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Quantum limits on resonant-mass gravitational-radiation detectors

James N. Hollenhorst
Department of Physics, Stanford University, Stanford, California 94305
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The methods of quantum detection theory are applied to a resonant-mass gravitational-radiation antenna.
Quantum sensitivity limits are found which depend strongly on the quantum state in which the antenna is
prepared. Optimum decision strategies and their corresponding sensitivities are derived for some important
initial states. The linear detection limit (E;,-Res) is shown to apply when the antenna is prepared in a
coherent state. Preparation of the antenna in an excited energy eigenstate or in a state highly localized in
position or momentum space leads to increased sensitivity. A set of minimum-uncertainty states for phase-
sensitive detection is introduced.

I. INTRODUCTION

The problem of detection of gravitational radia-
tion is a difficult one. Even optimistic calculations
of possible sources suggest extreme sensitivity
requirements for resonant detectors. ' The state
of the experimental science is now beginning to
approach fundamental limits imposed by quantum-
mechanical effects. These considerations have
led to considerable intere'st in methods for op-
timizing the measurement strategy in order to
obtain the highest sensitivity within the quantum
limits. In view of this it is useful to perform ex-
plicit calculations of the quantum limits under
various conditions.

.All past resonant antenna systems and apparently
all those presently under development use linear
amplification to detect the state of the antenna. It
is well known that linear amplifiers have a sensi-
tivity limit imposed by quantum mechanics. ' ' We
will refer to this limit as the linear detection limit.
Braginskii and co-workers6 9 have shown by un-
certainty-principle arguments that the linear de-
tection limit may be surpassed by performing
measurements of the energy eigenstate of an an-
tenna and have suggested devices which might
perform the desired measurement. These and
other energy measuring devices have been ana-'

lyzed further by Unruh. " Moncrief" and Unruh"
have suggested the possible usefulness of coherent
states in evading the linear limit. Thorne and
co-workers" have described conceptually a phase-
sensitive device for improving on the linear limit.
Braginskii and co-workers'4 have also proposed a
phase- sensitive or "stroboscopic" technique.

In this paper we do not attempt to describe any
specific device for measuring the state of an an-
tenna. Rather, we attempt to consider all possible
measurements in order to find the fundamental
limits which arise once an initial state for the
antenna has been chosen, using the techajques of

quantum detection theory. This theory has been
developed along the lines of classical detection
theory and a large body of literature exists on the
subject. "" The results we obtain are consistent
with those obtained, in specific cases, by the pre-
viously cited authors, but are of general applica-
bility.

A resonant-mass gravitational- radiation antenna
is a damped harmonic oscillator which couples to
the Riemann tensor via the nonvanishing mass
quadrupole moment of a vibrational eigenmode.
As a simple model of such an antenna one may
consider two point particles each of mass m/2
connected by a spring of length l along the x axis.
The classical equation of motion is'""

d x mcoQX
m 2 + —.+me'x = —c lmR, 0„0(t)= —F(t), —

where x is the change in separati, on of the masses,
8„0,-0 is a component of the Riemann tensor, c is
the speed of light, ' and Q is the quality factor
which characterizes &he damping of the oscillator.
'The motion induced by a burst of gravitational
radiation which occurs in the interval —7 t- 0 is

where U, is a complex amplitude given by

i g (tl ) heof' Ate' / 2Qdtp
m(o &,

and U, is the complex amplitude of the antenna
before the pulse arrives. We have assumed that
the Q is sufficiently high that the freciuency shift
due to finite Q may be neglected. We see that the
pulse merely displaces the complex amplitude of
the antenna by the amount U, . A convenient mea-
sure of the signal energy available from the an-
tenna is the quantity E, given by
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Z, = —'mes'[U

E, will be called the signal energy and is the
energy that would be deposited in an antenna
originally at rest. It is important to realize
that the energy change imparted to an excited
antenna (U, IO) may be much greater than E,
and may be either positive or negative. 'The

signal causes a displacement U, = U& —U, while
the energy change is

—'muP((U&(' —)U, (') =E, +muPRe(U, U*, )

The interference term may easily be larger than

E, if U, is sufficiently large and has the proper
phase.

The quantum limit for linear amplifiers has
been well studied. Specific models for linear
amplifiers have been given a full quantum treat-
ment. ' Model- independent calculations which
assume only linearity have been studied with both
the uncertainty principle' and with a full quantum
treatment. ' The application of these results to
resonant gravitational- radiation detectors has
also been studied. ' The result is that in order to
detect a pulse with an antenna whose state is mea;
sured with a linear amplifier the signal energy
must satisfy E, ~@~. This is what we have called
the linear detection limit.

