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Scattering of light in a strongly magnetized plasma

Joseph Ventura

(Received 26 July 1978; revised manuscript received 27 November 1978)

The, Thomson cross section in a strongly magnetized electron plasma is reexamined with a view to
extending previous results of Canuto, Lodenquai, and Ruderman beyond the cold-plasma limit. To this end a
formal relation is established between the differential photon cross section and the polarization currents'

induced in the medium by the incident photon. In the cold-plasma limit our formal approach leads to a
substantially simplified differential cross section allowing an intuitive understanding of the scattering
mechanism and the resulting anisotropy. For the integrated partia1 and total (summed over final

polarizations) cross sections we recover previous results. The structure of this theory at and near the
cyclotron resonance is examined including the necessary dissipative and broadening mechanisms, Extensions

beyond the cold-plasma limit are discussed for. the application to the problem of the accreting x-ray pulsars.
Under conditions typical of the accretion column of some x-ray pulsars it is expected that the birefringent

properties of the vacuum may significantly alter both the photon cross sections and the polarization properties
of 'th radiation.

I. INTRODUCTION

Recent measurements in the hard x-rays from
Her X- 1 by Trumper et al. ' seem to confirm the

long-postulated existence of magnetic fields ex-
ceeding 10' G at the surface of neutron stars. The
presence of such fields can so severely confine the
motion of electrons perpendicular to the field
lines as to alter dramatically the macroscopic
properties of the stellar surface and atmos-
phere. '3 In an influential paper Canuto, Loden-
quai, and Ruderman (hereafter to be referred as
CLR) showed that this reduced mobility of the elec-
tron results in a. dramatic drop (at low frequencies}
of the Thomson opacity for those polarization
modes having their electric vector perpendicular
to the external field. Recent astrophysical work
on the modeling of the radiation from the accret-.
ing x-ray pulsars' has been significantly affected
by this and related results on the opacity.

Attempts to model the newly measured Her X- 1
cyclotron feature necessitate, however, an exten-
sion of these essentially classical results to the
hard x-ray, high-temperature and quantizing mag-
netic field regimes, where the classical cold-
plasma limit is known to fail. Indeed, the limit
of classical electrodynamics fails to reflect the
intricate harmonic structure of the electron's
quantum-mechanical motion at photon energies
hw ~8eBlm, c =50 keV, where B is the external
magnetic field. Furthermore, the polarization of
the vacuum itself ceases to be a negligible effect
as was recently demonstrated by Novick et al. '

This paper is the first of a series of studies de-
voted to a thorough examination of the medium
polarization effect on the radiative processes which
determine the radiation and heat transport in the

accretion column of magnetic neutron stars. At
low frequencies our formal approach leads to re-
sults which, while equivalent to the CLR results,
also allow for a simple interpretation of the anis-
otropic features in the total cross section obtained
in that paper. A simple expression is also obtain-
ed for the differential cross section, which avoids
much of the algebraic complexity of previous pre-
sentations. The numerical evaluation of our ex-
pression confirms recent results of Borner and
Mesziros' obtained through the CLR formalism.
It should finally be mentioned that collective plas-
ma phenomena, which are completely ignored in
our presentation, are expected to be unimportant
for the regime of frequency and density visualized
in the problem of the accreting x-ray pulsars,
where typically the radiation frequency exceeds
the plasma frequency by several orders of magni-

tude. Extensions of these ideas beyond the classi-
cal cold-plasma limit, while briefly discussed at
the end of .this paper, will be reported in detail in
subs equent publications.

II. ROLE OF THE MEDIUM POLARIZABILITY

We first wish to underline that the hitherto pub-
lished low-frequency CLR results for the differen-
tial cross section (their algebraic complexity not-
withstanding} are consistent with and can be sum-
marized by the following formal expression:

qr, 'f(e—', el)l/'/fe', f'/e, /',

where q ~ is the medium dielectric tensor, e and
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e' are the polarizations of the incident and outgoing
E ve-ctors, e, = (1-kk} e is the transverse com-
ponent of the polarization vector. r, = e'Imc' is the
electron classical radius and +~ is the plasma fre-
quency of the electron component, i.e., +~'
= 4''g, rn '. The implicit assumption for the vali-
dity of this expression is that the parameter
w= &o~'/&o2 «1 so that only the electron component
needs to be included. In an isotropic plasma II ~
= 6 z so that Eq. (1) reduces to the well-known re-
sultu, x2

=ro e'+ e

where e denotes the normalized polarization vec-
tor.

