly we first solve" the system (4.22) and (4.23) as

y (P+a/Z)+M (4.24)

where the ic terms have been added so as to choose the correct homogeneous solution of the system. In-
serting now the solution (4.24) into Eq. (4.x4)p one gets the following homogeneous equation
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(k'- p, „')e~s'c(k) = -4'„'Tr d'Py"A s k, , A„y"E„(P+k/2)

(4.25)

This last equation shows that the polarization operator is nothing but the coefficient of A~c„"(k) [in the right-
hand side of Eq. (4.25)]

~s(k) = -4vgv'Tr d'(r"(, ( I ")" (4.25)

Once all the traces are performed the polarization tensor reduces to

""(k) = — g' 5, d'p[p"p" —k"k'/4 —(p'- k'/4)g"'] (4.27)AB M AB k p-ie
where use has been made of the approximation that consists of replacing E„(p) by its zeroth order -expres-
gigg 32' 38 in g 2

I".,(P) = ~' f.,(P),

with"

2M ~ d'p' 5' '(p w p')8(+p")
(2w)' ~ ~2 „2 fp', I exp[p(u"p„'+eq)]+1 '

(4.28)

(4.29)

Introducing now"'" the conventional plasma frequency

(4.so)(d~' =4' „'n-„/M

(where n„ is the invariant numerical density of the quarks) of the quark plasma and the same notation as in

Refs. 38 and 39, i.e.,

d. f.,(P+k/2) -f.,(P —k/2)
k P-i& (4.31)

0~2 V d p p (4.s2)

2
d ), „f, (p+k/2)-f„(p —k/2) (4.ss)

the polarization tensor can be rewritten as

k p2 M'k'
n"„())=&g„I~,')("+)"&"())~ +(),'z"+(." M" d'Pf. ,(P)

eq
(4.34)

(withg„a—= 35~ and alsog" =35" ) Az'being the
actua/ plasma frequency of the system. One can
also check that

k„lI„",(k) =O.

In the derivation of this last equation [used also in
the derivation of Eqs. (4.36) and (4.3V) below] the
relation

C. The quasigluon excitation spectrum

The homogeneous system (4.25) to which the "Lo-
rentz-gauge" condition (4.35) is added leads to the
excitation spectrum of the vector plasmons. in the
same way as in the QED case, 38'" and hence this
derivation will not be given. The result is

2

eg

ey~AB

has been used (see Appendix A).

(4.s5)
+ (d~'K'0 = 0 (4.36)

'~
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(for longitudinal plasmons) and

(d~2 y2 ~ 2 ~ 2g ll P +Q 2 0 4 3ft!
4n

(for transverse plasmons), with

0~2=—Qp2+ Q~'(k),

(k p)' —M2k' 4'„'
(k ~ )' —k4/4 M

where the only difference with the QED case arises
from a factor 2 occurring because of color, In
Eqs. (4.36) and (4.37) use has been made of a
frame of reference where u =(1,0, 0, 0). Further-
more, k has been chosen so that the waves propa-
gate in the z direction, i.e. , we have set (in these
equations only) k~=(&u, 0, 0, k). These general dis-
persion relations have been thoroughly discussed
in several cases of physical interest by Tsytovich
many years ago in a well-known paper" and thus
we shall not enter into the details of their discus-
sion.

D. Determination of g&&

Let us now determine 8 in the framework of the
approximations considered in this section (the low-
est orders of a perturbation expansion of 6', are
given in Appendix B).

A glance at Eq. (4.25) for 6"„'3(k) shows that this
important quantity satisfies a homogeneous equa-
tion and therefore cannot be uniquely determined
without any further information. In fact, such an
information must be (and is) provided by thermo-
dynamical considerations. Indeed the above equa-
tions are valid for arbitrary spacetime invariant
systems whether in equilibrium or not. The only
place where thermodynamical considerations en-
tered in the above equations was in the derivation
of Eq. (4.27) for the polarization tensor where it
was assumed that E„(P)was given by Eqs. (4.28)
and (4.29), referring thereby to the grand canoni-
cal ensemble. '""

In this paragraph Q~z(k) will be determined by a
direct reasoning referring to such an ensemble
and, for consistency, taking account of the approx-
imation (4.21).