II. QUANTUM DETECTION THEORY

We will consider a gravity-wave antenna to con-
sist of a single-mode harmonic oscillator with no

coupling to any other modes. We are thus assum-
ing an infinite mechanical Q and no thermal noise.
We treat the gravitational-radiation field as a
classical force which couples to the oscillator.
This assumption is very well justified since the
coupling between the radiation field and the an-
tenna is so weak. We are interested in detecting
short pulses of gravitational r"diation with a large
spectral density at the oscillator frequency.

The technique is as follows. The .antenna is pre-
pared in some initial state. Next the antenna is
allowed to interact with the radiation field for
some length of time. A measurement is then per-
formed on the antenna. Finally a detection algo-
rithm is used to make one of two conclusions. One
conclusion is that no gravity wave pulse has ar-
rived; we wil, l refer to this as the null conclusion.
Alternatively the conclusion will be that a pulse
has arrived; this will be called the alternative or
positive conclusion. In general, conclusions as
to the size of the pulse, its time of arrival, and so
forth may be desired. We will restrict our atten-

tion to the more primitive question of whether or
not a pulse has arrived at all. The combination
of measurement and detection algorithm will be
referred to as a decision strategy. Our task- is
to determine what the optimum decision strategy
is and what sensitivity limit it l.eads to. We will
find that this will depend on the initial state of the
antenna.

In order to make analytical progress a criterion
must be found for assessing the value of a given
decision strategy. To facilitate this we define
two probabilities. The detection probability QD
is the probability that a given decision strategy
will result in the positive conclusion under the
hypothesis that a pulse has in fact arrived. Qs
is thus the ' efficiency" of the detector. The false-
alarm probability Qo is the probability that the
decision strategy will result in the positive con-
clusion under the hypothesis that no pulse has
arrived. Qo is thus the probability of accident-
als." Clearly it is desirable to make QD high and

Q, low.
The optimum strategy will be found in the fol-

lowing way. A tolerable false-alarm probability
Qo is prescribed. The decision strategy which
maximizes Q~ is then found. A decision strategy
which maximizes QD for a prescribed Qo is said
to satisfy the Neyman-Pearson criterion.

Binary decision theory has been studied for
quantum-mechanical systems by several
groups""", we follow closely the book by
Helstrom. " In order to optimize the decision
strategy one must define a set of possible mea-
surements. The set of measurements considered
in the theory is the. set of ' probability operator
measures. """This set includes not only all
conventional "projection valued measures" such
as energy and position measurements, but al.so
more general types of measurements. For ex-
ample, we can imagine a measurement which is
made by allowing a second quantum system to
interact with a primary system. A "projection
valued" measurement on the second system will
not in general be describable as a "projection
valued" measurement on the first. Such a mea-
surement will be a member of the class of "pro-
babi]. ity operator measures" on the primary sys-
tem, however, and thus is considered in our op-
timiz ation.

To set up the problem we must first compute
the density operator which describes the state of
the system at the time of measurement under the
hypothesis that no gravity wave pulse has been
received. This density operator will be labeled
pp py will ref er to the density operator under the
alternative hypothesis. We wish to find the set of
Neyman-Pearson decision strategies for distin-
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guishing between po and p, . This complexproblem
has been reduced to the following eigenvalue pro-
blem":

(,- ~p.) [n,&
= n, lug.

We must solve for the eigenvalues g, and eigen-
states

l
o),& of the operator p, —Xpo where x is an

arbitrary, real Lagrange multiplier. Each value
of X wiB correspond to a different decision strat-
egy which satisfies the Neyman-Pearson criterion.
Thus, A. will parametrize a curve of optimal
strategies in the q~, qD domain. Once the eigen-
value problem is solved, qo and qc may be com-
puted according to
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(Here we have assumed for simplicity that p, —Xpo

has no zero eigenvalues. ) The decision strategy
to be followed for ea,ch ~ is to measure the opera-
tor p, —Apo; the measurement will give one of the
eigenvalues q„ if q, is negative the null conclusion
is made, if g, is positive the alternative conclusion
is made.