A derivation of Eq. (1) is given in the Appendixes
to show the generality of this expression, which is
valid classically as well as within the framework
of quantum electrodynamics in the limit of low
density. What does change in the various limits
is the expression for II z. We shall amplify on
this point later. Equation (1}is indeed no surprise
to anyone familiar with the mechanism of the scat-
tering of light. Charged particles set up polariza-
tion currents in response to an incident electro-
magnetic wave, which in turn become secondary
centers of radiation. In the presence of a strong
magnetic field the medium response II qeq ig high-
ly anisotropic and, therefore, the result;ant radia-
tion is anisotropic as well. The details of the final
results depend critically on the structure of the
propagation modes e and e' allowed by the medium.
In fact for the purposes of the ensuing discussion
it wiQ prove essential to keep separate track of
the role of the polarization modes which often
carry all the dependence on the angles of the inci-
dent and final photons, as distinguished from the
effect of II z which is independent of or has a weak
dependence on direction. -

l

frame (x', y', e'} with the e' axis along k, andy'
aligned perpendicular to the Bk plane the polariza-
tion modes of the electric vector are'4

e' =c(1, in, X,), e =c(in, 1, iX2), (6a)

wu'/2 sin8 t'u'/2 cos8+ n
e,(I —u) i nu' cos8- 1 (6b)

n =n(8) =- b[1+(1+b')'/'] ', (6c)

-t/2(I ) 2 -1/2
sine sin8 '

where e, =e, (8) =k e ~k~ is the longitudinal polar-
izability, and we have a'dopted the transverse nor-
malization c =(1+n } '/2. The longitudinal com-
ponent X, =A~(8) is of the order of the parameter
w =to~2/&o and will therefore be neglected in most
of the ensuing discussion, since we shall only con-
cern ourselves with high frequencies relative to
the plasma frequency. This semitransverse ap-
proximation breaks down near the resonance
u = 1, in which case X, (8) can be of order 1, and
must be included in the cross-section calculation.
The degree of ellipticity n(8} of the (transverse)
polarization ellipse is thus the same for the two
modes, ordinary and extraordinary, and is a func-
tion of the propagation angle e. For parallel prop-
agation 8 =0, n (8) =- 1, and the polarization is
always circular, as expected. At 8=—,

'
m on the

other hand, e =0 resulting. in plane-polarized
modes aligned I and l~ to the Bk plane. The depen-
dence of the parameter n (8) on 8 is seen in Fig. 1
for several values of the parameter u =&os /&o and
for m «1. For e0 the major axis of the polariza-
tion ellipse is always aligned I. to the Bk plane for
the extraordinary mode, and l~ to the Bk plane for
the ordinary mode.

The corresponding index of refraction may be
obtained directly from the wave equation

III. COLD-PLASMA PROPAGATION MODES
[u, '(I - kk) V] e' =-O. , (8)

In the cold-plasma limit the polarization tensor
for a magnetized (gyrotropic) electron gas is"

0
II = iu' 1 0 , (4)' "(0 O I )

with u=~ /&o2, &ua=eB/mc, and where thea axis
has been assumed to coincide with the direction of
B. The eigenvalues of this tensor are

The normal modes for propagation at an angle 8
with respect to the external field B.are elliptically
polarized, and in general e is not perpendicular
to the direction of. propagation k. In the coordinate

which gives by projecting on the vector e',

n, '=I —w(e'), ll e').

This expression generalizes for nontransverse
propagation, a well-known relation between the
refractive index and the forward scattering ampli-
tude. " This expression also produces the usual
dispersion relation found in the plasma literiture"
if e and e' are substituted by their explicit expres-
sions in terms of the plasma parameters.

Of special interest for the following discussion
will be the propagation properties at frequencies
much below the cyclotron frequency, i.e., when
u»1. From Fig. 1 we see that except for a small
range of angles 8 s 80 (sin 80=—u ~/2 cos80) one has
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FIG. 1. The ellipticity parameter characterizing the cold-plasma polarization modes varies with the angle of pro-
pagation relative to B. At frequencies much less than the electron gyrofrequency co& the plasma modes tend to become
plane polarized at almost all angles.

o. (8) =-2u '~'cos8/sin28«1, so that the modes are
almost completely linearly polarized l or II to the
Bk plane. This particular property of the low-fre-
quency modes turns out to be a decisive factor in
determining the remarkable anisotropy in the cross
section reported in the CLR paper.

