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General relativity as a limit of the de Sitter gauge theory
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The gauge character of the vierbein field is investigated by introducing the Yang-Mills
fields associated with the de Sitter gauge group and by contracting the de Sitter group
to the Poincare group. The vierbein field can indeed be seen as a gauge field consisting
of the Yang-Mills fields associated with both the Lorentz and the translational symmetry.
The local Lorentz invariance is found essential to deduce Einstein's theory of general
relativity.

5Q =e'T,Q,

where &' are n constant parameters and T, are
representatives of the n generators of a Lie group
satisfying the commutation relations

[T., Tbl =f.~&., (1.2}

with the structure constants f,b' characteristic to
the group. Then one modifies the theory by intro-
ducing n vector fields A„' so that the entire sys-
tem remains invariant when the parameters &' be-
come position-dependent functions. This local
gauge invariance is ensured if the gauge fields A„'
transform as

(1 3)

Usually (1,1) and (1,3) are referred to as the gauge
transformations of the first and. second kind, re-
spec tively.

In generalizing the Yang-Mills theory, Utiyama2
and later Kibbles attempted to formulate the gauge
theory of gravitation. Utiyama employed, as a
gauge group, the Lorentz group of six parameters
e, q (i,j=1,2, 3, 0):

5X =6 gX, E]g+6gg ——0, (1.4)

with which are associated the six gauge potentials
In order to identify the gauge fields with the

local affine connection pertaining to gravitation,

I. INTRODUCTION

The gauge theory of Yang and Mills, ' as formu-
lated by Utiyama, ' stipulates a general way to in-
troduce a set of vector potentials A„' (a =1,2, . . . , n,
p, =1,2, 3, 0) which couple minimally with a multi-
plet field Q carrying internal degrees of freedom.
First, one demands that the system of Q be invari-
ant under a linear homogeneous transformation,

however, it is necessary to introduce another set
of four vector fields or a vierbein field -b„. Kib-
ble proposed to replace the Lorentz group by the
Poincare group for which

5X =E yX +E (1 5)

and to interpret the vierbein field as a gauge field
transforming according to the rule

bb„' =e'qb~ 3„(bx—")b„', (1.6}

OX' =e'.

In fact, after the replacement of the group para-
meters by arbitrary position;dependent functions,
the Lorentz transformation (1.4), the Poincare
transformation (1.5), and the translation (1.V) all
appear to become the same general coordinate
transf ormation

bx" =f"(x), (1.8)

which we shall call the gauge transformation of the
third kind.

The gauge fields of the Yang-Mills type undergo
transformations of the second kind (1.3), whereas
the vierbein field transforms in the third way (1.6).
The action of the standard gauge group is isotrop-
ic; it leaves the contact point of spacetime intact.
In contrast, the Poincare transformation (1.5} is
inhomogeneous; the translation shifts one refer-
ence point to another. Therefore, even though the
vierbein field is introduced in conjunction with the
Poincare invariance, its gauge character is still
ambiguous.

It has also been argued by Hayashi and Nakano, 4

and very recently by Cho" that the vierbein field
can be formed from the gauge fields B„' associ-
ated with the translation group of four parameters,
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which is after all the transformation basic to the
formulation of general relativity. Furthermore,
Cho has claimed that the gauge theory of the trans-
lation group yields uniquely Einstein's theory of
gravitation and that the Poincare group leads to the
Einstein-Cartan theory of spacetime endowed with
curvature and torsion.