The eigenvalue problem is easily solved if p,
and p, represent pure states. Suppose p, = lg,&&tjol

and p, = lg, )&tj, l. We try to find states lqL& which
are linear combinations of l|ji,& and lg, &. After
diagonalizing the two by two matrix representing

~I&I'o&&to
I

we solve for qo(&) and qLP).
Eliminating X we obtain"

[~e, lyl+(I-q )'"(1—lyl')"']'

0 q

(7)

where y=—&Po l g,& is just the overlap between the
two possible states. Figure 1 is a plot of equation
(7) for several values of the overlap. Note that if
the overlap is small it is easy to distinguish states
and we can find decision strategies with small q,
and large qc. For large overlaps ly l

& 1 it is hard
to distinguish the two states and the locus ap-
proaches a straight line which characterizes a
decision strategy based on random guessing. In
the case of gravity wave reception we expect a
very low event rate. It will thus be necessary to
maintain a very low false-alarm probability. Con-
sequently the case where q, =0 will be of special

- interest to us.

FIG. 1. Loci of Neyman-Pearson strategies in Qo,

Q~ domain for binary decisions between pure states
i go) and i tP&) . The curves are labeled by [ y [2
=

I &&ol 6& I
'

III. COMPUTATION OF DENSITY OPERATORS

The Hamiltonian describing the system is
2

8 = sm(o'%'+ +F(t)ft- aN(u
2m

or

H = hooata+ F(t)(II/2m ~)'i '(at+ a),

where at = (m&u/25)'i'2 —i(2mg&u) '~'P. The term
(tt/2m&v)'i'F (t)(a~+ a) is a classical driving term
representing the interactiori with the gravitational-
radiation field. For convenience we have subtract-
ed away the zero-point energy.

Suppose the oscillator is prepared at t= -7' in a
state described 5y the density operator p, . Fur-
ther, suppose the oscillator is allowed to interact
with the radiation field for a time v. If F(t) is
zero in this interval then at t = 0 the state of the
oscillator will be

e-ifL)7'a a f«ft a

Alternatively, if F(t) o 0 in the interaction interval
then the state will evolve differently. Fortunately,
the quantum harmonic oscillator with classical
driving force is exactly soluble. The density
operator at t =0 is given by '

p s $4ITo ID(p s'lklT)p Dt(psllllT)s(NT'I II (10)

where D(LL) is referred to as the displacement
operator and is given by

D(p. ) =- exp(pa — *p)a. ,
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(2mb(o)" ' F(f )e'"'df . (12)

By comparison with Eq. (3) we see that p = (m&u/
2A)'~'U, where U, is the classical displacement
amplitude for Q- ~. The signal energy E, is
given by

I

and p. is a normalized complex amplitude given by
r0

y=-«. I~,& =&PID(.) IP&

=(OID (P)D(p. )D(P) IO).

But two important properties of the displacement
operator are 4I

D(p)D(P) =D(p + P) exp[-,'(P'p Pp—*}]

In the Appendix it is shown that

8-frova eD(+)ehu~n a D(pe-t~&)

so we may rewrite Eq. (10) as

p, =D(p)e '"" 'p&e'"" 'D'(p)

and recalling Eq. (9) we have

e-ico7'a o el~7'a
po e,-e

p, =D(u)p. D'(p)

(15)

(16)

D'(P) =D( P)—

Using these we find

(19)

Dt(P)D(p, )D(P) =D(p) exp(P*p, —Pp, *), (20)

so y= (0 ID(p, )
I

0& exp [2i Im(P*p, )]. In the Appendix
it is sho wn that (0 ID(p )10& = exp(-~

I p I ) so we
conclude y= exp[-&

I
p, I'+ 2i Im(p*p)] and IyI'

= exp(
I
p I') = exp(-E, /K&o). Now Eq. (7) may be

used to compute QD in terms of Q, . For the case
Q, =O we have

IV. COHERENT STATES

An important set of initial states is the. set of
coherent states. " These are minimum-uncertainty
states for the position and momentum operators.
They are the closest analogs of classical oscillator
states. In the position representation the coherent
states are Gaussian wave packets with the same
width as the ground-state wave function moving
about in the oscillator along classical trajectories.
We may generate the set of coherent states by
displacing the ground state by the complex ampli-
tude P. We define the coherent state

I P) by

QD = 1 —exp(-E, /K&o) (coherent states, Q, = 0).
(21)

We note that the expression for Q~ is indepen-
dent of P. This immediately tells us that if the
oscillator is prepared in a coherent state, there
is no improvement in sensitivity obtained by pre-
paring it in a highly excited state. In Fig. 2 we
have plotted Eq. (21). We will define a minimum
detectable pulse energy E „as follows: For Qo
= 0 we will maximize Q~ and find the minimum
signal energy such that the detection probability
is at least 50% for all E,~E „For coher. ent
initial states the result is

IP&=-D(P)
I
o&. (17)

An oscillator could be prepared in a, -coherent state
by starting in the ground state and driving it with
a classical source. In the energy representation
the coherent state IP) is given by

5

n

Suppose the oscillator has been prepared in an
initial state Ig,&= IP'), a coherent state. Under
the null hypothesis we will have

I 8.& = e '""'
I
P') = e '"" 'D(P') e'"" '

I
o)

= D(P" '"'}
I

0&

= IP'e '"'&.