To evaluate the cross section we still need to ex-
press the plasma modes e and e in the coordin-
ate frame with the z axis along 8, i.e., in the
same frame as used in Eq. (4). For propagation
along k(8, y) we thus find after an appropriate ro-
tation of coordinates (V2 e, =e„+ie,),

e (8, p}=2 ce"e[cos8+ n(8) +X&(8) sin8],

e,'(8, P) =2 ' 'ce" [o.'(8) cos8+1+ X,(8) sin8],
(10)

e,'(8, Q) =- c[sin8 —X,(8) cos8],

e,(8, jb) =—c[o.(8) sin8 —X,(8) cos 8].

We adopt the transverse normalization e 2 =1
+n2(8) 4Here w.e have used the rotating-coordin-
ates notation since II~& is diagonal in these coor-
dinates. We can therefore substitute in Eq. (1),

l(e', ll e)('= e,' e, +1—'
(q2+11+I 1 —u

According to Eqs. (1), (10}, and. (11) the differen-
tial cross section depends on the angles of the in-
cident photon k(8, Q ~ 0) and of the final photon
k'(O', P') through the polarization vectors.

From Eq. (11) we can now easily deduce the low-
frequency behavior of dc)dQ. Since I» 1 in this
limit we see that the transverse components of the
polarization current e,'*ll fez are accordingly re-
duced so that we may write (u» 1)

—(8, 8', P') =r, '[
~
e.'*(8'}e.(8) ~'+O(u ' ')]
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IV. INTEGRATED CROSS SECTIONS

For an incident photon of polarization e'(8, &f&)

we obtain the integrated "partial" cross section
into a final mode e' or e' by integrating Eqs. (1)
and (11) over the angles 8', &f&' of the final photon.
The dependence on these angles is contained only
in the vector e~(8', Q') of the final mode. From Eq.
(10) we see that the dependence of Eq. (11) on P'
is contained in terms proportj. onal to e ', and toe, while the absolute squares of the three
terms in Eq. (11) are independent of &f&' Of th.ese
only the absolute squares contribute to the dQ'
integral. The final result is thus [O'T„—(8v/3)p'p ]

I +(y+ A~)+)y / (13)

i.e., a result which is independent of the azimuth-
al angles P and P' of both the initial and final pho-
ton with respect to the Bk plane. It follows from
this expression that those propagation modes,
which have e perpendicular to the-Bk plane will
have their corresponding cross section drastic-
ally reduced with respect to the Thomson value.
Before further analyzing the properties of dn/dQ
it will prove useful to discuss the structure of the
integrated cross section, as it allows a better in-
sight into the final results.

Ai A+i

10 3

10"2

10-1

0.2

0.5

10

100

0.9997

0.9894

0.9726

0.9219

0.8562

0.7749

0.6676

0.5990

0.5107

0.2536

0.2806

0.3951

0.4609

0.5644

0.6438

0.7136

0.7849

0.8243

0.8707

0.2464

0.2197

0.1155

0.0664

0.0136

0

0.0115

0.0474

0.0767

0.1185

cross sections (semitransverse approximation):

vi (Ig) p 2 q f 2 1 cos8 —n (8)=[I +n8 ] sin 8+—

TABLE I. Coefficients &~~ for the ordinary mode,
i = 1, as a function of the frequency. The corresponding
values for the extraordinary mode are A~2= 1-A.~i. Note
also that the relation Q „A„=1.5 is satisfied reflecting
the normalization of the e vector in Eq. (14).

where the components of e' =e'(8, Q) are given in

Eq. (10), and the constant vector A~ is defined in
terms of angle integrals of the final polarization

1 cosg+n(8) ' 2
i

2 1-ui" (17)

i gl
A —= —,

' dcos8' ~e~(8', 0) ~'
i S $

(14)
v2(8) p 2 q f 2 2 1 1 + n(8) cosg

2

e 0 =sin 0

from which we conclude that in the semitransverse
limit (i.e., k e =—0, nz =n; =1), —

2 2

Q A~=1, Q A~=i. (16)

Numerical values of A' as a function of frequency
are given in Table I.