First, it should be remarked that 8» is nothing
but the covariant Wigner function (4.9} of the vec-
tor gluons.

Next, symmetry considerations joined to the Lo-
rentz-type condition (4.35) and the use of color-
singlet states, show that

S~e (k) = I(k)!!!'"(k)5„s, (4.38)

where l(k) is a scalar function of k" to be deter-
mined below by thermodynamical considerations.

Within the approximations considered in this

section the vector gluons satisfy a homogeneous
equation [depending on E„(P)]and can therefore be
considered as "free" quasi-particles endowed with
a particular excitation spectrum [e.g. , Eqs. (4.36}
and (4.37)]. Since the system is in a thermodynam-
ical state, these quasi-particles obey Bose-Ein-
stein statistics. More precisely, the grand canon-
ical density operator for the vector gluons in the
approximation under consideration should read

!

pvect, gluons
i=L~ T

(4.39)

in a Lorentz frame where u" = (1,0); L and, T desig-
nate the longitudinal (it.could also be shown that
there exists a zero sound mode) and transverse
modes, respectively. In Eq. (4.39) an infinite vac-
uum term has been dropped. !d;(k) is the quasi-
gluon excitation spectrum and a3'(k) is the destruc-
tion operator of a quasi-gluon of color B, in the
mode i and momentum k.

Finally the free-like form of p„„, „„„,leads to
the usual Bose-Einstein factor so that one can
write

where Eqs. (4.36) and (4.37) have formally been
rewritten as

Dq, (k) =0, Di„,(k) =0,
respectively.

E. Summary

Let us now briefly summarize the basic equations
and approximations made in this section.

The one-particle Wigner function E„can be ob-
tained from X[Eq. (4.18)] and the free equilibrium
solution [Eqs. (4.28) and (4.29)] as a zeroth-order
term ing~. X is itself obtained from F„and
through Eq. (4.24). 8 is determined from equilib-
rium statistical mechanics and from I,~ via the
dispersion relation that one can get from Eq. (4.25)
and Eq. (4.35).

Apart from the assumptions necessary to close
the hierarchy [Eqs. (4.12) and (4.21)], the above
scheme doep not contain any approximation. How-
ever it is not quite simple —although not impossi-
ble —to solve this set of equations. Nevertheless,
we approximated E„by its zeroth-order expres-
sion ing~ and as a result the above scheme was
much simpler. As a first illustration of the for-
malism it is perhaps worthwhile to deal with this
(more or less) simple approximation, which is
considered in the next section. Also, it can be re-
marked that the next approximation, i.e., theone
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where I"„is calculated at order g~', is obtained
easily from Eqs. (4.18) in which X is taken at the
lowest order in g~. This lowest order is obtained
from Eq. (4,24) in which (i) E„is now the free
equilibrium Wigner function (4.28) and (ii) 8 is
still given by a Bose-Einstein-type relation &ut.
now including the free dispersion law &'= p, r'. The
next order is of course much more difficult to ob-
tain.

V. ILLUSTRATION OF THE FORMALISM

Our model is rather crude and can presumably
give orders of magnitude only. Consequently it
seems suited to astrophysical applications where
one generally contents oneself precisely with or-
ders of magnitude. Therefore we shall illustrate
our model in one particular case: the case of a
(dense) quark star, i.e. , the case of a neutron star
with a quark core.

We have said "illustrate" and not "apply" for the
following reason. The parameters of the model-
as is clear from the fit performed below —are
largely uncertain and no trustable conclusions can
be effected as to the physical problems under
study. At most, qualitative conclusions may be
drawn. In our opinion, this unfortunate feature is
shared by the other available models.

A. Estimation of the parameters of the model

It is clear that, because the crudeness of the
model and also because of the speculative and
somewhat uncertain domain of its applications, one
can content oneself with orders of magnitude for
the five constants of the model: ~, p ~, p, ~, g~,
gz. Furthermore, even the elementary-particle-
physics data cannot give a much more precise fit
of these constants, but once more, orders of mag-
nitude. For example, if:one considers the effective
mass of a typical quark, one can find a wide range
of admitted numerical values (e.g. , from 5 MeV to
355 MeV), the latter depending on the specific
model adopted to interpret the raw experimental
data. Therefore we proceed in a rough way and
shall test (numerically) the sensitivity of our re-
sults to the variations of the constants of the mod-
el.