Thus the state evolves into a new coherent state
I, P) where P=—P'e '"'. Under the hull hypothesis
we will have p, =

I,
'P)(PI. Under the alternative

hypothesis we will have p, = D(p, ) I P&(P
I
Dt(p). In

this example both p, and p, are pure states. To
solve the problem we need only compute the over-
lap between the two states. We have

' O
(3
0-
I—
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O
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FIG. 2. Detection probability Qz vs signal energy E'

for an oscillator prepared in a coherent state. Curves
are shown for several values of the false-alarm proba-
bility Qp.
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E „=S~ln2 (coherent states). (22) I.O

This is very close to the quantum limit for linear
amplification. We conclude that the linear detect-
ion limit cannot be improved on by using coherent
initial states.

V. ENERGY EIGENSTATES

Several schemes have been proposed for gravity-
wave detection using energy measurements. ' " It
is therefore natural to consider the case in which
the oscillator is prepared in an energy eigenstate.
Assume p, = In&(nI, where In) is the energy eigen-
state with eigenvalue n@~. We have..= -"-'I.&&.l"- "= I.&&. I

p. = D(p)
I

&&.ID'(p).

Again the problem involves only pure states and
we need y=(nID(p, ) In}. It is shown in the Appendix
that

&nID(p}In& =L„(Ip I&)e '" ",
where L„(x) is the Laguerre polynomial of order
n. For the case Q, = 0 we have

Q~=1.—e ~~~""[L„(E,/Nor)]' (n states, Q, =0}.
(23)

Recalling that J0= 1 we see that this result reduces
to Etl. (21) in the ground state. This is as it must
be since the ground state is a coherent state. In
order to do better than the linear detection limit
one must prepare the oscillator in an excited state.
Figure 3 is a, plot of Q~ vs E, for the cases n= 10
and n = 0. For large n and small argument me may
approximate the I aguerre polynomial by

L„(x)=eV,(2enx), 0&x«n.
To find E „we set 1 —e em~~ ""[L„(E„/}I+)]~=~.
Using the above approximation we get

0.32
(n states}.

n
(24)

We see that it is possible to reduce the quantum
limit as far as we like by preparing the oscillator
in a highly excited energy eigenstate. The increas-
ed sensitivity is due to the classical interference
term mentioned in the introduction. In quantum
language we say that the incident radiation field
has stimulated emission or absorption of quanta
by the antenna. This result is in agreement with
the result obtained by Braginskii using uncertainty-
principle arguments. '

Now we wish to examine what the decision strat-
egy is for this case, that is, how does one actually
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FIG, 8. Detection probability vs signal energy E~ for
an oscillator prepared in the energy states with n =10
and n =(}.

achieve the optimum sensitivity. As discussed in
Sec. II one measures the operator

p, —xp, = D(p, ) In)(n ID~(p) —A In)(n I
.

Let us examine this for the case Q, =O. The ap-
propriate value of A, for Q, =O is X-~. As A. -~,
p, may be ignored in the operator p, —~p, . 'The

optimum measurement for Qo = 0 is a measure-
ment of the projection operator p, = In)(nI. This
may be accomplished by performing an energy
measurement. If the measured eigenvalue is dif-
ferent from n (the initial value) then the positive
conclusion is made, otherwise the null conclusion
is made. It is clear that the false-alarm pro-
bability is zero since if no pulse occurs the mea-
surement will always give the eigenvalue n. On

the other hand, the probability that the measure-
ment mill yield the value n after a pulse has ar-
rived wt» be p= I(nip~& I' » p= l&nlD(t ) In& I'= Irl'
leading to a detection probability Q~= 1-P =1
—

I
yI' in agreement with the above result.

VI. WAVE-PACKET STATES

Perhaps the most ubiquitous nonlinear detection
scheme used in laboratory practice' is synchronous
or phase-sensitive detection. In classical linear
detection one measures the displacement of the
oscillator x(t). In phase-sensitive detection one
measures X,(t) or X,(t), where x(t) =X,(t}cosset
+X,(t) sinvt. It has been realized for some time
that it is possible to escape the linear detection
limit by doing a "quantum-mechanical" phase-
sensitive measurement. '
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To examine this possibility we introduce opera~
tors which correspond to the classical variables
X,(t) and x, (t) W. e follow Thorne etal. "by de-
fining 4

—gt g IQl 0 + g g $40 t
1

= (2m~/I}'~'[P cosa&t —$/m~) sinvt],

x —i(&t ef&at +eirut} (25)

= (2m&v/I)'~'[R sining+ (p/mv} cosset].