With the help of Eq. (16) we are led to an even
simpler expression for the total cross section ob-
tained from Eq. (13}as the sum over final polar-
izations. After substitution of e' from Eq. (10) we
find for the bvo (initial) modes the following total

From Eq. (10) we see that the transverse compon-
ents of the polarization modes satisfy the following
(completeness) property [e, = e —k(i'p e)]:

2

(e„(8,P}~ = —,(1+cos28),

1 1 —n (8) cos 8 ' 2

These results as well as Eq. (13) are appropriate-
ly independent of the azimuthal angle Q. The gen-
eralization of this result for the case 8 k& 0 is
given in Appendix B. Equations (17}are in com-
plete agreement with the corresponding cross sec-
tion of CI H when account is taken of the different
notations adopted for the plasma-polarization
modes.

Equations (17) may be conveniently summarized
by the formal expression

(8n) =a T„~II e'(8, p) ~

', (16)

where II z is the polarization tensor defined in
Eq. (2). The product II sea is proportional to the
polarization current induced in the medium by the
incident wave, thus suggesting an intuitively ap-
pealing interpretation of our results. It should
further be underlined that while Eqs. (17) repre-
sent the cold-plasma limit adopted in the last
section, Eq. (18) is valid more generally. It is
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=v,„(IIe'(8, q) [',

where we have performed the angular integration
15.with the help of the following matrix identities

2 A Ag e~te/* =1 —k'k',
&=i

(20)

J
4m'

(21)t dQ~ k' kq
———5~,

Equation (20) is a completeness statement assert-
ing that the polarization modes span completely

Ithe two-dimensional space transverse to k'qe, y I.

V. ANISOTROPY FEATURES

We are now ready to discuss systematically the
anisotropy features characterizing the integrated
as well as the differential cross sections. A very
general feature is already apparent from Eq. (11)

therefore worthwhile to point out that Eq. (18) may
be directly obtained from Eq. (1) making use of
some matrix algebra in the same limit of semi-
transverse waves,

v, (8) =r, ' jtdQ, ,Q (II e', e', }(e~„lIe')

by simple inspection. Because of the medium ef-
fect the different polarization components carry a
different weight and their relative importance var-
ies with the frequency.

At low frequencies relative to ~~ the polariza-
tion components perpendicular to J3 are reduced
since u»1 leading to results that depend very dra-
matically on the polarization modes. Those modes
with a significant component e, scatter at roughly
the normal Thomson cross section while the cross
section is drastically reduced if ~e, ~

«I [cf. Eq,
(10)]. At frequencies near the cyclotron frequency
one circular polarization becomes resonant (i.e.,
the one with the electric vector rotating in the
same sense as the electron's gyration). As a func-
tion of frequency the cross section of the extra-
ordinary mode obtains a sharp maximum at u =1
(Fig. 2). This maximum value is not infinite, as
predicted by Eq. (11), but turns out to be roughly
equal to the cyclotron absorption cross section
after correcting the cold-plasma polarization ten-
sor to'properly account for absorption and dissipa-
tive effects. [In this theory the ordinary mode re-
mains unaffected by the resonance since at u =1,
e'(8) =n(8)+cos8=0. ] This aspect of the theory
will be further discussed in Sec. VI. Finally, at
high frequencie's (I «1), Eq. (11) predicts an iso-
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llel to B, cf. Eq. (22). in(b) At ' termediate frequencies the behavior o o~
tion components ~ to B begin to play a role.

tropic cross section approaching the Thomson lim-
it. In the high-frequency limit, however, one

itselfshould keep in mind that the classical theory i se
breaks down, and that both relativistic and quan-
tum-mechanical effects may have to be included
as will be further discussed in Sec. VII.

The anisotropic features in the total cross sec-
tion at ~«(d~ can be seen in Fig. 3, which gives
the numerical evaluation of Eq. (17). Whale our
algebraic expression is exactly equivalent to the
CLR result our graph deviates significantly from
th At this point we are in agreement with
results of Horner and Mkszhros obtained stree y
within the CLR formalism. The difference is thus
probably due to a faulty numerical evaluation in
CLR.

lt is recalled that in our notation always
~
n(8)

~

so that the order of magnitude of the various
~ ~terms can be immediately read off Eq. ~17j with-

out need for further reductions. The low-frequen-

cy limit (u»1) is thus seen to be entirely related
to polarization component along B giving