(1) The range of the forces between quarks must
not exceed the dimension of a typical hadron, say
a nucleon, so that

(p„p,)» GeV.

On the other hand, this range cannot be too small,
otherwise the quarks would not interact enough to
be bound and also to produce the baryon and meson
spectra. In the following we adopt the plau»&«
values

p.~ = p, ~-]. GeV. (5.1)

(2) As to the actual mass m of the quarks, it is
preferable to keep it as a free parameter ranging
in the domain

where

2(1 M)
(M/m) 3G () m/M)

(5.3)

I' =—gg —d (5.4)

(where d is the degeneracy factor due to internal
symmetries), and g is the Fermi momentum cor-
responding to the quark numerical density at the
nucleon close-packing density (expressed in units
of the quark mass m); i.e., $ = 0.79 (GeV)/~(GeV).
In Eq. (5.3) the function G(x) is given by~~

G(x) =x(x'+1)' ' —sinh 'x. (5.5)

The results are shown in Table I. It should be no-
ticed [see Eq. (5.4)] that only a particular combin-
ation of the constants g~ and Ij.~ appears in this
evaluation, as in the work of Bafelski. "

TABLE I. Values of I' for several quark masses. gz
and g& are calculated with p& = 1 GeV and fall within the
range of values considered by Rafelski (Ref. 29) for m
&200 GeV,

m

(GeV) gs 2

20
40
60
80

100
200
500

1000
2000

0.912 x10
0.736 x 108
0.249 x 10~

0.592 x 107

0.116x10
0.927 x108
0.145 x 10~0

0.116x10&&

0.928 x 10&&

179.
361
544
726
908

1 820
4 550
9 110

18 200

13.4
19
23.3
26.9
30.1
42.7
67.5
95.5

135

20 GeV & ~ &10' GeV,

as indicated in a recent review. "
(3) Let us now estimate the coupling constant gs.

Since the effect of the scalar gluons is only (inthe
spirit of the model) to endow the quarks with an
effective mass, we have to look for a situation
where such an effective mass can be (at least
roughly) estimated. We expect tha, t a quark inside
a nucleon (or inside nuclear matter near close
packing") has —roughly —an effective mass of the
order of one third of the nucleon mass, or 300-350
MeV. For quark matter at 0 K interacting thorough
a scalar quantum field, the effective mass M is
connected to m, to gz, and to the Fermi momen-
tum through"
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g„c0.5 (for all Vo) (5.7)

by fitting, the first energy levels of charmonium
(i.e., 3.1 GeV for the ground-state energy and 3.7
GeV for the: first excited level" ). In fact, there is
a wide range of possibilities for gr [satisfying Eq.
(5.7)] depending on the value of V,. However, a
reas'onable value is gv-0. 5 (for V, -936 MeV) since
it is consistent with the coefficient of 1/r of the
empir ical potential

V(r) = n/r + n'-r (5.8)

(with o. -0.3-0.6) used in the phenomenology of
elementary particles.

B. Quark core in neutron stars?

Let us now illustrate the above formalism on the
case of cold (OK) quark matter expected to exist
in the core of neutron stars. Although people are
more and more interested in possible quark effects
in nuclear matter, ' it seems reasonable to admit
that quarks manifest themselves at least when the
density of matter reaches the point where the nu-'
cleons are close packed, i.e., when it reaches
roughly nine times the nuclear saturation density.

When T=0'K (or, equivalently, when P-~) the
basic equations of the system reduce to those ob-
tained by Kalman"; i.e., the vector field does not

play any role within the (statistical) assumptions
(neglect of three-body correlations) used in this
paper. This can be seen directly on Eqs. (B1)-
(B3) [8'"-0when P-~ in Eq. (B2), which proper-
ty leaves us with the zeroth-order (ingv) expres-
sion for F,„]. From a physical point of view, this
is also —in part —a consequence of our assumption
that physical states are color singlets. Indeed, had
this assumption been relaxed the vector gluons
could have led to a collective (coherent) interaction
(since (A~e) w 0).