Note that X, cosurt+X, sin~t = (2m&v/6}'~'It. These
operators are explicitly time dependent and it
must be remembered that we are working in the
Shrodinger picture. A measurement of the X,
operator corresponds to a position measurement
at mt= 0 and to a momentum measurement at (dt

= w/2. Since [X„x,] = 2i there is an uncertainty
principle which reads bX,4X, - & where 4X,
-=(&x'& —&x,&2)'~2.

Now let us introduce a set of states which will
turn out to be minimum-uncertainty states for
X, and X,. First, let us consider the unitary
operator

S(z}=- exp [-,'z (a')'- —2z*a'] .
In the Appendix it is shown that if

I P& is the state
of a system and r is a real number, then S(r)

I g&

represents the same system compressed in
position space by the factor a = e " and expanded
in momentum space by the factor 1/n= e". For
this reason we call S(z) the squeeze" operator.
Let us define the state IO, r) according to

o, r&-=s(r)
I
o&. (26)

Since the ground state
I
0) is a Gaussian wave

packet with position spread &x = (5/2m'&)'~', we
know that IO, r) is a Gaussian packet with &x
= e"(II/2m'&}' ' = (1/n)(S/2m&v)'~ . For very-large
positive values of r, the state

I
0, r) is highly

localized in momentum space. For very-large
negative values of r

I
0, r) is highly localized in

position space. The state
I
0, 0) with r = 0 is the

ground state.
We may generalize this set of wave-packet

states by defining

IP, &
=- D(P)s( )

I
o&, (27}

where P is a complex displacement and z is a com-
plex squeeze factor. The state IP, r) is a Gaussian
packet with the same shape as Io, r) but displaced
from the .origin in position and momentum space.
In the Appendix we show that these states develop
in time according to

e-iufa d
I p 8& I p8 ~+~ ze ""'& (28)

That is, they remain wave-packet states with the

complex amplitudes following the classical tra-
jectory and the complex squeeze factor z rotating
at twice the resonant frequency.

Since the set of wave-packet states is unitarily
equivalent to the set of coherent states, many of
the useful properties of the coherent states such
as the overcompleteness relation may be general-
ized for these states. It is not surprising that
these states and the techniques we have developed
for dealing with them have appeared in the liter-
ature many times before. The first use of these
states for their low noise properties is, to our
knowledge, in the paper by Takahasi" in which he
discusses the degenerate parametric amplifier,
which is a type of phase-sensitive amplifier. A

very clear presentation of a unitary transform-
ation technique just like that used in this paper
may be found in the papers by Stoler. ' ' These
states are again introduced in a paper by Yuen"
in which a more complete set of references may
be found.

To get abetter understanding of the wave-packet
states we quote some expectation values for the
state IPe ', re '

& with a=e" and P=P, +iP, :

&2& = (25/m~)'~'(P, cos~t+P, sin&st},

&p&
= (2m@~}'~'(—p, sin&et+ p, cosset},

~~ = (&z'& —&z&'} ~'

= (I/2m+)'~'[a' sin'&et+ (1/n') cos'~t]'~',

&p = (m@~/2)' '[(1/a') sin'&et+ n' cos'~t]' ',
&&&P = 2~I.I+ [g (n' —1/n') sin2(ut]'),

«& =I~LIP I'+ [(I- n')/2a]'],

8,& =2P„&xg =2P. ,

4X, = I/n, bX, = a,
AX,AX = j. .

Recall that for r = 0 (a = 1) the states I P, 0) are
just the coherent states. The last five equations
make clear the connection to the X, and X, opera-
tors. We see that the states

I
pe '"', re ""'& are

minimum-uncertainty states (AX,M, = I) for X,
and 2„ that n gives the spread in X„1/a gives
the spread in X„and Rept} and Imp] give the
time-independent expectation values of Xy and
respectively.