—' —=[1+n'(8}]'sin'8+O(u '),

= [1+n2(8)] 'n (8) sin 8+ 0(u ').
O'Th

(22}

These expressions indeed contain most of the fea-
tures displayed in Fig. 3(a). lt is thus seen that
the cross section for the ordinary mode (polariza-
tion vector almost parallel to the Bk plane) is mod-
ulated by a simple sin28 factor. The modulation o
the extraordinary mode is further reduced by the
ellipticity parameter n2(8) thus accounting for the

re complex shape of n2(8) The max. imum oc-
8 =u '~2 thecure at 8=8, such that sin 8,/cos8& ——u, e

value at the maximum being e2(80) =u nTh. 'g-
ures 4(a) and 4(b) give the integrated "par ia"
cross sections according to Eqs. (13) and display
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anisotropic features, which may again be inter-
preted in a similar fashion.

Colo~ Of tke magnetic sky: It is instructive to
speculate on the possible "color" of the ionized
magnetic "sky." It is well known that the blue
color of the terrestrial sky is related to the fre-
quency-dependent Rayleigh cross section o~
=oT„&u4(uP—&oo2} ', which ensures that the scattered
light will have an altered spectral constitution with
respect to the incident white. Here +0 character-

.izes the atomic binding of the electron and results
in an isotropic (with respect to the direction of the
incident photon) but frequency-dependent effect for

This effect is contrary to the white color
we would expect of an illuminated ionized gas,
since in this case the scattering from free elec-
trons occurs at a frequency-independent cross sec-
tion v» —(8m/3}(e /mc ) . For the case of the mag-
netic sky Eq. (11) shows that both of these effects
are at play. The electron appears "bound" to pho-
tons polarized transverse to the magnetic field,
while it also responds as a fr-ee electron to radia-
tion with its E vector parallel to the external field.
Due to this mixed Thomson-Rayleigh behavior the
color of the magnetic sky would depend on the angle
of illumination as. well as on the angle of scatter-
ing. The "color" as well as the atmospheric trans-
parency would further depend on the polarizations
of illumination and observation. The atmosphere
might be optically thick to one mode of polariza-

tion and optically thin to the other. The evaluation
of do/dQ according to Eqs. (1) and (11) reveals a
significant dependence on the angle 8' of the final
photon but a, weaker dependence on Q', cf., Figs.
5 and 6. At low frequencies the simplified depen-
dence

is applicable, thus the 1 -1 transition peaks at
8'=8=90, as expected, displaying the o«sin'8
sin 8' dependence. For &u/&oa «1 the cross section
in the extraordinary mode is much smaller than
that of the ordinary mode, while this inequality
is reversed in the resonance region, (&o —&oa)/

v& «1. The angular dependence near the reso-
nance is dominated by the e polarization compon-
ent, i.e. , for m —=urH,

, (1+cos 8)(1+cos28')
22 Th 4

(1 / )P

where y is the damping constant to be specified
in the next section. Physically one may argue,
that each time a, resonance (extraordinary) photon
is absorbed —an' event of propability distribution
~ —,'(1+cos 8)-it is reemitted with the typical angu-
lar distribution characterizing cyclotron emission.

On similar grounds one would expect an approxi-
mate isotropy in the angle P' near the resonance,
an effect which is immediately verified from Eq.
(11}whenever it is dominated by the resonant
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FIG. 5. Differential cross section do;;(8, 8')/dO'
averaged over the azimuthal angle q

' . Angular depen-
dence at several frequencies for (a) the polarization
conserving transitions 1—1 (full line), 2 2 (broken),
and (b) the polarization changing transitions 1—2
(full line), 2 —1 (broken). The units for the cross sec-
tion are 2~o ——27(.(e /mc ) .

FIG. 6. Same as Fig. 5 for the cp'-dependent cross
sections do.