Thug Kalman's results" have to be used with the
large values of I' given in Table I. However, be-
fore discussing the resulting equations of state and

(4) The remaining parameter to be estimated is
g„, the coupling constant of the vector gluons.
Since these gluons are supposed to give rise to the
spectrum of elementary particles, g~ will be .fitted
with one of the most precise data, i.e., with the
spectrum of.charmonium. At the lowest order, the
exchange of vector gluons gives rise to a Yukawa-
type potential of the form

V(r)=-~r exp(-p„r) pV„r (5.6)

where V, is a constant supposed to take account of
the remainder of the interaction. Using the gener-
ally accepted value of 1.5 GeV for the effective
mass of the charmed quark, one finds

their physical consequences, a few words are per-
haps necessary as to the matching with the nuclear
equation of state. As mentioned in Sec. I the equa-
tions of state in the two regimes (i.e., nuclear or
quark regimes) are usually matched either merely
at a given density" or by assuming a first-order
phase transition (and a subsequent Maxwell's con-
struction) between the two regimes. However this
last procedure is possible only (i) when there is
actually such a phase transition, therefore assum-
ing also that three-body correlations are fully
taken into account and (ii) when this phase transi-
tion is a first-order one, a property that might not
be verified.

Let us discuss a little bit further these last
points.

Although all the works on quark stars do assume
the existence of such a phase transition, one can
give arguments —not proofs —against this very ex-
istence. Indeed, (and except in the MIT bag model
for which the considerations given below are irrel-
evant) the picture people have in mind is that of
strongly interactin'g baryonic matter getting ion-
ized into its quark constituents at high densities
and/or temperatures. However, a simple model
shows that —possibly —there is no phase transition:
a hydrogen plasma may have two states (besides
liquid and solid), at given pressure and density, a
neutral one (hydrogen atoms-baryons), and an
ionized one (electrons+ protons - quarks); and one
can pass continuously from one state to the other
without any phase transition, of any order whatso-
ever; there is only a change in the degree of ion.—

ization and, in fact, there is no collective behav-
ior of the system that could be indicated by, e.g. ,
a large coherence length. " If the assumed phase
transition does not exist there is no obvious way
out for a correct matching of the equations of state
describing the two regimes and we are left with the
difficult problem of finding a unique quark equation
of state valid in any case. In particular, not only
three-body correlations must be completely taken
into account (a very difficult problem, even in
classical statistical mechanics") but also bound
states. .. .

In order to get the equation of state for the
quarks, the Fermi energy at which it is thought to
be valid has to be evaluated. This can be achieved
by taking the quark Fermi momentum at the close-
packing baryonic density. For an effective quark
mass of 0.35 GeV, this Fermi momentum is f:,
= 0.79 GeV and the corresponding Fermi energy is
E~ = 0.86 GeV. With these numbers, Kalman's
equation of state is shown in Fig. 3 for three dif-
ferent masses for the quarks, i.e., 20 GeV, 60
GeV, 10O GeV. The effective mass versus the
Fermi momentum is represented in Fig. 4 while
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0.0 0.2 0.4 0.6 0.6

p (Gev~)
0 GBV

0.4
0 GeV

0.2—

0.2
20 GeV

0.3—

0.4 —P

T=O K

100 GeV n (OeV~)
0.0

0.0 0.1 0.2
FIG. 5. The typical concavity of the p(n) curve in the

phase-transition region is shown for m =20 GeV,
60 GeV, 100 GeV. p is expressed in units of m and z
in units of m (m in GeV).

FIG. 3. The equation of state for cold quark matter
for three different values of the quark mass (20 GeV,
60 GeV, 100 GeV). P and p are expressed in units of
m -(m in GeV).

the energy density as a function of the particle
density is depicted in Fig. 5. In Fig. 6 the energy
per particle has been plotted against the particle
density.