Now let us consider preparing the system initial-
ly in a wave-packet state. For notational conven-
ience we will suppose that the initial state is

I g,&

= e'"" '
I P, r&. At t = 0 we have

I g,&
= e '""'

I g,.&
= IP r&, thus p. = IP, r&&P, rl ~d p =D(p}IP r&

(p, rID~(p). We need to compute y=(p, rID(p}I p, r)
=(0, rID~(p}D(p)D(p) Io, r) Recallin. g Eq. (20) we

may write this as y = &0,r ID(p, )
I
0, r) exp[2i Im(p* p,)].
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The value of this matrix element is shown in the
Appendix to be

y = exp]. -—,
'

~

p, ~'[n' cos'y+(I/o. ')stn'y]

+ 2i Im(P" p)]

and

= exp f —(E,/h. )[n' cos'p+ (I/&') sin'p]$,

where Q is defined by p, =
~
g (

e'~. Note that for
a = 1 the result reduces to the coherent state re-
sult as it must. As in the coherent state result
we find that ~y~ is independent of the initial dis-
placement P. A new feature has appeared in this
result, namely phase dependence. The overlap
depends on the phase P which is a function of the
arrival time and shape of the gravity wave pulse.
To this point we have assumed that this phase is
known. In practice this assumption is incorrect
and we must in principle do a more difficult cal-
culation as described in Sec. VII. However, let
us examine the present result in more detail. For
Q, =O we have

QD = 1 —exp(- (E,/h&u)[a' cos'+ (I/o!') sin'P]]

(wave packets, Q, =O, known phase) (30)

@(d ln2
[o."cos'P + (1/ a') sin'P]

values of the phase. We see that for favorable
values of P we can make the minimum detectable
energy very small either by making e«1 or
o.» 1. It turns out that for the case Q~= 0, the
optimum decision strategy for pulses of unknown

phase is identical to the strategy for signals of
known phase. In this case QD is gotten by inte-
grating over the phase, that is

QD = I (dP/2s)(l —exp(- (E,/h(o)

and we obtain

x [o' cos'Q+ (I/n') sin'Q]])

Qs= 1-exp[ —(E,/2h(o)(&'+ I/&')]

x I,[(E,/2h(o) (n' —1/o.')]

(wave packets, Q, =O, random phase), (32)

E „=1.8E&u/o.", for a'»1,

E „=1.8n'S(d, for &'«1

(wave packets, Q, = 0, random phase) .

where I,(x) is the modified Bessel function of order
zero. We can approximate Qz& in two limits: Qs
= 1- (hu/vE, a')'i' for Kw/E, n'«1 and Qs=1
—(K&ua'/mE, )'~' for Kv~'/E, «1. We also conclude

(wave packets, known phase).

Figure 4 is a plot of Eg. (31) vs n for various

24fti

I tlQJ

I /2 llQ1
I-

I /4'hfdf)

I/8%~
X

(31)
We see that as in the case of n states we can ob-
tain high sensitivity by preparing the system in a
highly excited state. We may choose to localize
the oscillator either in position space (o.'» I) or
in momentum space (o.'«1).

We now consider another scheme which is anal-
ogous to a two-channel phase-sensitive detector. "
One builds two gravity-wave antennas. One of
them is prepared in a state ~O, r) with a=s "»1
which is highly localized in position space. The
other is prepared in the state

~
0, -r) which is

highly localized in momentum space. The optimum
decision strategy is used separately on each an-
tenna. If both antennas give null results we make
the null conclusion, otherwise we make the alter-
native conclusion. With this strategy we still have

Q, =O, but now,

I /l6 fi(t)

I/4
p-states

I/2

MOMENTUM 0]SPERS(ON a
x-states

FIG. 4. Minimum detectable signal for detection of
gravity waves of known phase for an oscQlator prepared
in the initial state

~ P, r) vs the momentum dispersion
e =e . Also shown is the curve for the case of random
phase. so

QD = —1 —exp — ' a' cos'Q+ —,sin'P
2m Sco

x exp —— —,cos P+ u sin P
@co Q

E I
1 - exp —- -- & + —

2
4p 2K S(d a'
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qD = 1 —exp[ —(Z, /R(o)(a'+ 1/u')]

(two-phase detector, Q, =O).

'This implies

Nco ln2
min (&& + 1/&2)

(34)

VII. RANDOM PHASE

In order to treat the more realistic problem of
gravity wav. es of unknown'phase we no longer have
a simple pure-state problem. The density matr~
px is given by

(two- phase detector, Q, = 0) .

The advantage of this technique is that the de-
tection efficiency depends exponentially on the
signal strength. With a single antenna the detec-
tion efficiency is a weak function of the signal
energy for random phase signals. This can be
seen in Fig. 5.

The optimum measurement for Q, = 0 is a mea-
surement of the projection operator p, = ~P, r)(r, P ~.