& (0, 0'y' )/dQ', with the frequency fixed
at co=0.5uz. The units for do/dQ are xo =(e /mc ) .jj e e

2 2 2 2

The number identifying the curves is the final photon
angle 0'.
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VI. CROSS SECTION AT THE RESONANCE

It is well known that at photon frequency v =so&
=eB/mc a normal mode of the medium can be ex-
cited, and, in fact, this particular frequency is
used experimentally, since it provides an efficient
means for the resonant heating of the plasma. The
cold-plasma polarization tensor becomes infinite
at this frequency indicating the failure of this theo-
ry to provide a dissipation mechanism for the ris-
ing transverse energy of the electron. Cyclotron
emission is actually such a mechanism and gives
rise to the "natural" widt. h of the line. Classic-
ally, this broadening effect is obtained by includ-
ing the radiation-damping force in the electron's
equation of motion, and contributes an imaginary
part to the polarization tensor' whose eigenvalues
are now

v, =(I+u'"+iy)-', v„=(1+fy)-' (23)

with y= —',(e2/m, c~). Quantum mechanically the
same value is recovered up to relativistic cor-
rections. It can in fact be verified that at v =a~
the so corrected Thomson cross section repro-
duces the well-known cyclotron absorption cross
section (i =1, 2)

2

=4v'-'—[c' ('5(~ —~,), (24}

term. An isotropy in P' is also predicted at very
low frequencies, &o«&oa, from Eq. (11). A de-
tailed study of the P

' dependence is given in Fig. 6
for the frequency ~ = 0.5~~, where we expect to see
the strongest anisotropic effects. When the incident
photon is directed along the magnetic field (8=0),
the scattered radiation is isotropic in &f&', while
anisotropy sets in at angles 80. As expected the
differential cross section satisfies the microrever- .
sibility property, which dictates that do, ~(k- k )

=do~, (k'-k). This explains the coincidence of the
12 and 21 lines in the 8'=30', 8=30' graph of Fig.
6(b) and a similar feature in the 8 =60' graph
(8'=60'), Fig. 6(b}. The isotropy observed in the
8' =0, 84 0 lines in Fig. 6 can be related to the
isotropie 8 =0' graphs by a similar argument.
For illumination angle 8=90' in the ordinary mode
we also find a P' isotropy, as expected since the
polarization vector of this mode is aligned along
the magnetic axis and therefore "sees" free elec-
trons.

Another fundamental property reflected in Fig.
6 is the absence of polarization-change scattering
in the forward direction 8' =8, Q' =0, i.e. , do&&(8'

=8, P'=0) =0 for iWj. It is quite natural that there
should be no mixing of modes in this case, since
the forward scattering amplitude is related direct-
ly with the definition of the refractive index, and
of the normal modes.

if we make the usual substitution

r/2
115((d —(ds} =

(
(26)

'

' =my 'ar dv v e 5 m-v~
O'Th

3vmc' cf(v) ~e'(ui) ~'

2e &os Icos8 —v/cl

where v =v, , ((d) is the velocity of an electron that
can (cyclotron) absorb the frequency e according
to the Doppler law. The denominator of this ex-
pression contains the lowest-order relativistic
correction to d&u/dv at 8 —= v/2, cf. Daugherty and
Ventura. 8

A word is due here on the structure and meaning
of the polarization modes and of the refractive in-
dex near the resonance. From Eqs. (9}, (10), and
(23} the resonant term in n2 (including damping) is

(~/y)] c'~ '
res =

+g

w „y2 x
]

(28)

x=- (1 —u'f'}/y.

As a function of u, Eq. (28) displays the typical
resonance behavior whereby the real part changes
from positive to negative values at u =1 while the

r = -', (e'(o'/m, c'), (26)

to account for the broadening effect, cf. Appendix
B. Here e ' represents the polarization component
which can be cyclotron absorbed (in the nonrela-
tivis tie limit ).

In ordinary laboratory plasmas the broadening
due to thermal motion or to Coulomb collisions
usually dominates over the natural broadening'. In
the latter case the dissipation mechanism is Coul-
omb bremsstrahlung resulting in y, = vt&a, where
the electron-ion collision frequency v, in the limit
of quantizing magnetic fields is given by v, =3
xi0'n a -'" sec-' "

The thermal broadening effect is related to the
fact that each velocity component [within the vel-
ocity distribution f(v„)of the electrons] absorbs
a Doppler-shifted frequency &o(8) =&us(1+v„cos8/
c). This results (nonrelativistically) inathermal
spread,

5u&/&o =c '5v, „cos8,
which is distinctly anisotropic reflecting the one-
dimensional character of the electron's mobility.
For kT «he~ a rough expression for the cross
section ls found as
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imaginary part has a maximum value given by
(tv/y) ~e ~ ~„,. The first important feature to note
is that quite generally n =1+0(w/y), where
(gg/y} =5 x 10 'N»-v»~ represents a negligible ef-
fect in the accretion column of a magnetic neutron
star, but can be significant in the case of a white
dwarf. In our numerical evaluation (Fig. 2) this
effect was completely neglected;