Let us now comment on these results. The equa-
tions of state shown in Fig. 3 exhibit a typicalfi'rst-
order phase transition; the negative pressures ac-
count for a collective confinement while the asymp-
totic branches behave like P -

&(p —ps), i.e., as in
the MIT bag equation of state (the values of ps are
however much higher: 1.23 x 10"g/cm', 3.08
x 10"g/cm', and 4.05 x 10"g/cm' for m = 20 GeV,
60 GeV, and 100 GeV respectively" ). The Max-

well's construction leaves us with the positive-
pressure part of the asymptotic branches only. "
As in Kalman's article ' the nature of this phase
transition (a collective bound state) is inferred
from Fig. 6 from which it can be seen that the en-
ergy per particle is less than the quark mass (20
GeV in the case of Fig. 6) in the whole transition
region; after, it grows indefinitely. Figure 5
shows the usual" concavity of the p(n) curves in the
transition region. An important feature is that it
represents also a transition between two regimes
of effective masses for the quarks (see Fig. 2 for
a qualitative behavior). It is important to notice
that. the phase transition present in this quark
equation of state has nothing to do with a quark/
nuclear matter phase transition.

Assuming now the existence of another phase
transition, i.e., between a nuclear matter phase
(described, e.g. , by the Chin-Walecka" or Bowers

2/3

Energy per
particle GeV

10

1/3

GeV)
0.0 0.1 0.2 0.3 0.4
FIG. 4. The effective mass of the quarks is plotted

against the Fermi momentum for three different values
of the quark mass (20 GeV, 60 GeV, 100 GeV).

0
0

Numerical density (GeV)
I

5 10

FIG. 6. The energy per particle as a function of the
quark density shows that, in the phase-transition region,
E& m = 20 GeV.
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FIG: 7. Matching of the nuclear (a) and the quark (b) equation of state for m=20 GeV. Notice the large plateau pre-,

sent in this model.

et al. ' equation of state) and a quark phase [de-
scribed here by p = s(p —ps)], of first order, it is
sufficient to assume a plateau of constant pressure
(in the P-n diagram) at equal chemical potential
in both phases. The resulting equation of state is
depicted in Fig. 7 and has a rather large plateau
compared to other models. This is a typical fea-
ture of this model valid whatever the parameters;
this is realized as long as the quark mass has a
large va, lue (leading to a large F) a 20 GeV.

What are the consequences of this last feature as
to neutron stars'P Firstly, we observe that the
higher the quark mass the larger the plateau.
Secondly, unlike Bowers et al.' who claim that, in
such a case, the equation of state is "soft", in our
opinion, it is the opposite statement which seems
to be correct. Indeed, inside the neutron star and
starting from its center, one never passes by the
transition region continuously but rather abruptly
from a quark core to a neutron shell of much low-
er energy density: the transition region will be
only a few Fermis thick. This is due to the gravi-
tational field which sePaxates the two phases in
much the same way as it separates water from va-
por on the earth.

Thus we are led —in this model —to the following
picture of a neutron star: a very massive quark
core (in a recent model4' the quark core can con-
tain 70% of the total mass) surrounded by a more
conventional shell of neutron matter. The hard. -
ness of the equation of state in the quark core (P
-3 p) and the high energy density in this region can
yield higher masses than usually considered (the

maximum mass in the model alluded to above ' is
2.92 M,). How'ever, the precise mass of such a
neutron star is extremely sensible to the matching
with the nuclear matter equation of state, and
hence to this equation of state itself. Therefore it
is probably much too early to draw definitive con-
clusions. Numerical estimations and the possible
existence of a "third family of dense objects" will
be the subject of a separate paper.

VI. DISCUSSION AND CONCLUSION

Let us now discuss the main points of this arti-
cle, i.e., the model, the formalism; and its illus-
tration.

(1) The model used thoughout this paper is a di-
rect extrapolation of "low"-energy data. In fact,
it is rather crude (although perhaps sufficient for
astrophysics) and should be elaborated further in
connection with elementary-particle data. This
was, however, outside the scope of the paper. The
result of this crudeness is reflected in the some-
what uncertain values obtained for the constants of
the model, although they are within the range- of
other estimations.

Let us now come to the important question of
asymptotic freedom. This property is not satis-
fied by the model, as is clear from previous stud-
ies." However, the results of the pr'eceding sec-
tion show (on the basis of a numerical analysis and
also after a glance at the basic equations consid-
ered at high densities and/or temperatures) that at
high energy densities (equivalently, at high Fermi
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momenta or energies) the quark equation of state
;is of the same form as the one for the free
gas, i.e., as P -3 p. This is of course not the
asymptotic-freedom]property although this fea-
ture is true for asymptotically free models. Fur-
thermore, since the effective mass of the quarks
rapidly decreases as their density (or the Fermi
energy) increases (see Fig. 4), for high-energy
collisions, in which many quark partons can be ex-
cited, Bjorken scaling can be recovered. Hence,
even though the model is not asymptotically free,
it possesses features consistent with deep-inelas-
tic experiments.