In the present paper, we investigate the gauge
character of the vierbein field. To this end, we
choose the de Sitter group SO(4, 1) of ten parame-
texs as the starhng gauge gxoup. %e note that the
de Sitter group is reducible to the Poincare group
by contraction. Introducing ten Yang-Mills fields
and relating the internal-coordinate transforma-
tion with the external-coordinate transformation,
we observe that upon contraction the ten gauge
fields are reduced to the local affine connection
A~" and the vierbein field b„'. The gauge trans-
formation of the third kind (1.6) is obtained from
the transformation rule of the second kind (1.3).
Thus, we propose that the vierbein field is indeed
a gauge field which consists of the Yang-Mills
fields associated with both the Lorentz and the
translational symmetry. Contrary to Cho's claim,
the local Lorentz invariance is found essential to
Einstein's theory of general relativity. Although
the fiber-bundle formulation of gauge theory is
possible and elegant, we follow the conventional
procedure' 3 in order to retain the original spirit
of gauge theory.

space-time variables x", then we have to choose
Q» of the form

Q» = v»Q —= B» Q +A»'PT, pq (2 5)

BxlR ~cpg ol(+) (2.9)

where f,& are functions characteristic to the de
Sitter transformation, whose explicit forms are
given in the Appendix. Then the group generators
can be represented by

by introducing the ten potential fields A»' p( x) which
transform, along with (2.3), according to

(2.6}

The potential fields introduced above are the typi-
cal Yang-Mills gauge fields. The commutator of
the gauge-invariant differential operators is given
by

[v„v,]=S»»"T., +A B»T., A,"B-,T.„(2.7)

where

E~f"—ag A,"—8~At" +A~, A, 'b -A~', A

(2 6)

The free Lagrangian for the gauge fields A~" may
be formed out of I'; given by (2.8).

Suppose that Q(x) is a function of tbe internal
de Sitter variables x (n =1, 2, 3, 0, 5) and that the
gauge transformation (2.3) is associated with the
transformation,

II. DE SITTER GAUGE INVARIANCE
~ah = ab ~ah ~e ~ (2.10)

I (x ) =I {Q(x), Q (x)] (2.1)

Following the standard prescription of gauge
theory, we start with a Lagrangian

where the spin matrices S,& act on the multiplet
components of Q, while the second term refers to
the internal variables of each component. In this
case, the gauge invariance means

given as a scalar function of a multiplet field Q(x)
and its derivative Q»(x) at a point x" (p, =1,2, 3, 0)
in Minkowskian space-time. Here, for conven-
ience, we employ an orthonormal set B» ——(B»x )B„
(i = 1, 2, 3, 0), defined at the point x . The de Sit-
ter gauge invariance means

5L = 50L + 5z 8~L = 0

under the transformations

gq =e'~s, q,

5Q, =p'PS.,Q, —(5x.B.),.q.

(2,11)

(2.12)

(2.13)
BL BL

5pL =—Bpq+ — BpQ» =0
under the fixed-point field transformations

(2.2)

Bpq =Q'(x) —Q(x) =p' T,pq(x),

6pq» = (BpQ») =p"(T,pq)»,

(2,3)

(2.4)

where p' =- p" (a, b = 1, 2, 3, 0, 5) are ten infinites-
imal parameters and T,~ are the representatives
of the SO(4, 1) generators. See the Appendix where
a short account of the de Sitter group, appropriate
to the present discussions, is given.

If the values of e' are all independent of the
choice of the reference point, then Q» =B»Q satis-
fies the condition (2.4). If p' are functions of the

The last expression for the variation of Q» is for-
mal in the sense that the role of the operator
(Bz"B )» in the second term is left unspecified. If
the transformation (2.9) of the internal variables

does not affect on the external coordinates x"
at 'all, tbe second term in (2.13) vanishes. ' If tbe
internal and external variables are related by

8, = Ox'8&, but if the gauge parameters &" are
global, then we can write (2.13}explicitly as

5(B»Q) =p' S,pB»Q —B»(Bx»)BIQ. (2.13')

For the local gauge invariance, we need a separate
treatment which we shall discuss in Sec. III.
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III. IMPRINTING OF THE DE SITTER GAUGE ON

SPACE-TIME

Let us now demand that the internal transforma-
tion (2.9) induce the external coordinate transfor-
mation,

The contraction of the de Sitter group to the Poin-
care group is achieved by the limiting procedure
&-0. Certainly, in the limit ~ 0, the de Sitter
transformation (4.1) becomes the Poincare trans-formationn,

5x"(z) = 5 B.x" =e"(x)g., (a)B.x". (3.1)
58 =6 gZ +6 (4.2)

Apparently the background spacetime can no longer
be Minkowskian. In general it is curved. In par-
ticular, if the parameters &" are to assume global
values, one will find the de Sitter world of constant
curvature.