Another noteworthy feature is that only the ex-
traordinary mode is resonant pince the appropriate
polarization component for the ordinary mode-
vanishes, i.e. , e'(u=1) =0, as is easily checked
from Eq. (10). [This happens because of the prop-
erty n(8) =- cos8 at u =1.] The longitudinal com-
ponent is also easily evaluated from Eq. (6b) giv-
ing at u =1

Xg(8) =0,

sin8(cos28 + 1)
sin'8 —2iy/n)

1

In the limit of low density this is also of order
m/y and is again neglected in our numerical eval-
uation.

VII. DISCUSSION

Comment on the single-scatterer approach: We
have tacitly assumed throughout this paper that
the scattered intensity from a unit volume of the
plasma is found as the incoherent sum of the am-
plitudes squared resulting from the radiation of
individual particles within this volume. This treat-
ment is justified at very -high frequencies whose
wavelength is much less than the mean interpa. rti-
cle separation. ' In the opposi'te limit a statistical
approach becomes necessary, since the wave no
longer scatters from individual particles but rath-
er from density (or field) fluctuations. Equation
(1}may still be used in this case if the right-hand
side is multiplied by the "spectral density" of the
plasma fluctuations. '~ For a fully uncorrelated
gas (e.g. , an ideal gas} the spectral function is
identically equal to 1, and Eq. (1) is once again
applicable. In the opposite extreme, . however, of
highly correlated media it is possible to have a
drastically reduced scattering in directions other
than the forward.

Comment on the relativistic and quantum mech-
anicaL effects: The effect of relativity on the total
cross section (in the absence of an external field)
is described by the Klein-Nishina formula which at
low frequencies (h&o «wc') gives"

2h(d
eKN ——eT„I1- — -2 +'' '

mc

resulting in a reduction of the radiated energy

equal to the mean recoil energy absorbed by the
electron. A corresponding reduction in the differ-
ential cross section is mostly concentrated at
large-angle scattering as is easy to understand on
the ground that the biggest recoil occurs at high
photon momentum transfer. A similar effect is to
be expected in the presence of an external-magnet-
ic field, when proper account is taken of the elec-
tron's bound transverse motion. This effect was
verified (in the weak-field limit ms «&o) in the
relativistic calculation of Milton et al. ' Recent
results by Herold confirm this expectation for
&u = vs and also show the anticipated (angle depen-
dent) Doppler shift of the cyclotron line.

The quantum-mechanical effect turns out to give
corrections on the classical treatment, which are
of the same order as the relativistic corrections
so tha, t the two effects ought to be studied simul-
taneously. This happens because the quantum-
mechanical oscillator matrix elements involve an
expansion in terms of the parameter f = (K&@/

2mc ) sin 8, cf. Canuto and Ventura. 2 The appear-
ance. of higher harmonics in the case of very strong
fields also belongs to this combined relativistic-
quantum effect.

From the formalism given in Sec. II it is further
clear that the scattering mechanism and the plas-
ma effect ought (in principle) to be treated in a
self-consistent manner, i.e., in the same order
of approximation. Thus, for example, in order to
include the plasma effect in the relativistic calcu-
lation of Herold' it may prove insufficient to sim-
ply insert the classical cold-plasma modes into
their expressions.

PoLarization of tke vacuum: The vacuum in an
external field can be polarized by the presence of
virtual pairs and thereby exhibit birefringent prop-
erties. The underlying physics of this interesting
phenomenon has been known for some time while
its possible importance in pulsar physics has been
emphasized more recently. ' 4 The medium in the
pulsar magnetosphere is actually the combined
plasma+ vacuum system, and the role of the vac-
uum component is not negligible for magnetic
fields approaching the. critical value B =m2c3/dE

4.4&&10' Q. Its effect is represented in the po-
larization tensor by an additive component of the
order'4

where n is the fine-structure constant. Since the
plasma-polarization. term. in & ~ is of the order
~~'/uP its relative importance decreases at high
frequencies, so that the vacuum component may
actually dominate the polarization properties of the
x-ray radiation from accreting pulsars. We have
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already noted how sensitively the photon cross
sections depend on the properties of the polariza-
tion modes, and may therefore anticipate signifi-
cant changes in the radiative transport when the
vacuum polarization effect is included. Details on
this manifestation of the vacuum birefringence
have been given elsewhere. "