The next point to be discussed deals with the use
of color singlets. This assumption, although di-
rectly suggested by the experimental data, is not
necessarily true at much higher energies than
those currently considered. However, this as-
sumption can easily be relaxed as shown elsewhere
where use is made of color-singlet states for equi-
librium while off-equilibrium perturbations were
colored: the simplest approximation was the Har-

tree approximation and not the next one that neces-
sitates the use of the second set of equations of the
BBGKY hierarchy. The case of equilibrium in
Hartree approximation with non-color-singlet
states will be studied elsewhere.

(2) In the derivation of our equations no infinity
has appeared, a feature that might seem surpris-
ing. In fact, the vacuum terms, responsible for
some of the usual infinities, have merely been ig-
nored. For instance, the equation (4.29) for f„(p)
contains a vacuum term not written in this
equation. This term introduces infinities in
several places and its omission corresponds to us-
ing a nezo definition for the covariant Wigner func-
tion, namely, &:, where the symbol:: represents
the usual normal product. " The use of such a new
definition allows the separation of the infinities
from the relevant statistical quantities. Let us
Specify this point more precisely by looking at the
generating equation satisfied by I'„„.A straight-
forward calculation yields"

25
p„'. f '»' 'P'[(o] .i.(,P P')d()]P»)-(P- P') P(d)]»»-[- PP((P» — ')I,

2' y f d x dP [(P]P',»e('», P —P')Aey„d (x')]0) —P (P -P )Aey A»(x')] exp[ —2(P' (x —x')]

for the two new terms added to the generating
equation. We have set F„—= (0 ~F ~0). They contain
two vacuum terms and two other terms linear in
the fields (II) and A~s. Furthermore, they do not de-
pend on F„„(i.e. they are density independent) and
therefore they refer to vacuum effects. Actually
the term involving Q leads to the vacuum polariza-
tion by the scalar gluons and can be renormalized
as usual. "'" The second term, involving'~, also
leads to a vacuum polarization effect of the vector
gluons. However, it cannot be renormalized since
a theory with a massive vector field is not renor-
malizable when the coupling occurs through a noncon-
;served current. Nevertheless, the infinity carried
by this term can be removed in much the same way as
used by Chin" who dealt with a model similar to our s,
although aimed at a description of nuclear rather than
quark matter. , His idea is to add specific counter-
'terms in the Lagrangian at each order of approxima-

. &ion(seealsoRef. 31). For instance, ifweusease-
queuce of approximations that consists in truncat-
ing the successive correlations", of the relevant
statistical functions, at each step one (or several)
counterterms would be added to the Lagrangian.
Doing so one is led to an infinity of counterterms
to be added, as expected from a nonrenormalizable
theory. This way of removing infinities is, of

course, paid by the arbitrariness of the constants
introduced with the counterterms. Moreover. , it
is not sure at all that another such "renormaliza-
tion" scheme would lead to the same physical re-
sults. It should be added that, as is well known,
the infinities brought by the scalar field, are easi-
ly removed by adding to the I agrangian counter-
terms of the form nQ+PP'+yQ'+X(II)' so that the
choice made by Chin" (the constants &, P, y, X once
renormalized are chosen to be zero; i.e., the in-
finities are exactly removed; in fact, they must
be determined from experiments, at least in prin-
ciple) is somewhat arbitrary. Therefore, it seems
preferable either to ignore them or to keep arbi-
trary constants (a finite number at each step of the
approximation scheme) in the model, with —in this
last case —no possibility of numerical conclusion.

Consequently we refer —for these questions of
quantum fluctuations —to the very interesting arti-
cle by Chin. " We should also add that, insofar as
our model is merely phenomenological, this prob-
lem is perhaps not so acute as it would be in a
complete theory. There is, however, another
possibility considered elsewhere": one can look
at the massive vector field A~ as.an approximation
of a non-aphelian gauge field; the renormalization
process is then linked to the one of gauge fields.
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(3) The formalism used throughout this paper is
very close to the one used in classical plasma
physics. " This similarity suggests strongly ap-
proximation schemes generally not considered in
quantum field theory, such as the neglect of cor-
relations from a given order, the use of cluster
expansions, etc.