For large positive r the optimum measurement
can be approximated by measuring X,. The al-
most optimum decision strategy (for a single an-
tenna) is as follows. The oscillator is prepared
in the state that evolves to ~0, r) at t =0 with a» 1.
This state is highly localized in X, since ~y
= (1/o!)«1. The expectation value of X, is (X,) =0.
If a gravity wave pulse arrives, -the state at t=0
will be D(p, ) ~0, x) = ~y, , r) which is also highly
localized in X, but at a shifted value (X,) = 2p, , with
bX, = (1/a) «1. A measurement of 1, is perform-
ed and compared to zero, if a shift much bigger
than AX, =1/o.'is observed we conclude that a
gravity wave has been received.

Q.90
CI

Q'

I-

0.80
030
K
CL

Z
I-
~ 0.60
O

0.40

where we have assigned equal probability to each
value of phase. Although we do not present the
results here we have solved this problem for co-
herent states and n states. In the case @0=0 the
results are exactly the same as we have calculated
for the assumption of known phase. However, as
Q, is allowed to differ from zero the value of Q~
does not improve as fast for random phase as it
does for known phase. For the wave-packet states
the result with Q, = 0 is obtained by integrating
over the phase as we have done in Sec. VI.

VIII. CONCLUSION

We have seen that for an infinite-Q gravity-wave
antenna interacting with a classical radiation field
quantum mechanics imposes no ultimate sensitivity
limit. However, for any given initial state of the
antenna there is a sensitivity limit. We have found
this limit for several important classes of initial
states by finding the optimum detection strategy
in each case. When the antenna is prepared in a
coherent state the sensitivity limit is of the same
order as the limit arising in a detection scheme
employing a linear amplifier. Higher sensitivity
may be obtained by preparing the antenna initially
in an excited energy eigenstate or in a highly lo-
calized wave-packet state. The wave-packet
states look particularly interesting since they are
minimum-uncertainty states and it is not hard to
imagine devices which will prepare an antenna in
such a state and subsequently read it out. An
example of such a device is the degenerate para-
metric amplifier.

Although the state of the art of gravity-wave
astronomy has not yet reached the linear detection
limit, we may hope that 8. future generation of
detectors will reach and surpass it.

0.20

0.00
0.00'ho) 0.02fifu 0.04flft]

SIGNAl ENERGY Es

FIG. 5. Detection probabilitJJ vs signal energy for
single-phase and two-phase detection schemes with
u =10 and a =10/~2, respectively.
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APPENDIX

In this appendix we will establish some results
which are used in the body of the paper. First we
recall the operator identity

ei' 'f(a, ai)e "'=f(e" 'ae "' eio 'a+e i' ')t t + t

=f(ae ', a'e'). (A2)

Recalling the definition of the displacement opera-
tor D(i/, ) = exp (p, ai —}j.*a) we use (A2) to obtain

e-l(ate aD(+)eire ia at t

= ex p[p, e"'"'a~- }/.*e'"'a]=D(}/e '"') . (A3)

Another important operator identity-is the Baker-
Hausdorff formula&"

e/i+B Qese-IA B)/2 (A4)

for any operators 4 and 8 which commute with
theiz' commutator [A, B]. Applying this formula
to the displacement operator we can easily show

D(}/)D(P) = D(}/. + P) exp [-,' (P*}/, —Pp, *)]. (A5)

We may also use this identity to rewrite D(i/, ) in
normal-ordered form. We get

I

D(ii) = exp ( —o I p
I

) exp {ii,a ) exp (- // *a) . (A6)

It follows that

(i ) Io) = exp(

Equation (A6) may be used to obtain the number-

ei"Be i =B+ )[A, B]+—[A, [A, B]]+~ ~ ~ . (AI)CA iA-
21

I,etting A=ata and, B=at we find e~' 'ate r a ate'

Similarly we find ei' 'ae i' '=ae i If .f(a, at) is
any function of a and at which may be written as
a power series we have

state representation of the coherent state Io'&. We
have

I
a& = D (a ) I

0& = exp ( —k I
ir I') exp (w a')

I 0) and
thus

~N
Io&=exP(-2jnj')g „ In).

Ilao

If.B is any operator, we define its coherent-state
representation B o.'*, p) by B(ix*,p)=&o'IB IP)
xexp(~ jn Im+z Ip '). Using Eq. (A8) we can write
this as

(AS)

B(a*,P)=g,
) (,/, & mIBIn&.