APPENDIX A: DIFFERENTIAL CROSS SECTION

-Se40
+e —(e328) fe 2 ( 8 5 8)EB

m~~
(Al)

where e z is the dielectric permittivity tensor, and

e~ = (4',e2/m)'~2 is the plasma frequency. Ac-
cording to the classical theory this motion results
in a radiation field at R, ur (for semitransverse
pr opaga. tion),

ky~R

E„(R,&u) =, tk'x(k'&&v)]
R

/k'
=z, f 3(k')s~, (A2)

where the last equation serves to define the scatter-
ing amplitude f 8(k'), which is a matrix in polar-
ization space. From (Al) and (A2) follows that

f 3
—-r3(5 „—k'k„')II„~, (AS)

with the same notation as in Eqs. (1) and (2). The
cross section for scattering into a specific final
polarization is then

(A4)

from which we can recover Eq. (1}after making
use of the transversality property of the normal
modes"

A A AA

(1 —kk) 8 =(1 —kk) 8=e, =e .
If one needs to take the quantum-mechanical ef-
fects of the electron's motion into account, one
needs only to substitute v, —(v,), i.e., by the ex-
pectation value of the velocity operator, in order
to have a quantum-mechanical expression for the
induced current j . ' A similar connection be-
tween cross section and polarization tensor can be
made in terms of the S matrix within the frame-
work of quantum electrodynamics along the lines

(a) Semitransverse limit: Consider the propa-
gation of a monochromatic plane wave in a medium

E(r, &o) =eE3e

The motion of the individual electron is directly
related to the pola. rization currents induced in the
medium by E(r, (o), i.e.,

As shown by Shafranov' this can be accomplished
by expanding E in terms of the medium normal
modes, giving-rise to the expression

O'C2/(O~ —n, 2 i2I—
In the semintransverse limit n, =1 and the inte-
gral over the poles in (A6) may be evaluated in a
straightforward manner recovering Eq. (A2). When

n, (8) has a strong dependence on the angle of prop-2

agation, however, one cannot expect spherical
waves at infinity as in Eq, (A2) since these are no
longer solutions of the homogeneous wave equa-
tion. Equation (A6) thus represents some appro-
priate wave form at infinity corresponding to the
anisotropic propagation properties of the normal
modes. While the integration of (A6} itself pre-
sents some ambiguity one may still obtain a simple
result for the differential cross section. Follow-
ing an argument presented in Sitenko's mono=
graph' we thus find

do di/dQ
dQ F)

(A7)

where F; is the incident Poynting flux and the
radiated intensity is found from the relation

dI eI= dQ —=-—Re d r E„(rco) v'"(r v)
dQ 2 sc

e dak=—Re ——(E . ~ v*)
(2&)3 sc' s

(2v}3
™ k2c2/(o' n, ' i3I '-—(A6)

The dk integration is now carried through via the
prescription

2

Im ~-~/, , —zv —r5(k —&o n, /c ),
1 . co

kc ~-n, —zq c

and we find from (Al) and (A7) our final expression
for the radiated cross section

discussed recently by Hamada. "
(b) General treatment for anisotropic media. '4'3:

The Larmor radiation formula used in Eq. (A2) is
not valid if the semitransverse limit is violated.
A general expression for E„(R,ur) is obtained by
solving the wave equation

k'cz--(-5 8+k, k3)+e z Es ——— v, (k, tu). (A5)
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The expression used for the incident flux in (Av) is 'V e„*,e~
0' — ~ + ~ ~ ~

cs~ HOPE] „1+7
agQ ~g

O'vh

esses+(I+ i/2)2+(I +1/2)2 ~y&

APPENDIX 8: TOTAL CROSS SECTION

A completely general expression for the total
cross section may be obtained from the imaginary
part of the refractive index given by Eq. (9) through
the well-known relation

C . IIQPlg
Imn) ———@~0'] ——

2(d 2 HGPl]

Including the radiation-damping term in Eq. (9)
via Eq. (23), and employing once again the rotat-
ing-coordinates representation of the polarization
vector we thus find

which is our generalized expression for the total
cross section of a photon initially in mode i. In
the semitransverse propagation limit this clearly
confirms our previous result of Eqs. (IV) and
(Ig)
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