In particular the relativistic quantum BBGKY
hierarchy for the quark plasma was obtained and
truncated (i) in the Hartree approximation as to the
scalar gluons and (ii) neglecting the three-body
correlations as to the vector gluons. In fact, the
approximation (i) was based on the idea that the
confined state of quarks was essentially a collec-
tive state while two-quark correlations were taken
into account in (ii). It should be remarked that the
quark-scalar-gluon or ',scalar-gluon -scalar- gluon
correlations could also be taken into account as is
done in Ref. 34: in order not to complicate the al-
gebra too much, it has been preferred to take ac-
count of the collective aspect only. As to the vec-
tor gluons, the lowest orders ing~' have been con-
sidered (since g„&1) for the sake of illustration
(see Appendix B).

Finally, with the approximations used, our quark
plasma was very similar to a QED plasma with the
following modifications: m -M, e'-g„', A~

'
-20~'. It follows that one can use previous studies
by Tsytovich, ' Bezzerides and Dubois, "or Mel-
rose."

(4) In Sec. V the above model and formalism have
tentatively been applied —illustrated —on the case
of neutron stars. Here again it should be stressed
that our fit of the constants of the model is ex-
tremely rough and thus our numerical results are
quite uncertain. However —although numerically
crude —our results give perhaps a correct idea of
the qualitative behavior of the quark plasma. In
fact the main qualitative 'conclusion (in the frame-
work of this model) is the existence of a very large
plateau that links the nuclear and the quark re-
gimes. This large plateau leads to a massive
quark core, in neutron stars, separated from neu-
tron matter by an abrupt jump. This typical char-
acteristic is due to the scalar field and more par-
ticularly to the large value of I'.
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APPENDIX A

From Dirac's equations obtained from Eq. (2.1)
one gets

i s „Js =g v &[A~, As]y" P&, , (Al)

where the color current J~ is given by Eq. (2.18).
Using now"

[An~As] fnscA-cd (A2)

where the fisc's are the structure constants" of
SU„Eq. (Al) can be rewritten as

p ~BK (A5)

Taking now the average value of the Klein-Gordon
equation satisfied by As [after it has been multi-
plied byA~r(x') from the right], one obtains

( + fi,')&P;r = o,
a solution of which is

(A6)

(AV)

Thus we have shown the consistency of this Lo-
rentz-type condition with our model, within the
approximations considered.

BJB=—ig~Tr d E xp ~x y

(A3)

Once multiplied from the right by A~r(x'), averag-
ing and using the approximation (4.21), Eq. (A3)
provrdqs

r„X = —id f Tr( f d'Pd(r;P)lr r„S"
)

.

(A4)

Owing to the fact that (i) E(x,P) is necessarily pro-
portional to the unit matrix in color space and (ii)
TrA =0, it follows that the right-hand side of this
last equation vanishes identically, '
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In this appendix the various statistical quantities
are calculated in a state of thermodynamical equi-
librium, neglecting three-body correlations and at
orders g„.

Let us start with Eq. (4.18) for E, (P), the
zeroth-order Wigner function given by Eqs. (4.28)
and (4.29). Inserting Eq. (4.24) into Eq. (4.18),
one obtains
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,r (p-p')+M
p p, A,. ~ ~ (p-p'/2)+M

4M " " (p -p'/2}'-M' ii

x(RAs(p 2) (S1)

where 8AMMs must be evaluated at order zero ing„, i.e.,
'

(IS2)

I

qAs(o)( 2) «(P -I »)&.,(P)
exp(pu"p J —1

The expression for p(k, p) at order g„' involves the knowledge of E„(p) at order zero and the one of 8
at order one. On the other hand, from Eq. (4.25) 6 can be obtained at order g„'

41Ig» td+ M
P'(P -k/2)+M

A M
P'(P+I'l/2)+M f0'- p»' s (P k/-2)~-M'+fc

y'(P-2/2)+M . „y (P+2/2)+M
(p ~ k/2)2 M2 i,s

xg)(A(o)(y) (BS)
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