Ill~0

We see that B(ci*,p) is a generating function for
the matrix elements of B in the number repre-
sentation. The coherent- state representation of
D(}) is

(A9)

D(ci*, P; u) =&&ID(u) IP& exp (-'I o'I'+-'IP
I )

=&0 ID'(n )D(}/)D(P) I0& exp (-'
I
o I'+-'IP I')

= exP ( —a I
}/

I
+ n P+ ci // - // P) ~

m&n
exp(AN+ Kz+ ipwz) =

)
D~„(X—, K, i'),

ml nl
sa o n o (A11)

with
xg f» m-n

nl ii"& "L„'""'I —.—,for m - n.
v

Setting A. = p, , z = -p *, w = a*, z = p, and v = 1 we
obtain from Eq. (A10)

We may therefore write

exp(- 2
I
p I') exp(c/*0+ o*// p*P)—

„/, &m ID(}/, ) In) . (A10)
m4 n-o

Now a generating function for the associated
Laguerre polynomials is"

&m ID (p ) In&=exp(-2
I
p I')

} I
(-}/*)" L'" "'(I}/'I') for m-n.

el&
(A12)

This gives the matrix elemept for a transition
from the state In) to the state Im) under the in-
fluence of a gravity wave. For the case m =n we
have

states let us introduce the "squeeze" operator

S{z)=-exp —(a ). ——a
2 2

&n ID(i/) In) = exp (- —,
'

I
p, I')L„(

I
p, 'I ') . (A13)

Now

To facilitate calculations with the wave-packet
Si(z) = exp -- (ai)'+ —'a' =S '(z) =S(-z).

2
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Thus S (z)S(z) = $(z)S (z) = 1 so S(z) is a unitary
operator. S induces a canonical transformation
of the creation and annihilation operators. Using
E(I. (Al) we may show

b (z)= S—n $= coshlz l~'+

f(z)-=s'ss=coshlz ls+
I I

»»lzls'.
(A14)

!t' 2S
( cosh«+ sinh«)(a + a),

. I,ma&

so St(«)tts(«) =Re '= (I/a)R, where we have defined
a = e '. Similarly we have S («)pS(r) = e"P = &P.

If lg& is the state vector of a system then $(«)
I

(t)&

represents the same system compressed in

position space by the factor n and expanded in
momentum space by the factor I/a. This is seen
since for any power k we have

&0 ls'(&)'s I(& = &( I(&/~)'Ie&

Since the transformation is canonical we have

[b, b ]=[a,at]=1. If f(a, at) is any power-series
function of a and a, then

Stf(a, a~)$ =f(5, 5 ) .

I et us examine the effect of this transformation
on the position and momentum operators for the
case where z is a real number r:

2@
S («)RS(«) = (b + 5)

e-zzotata
I p z) D(pe Scot)$(ze-aiba &)

I
0&

gg 2 j~t

The displacement P has the classical time depen-

dence, while the complex spreading factor z ro-
tates in the complex plane at twice the resonant
f req uency.

Expectation values in the wave-packet states are
easily calculated using the transformation equa-
tions (A14). We will illustrate this by computing

&0, «ID(p) Io, «) for real «. We have

&0, «
I
D ((((,)

I
0, «) = &0 ls' («)D (p )$ («)

I
0)

=&ol exp(p, f'-p*f)Io&
= &O

I
exp ((7a —&*n)

I
0&

where q = (I(. cosh« —p, * sinh«). Thus

&0, «ID(~) I
«&=&ol (»lo&=exp(

= exp[--'ll I'

x( cosh2« —sinh2«cos'(f) )],
where p, =

I
p, Ie'~. Recalling that n = e "we may

write this as

&0, « ID(p, )
I
0, «& = exp --',

I
p I' (o."cos'Q

+ —,sin'p
I
. (AI6)

1
Q j

Although we do not need it here, it is useful to
have an expression for S(z) which is in normal-
ordered form. %e find that

8 !$'(t)'$ Ic& =&&I( i)'le&.

We define the class of states IP, z) where both
z and P maybe complex by

Ip, z)=D(p)S(z)IO), wtt ~=e-',

S(z) propagates in time according to

(A15)

8- jvta o exp ++ & ejecta cg~ t

~2 jest t 82fut&22"2 '-2'
Thus the state IP, z) develops in time according to

S(z)=(costt(z()'O szp tzoo~z ~ot)

„-(sechlzl -1)"(,„„
Pl t

(A17)
8x exp

2 8 )
This form may be used to find the ln& state re-
presentation of the state Io, z):

Io, z&=s(z) Io&

= (coshlz
I

&"'

z & „(2n)!"'
x tanh z " 2n .

n~0
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