As a result of imprinting (3.1), the gauge-invar-
iant derivative (2.5) can be written in the form

V, Q =B,Q+A, '~S„Q A, -' f, B x"B„Q, (3.2)

b, ' = B„z'+A.,',z'+ a„',
where

(4.3)

Now it is possible to adjust the orthonormal set
8& so that B~~ = 6~ . Thus, we replace after con-
traction the Greek indices n, P, Z, . . .by the Latin
indices i,j,0, . .. .

From the expression (3.6) for the b field, we
obtain

or

V)Q =h;~B„Q+A,' S,~Q,

where

(3.3)

B„'= IimA'~/X.
1"p

In the same lim'it, the gauge transformations (3.11)
are written as

h, "=(B, -A,"g„B,)x".

Furthermore, introducing functions b„' by

(3.4.)

(3 5)

5Q= "S Q,

5B~' =e~A„+e'~B„"—B„(5x"}B„'.

(4.4)

(4.5)

(4.6)
or by

we can define new gauge fields

and rewrite (3.4) as

V(Q =h, ~V~@,

(3.6)

(3.7)

(3.8}

5b~' =e'gb„~ B,(5x")b-„'. (4 8)

Correspondingly, the inverse of b„' transforms as

Since the variation of B„a is given by

5(B„~')= B„e',a' +e',B„z'—B,(5x")B„z', (4.7)

we can determine, by using (4.2), (4.5), and (4.6),
the transformation rule of the b field:

with 5h, =~,~h,"+B,(5x")h,.", (4.9)

V„Q = B„Q+A~' S,~Q. (3.9}

Thus we substitute h;"V~Q for Q& in the Lagrang-
ian (2.1) and replace (2.11), (2.12), and (2.13) by

M =5pL +5x f3„I =0,
& =&"~co@,

5(V~Q) =e Su V„Q —B„(5x")V„Q.

(3.10)

(3.11)

(3.12)

IV. CONTRACTION OF THE DE SITTER GAUGE

TO THE POINCARE GAUGE

The variation (2.9) of the internal variables z
can be expressed by using (A12) as

5r =e gz =e [5q —~52(5g'z„z" —2gmgq)].

The variation of V„Q is explicit and also consist-
ent with (2.13'). The variation of the gauge fields
(3.7), pertinent to (3.11) and (3.12), is given by

5A'"=e' A' —e A" —B„e' —B (5x")A" (3 13)

V. CONCLUDING REMARKS

In Kibble's formulation, the b field and the A
fields are rather independent. Now we have seen
that the b field can be derived from the gauge
fields of the Yang-Mills type and that it undergoes
the gauge transformation of the third kind (4.9).

If V~Q defined by (3.9) is interpreted as the co-
variant derivative of Q under the general coor-
dinate transformation (3.1), then it must be re-
ducible for Q =h~ v to the standard expression

V~v = 8~v + F ~pv (5 1)

with the help of the relation (Sqj) =5~ 5& —5, 5q .
This is true provided that

which is precisely the form for the variation of the
vierbein field obtained by Kibble. Therefore, we
identify the set of fields b„and k~" with the vier-
bein system, and the new gauge fields A„'~ in (3.7)
with a local affine connection.

(4.1) b), hg F pv- hg Bob (5.2)
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or

From (5.2) it follow's that

A -A =25 A, ,"I S„„

(5.3)

(qf $ q22 happ qp p qp5 1 and v1ap =0 for
a4 b). The set of real linear homogeneous trans-
formations which leave (A2} invariant form the de
Sitter group SO(4, 1) whose generators J„=-Jaa
satisfy the commutation relation

—h&."hd"(B„b„—B„b„a),

where S~„' is the torsion tensor defined by

s„„"=-,'(r'„„-r'„„).

(5.4)

(5.5)

[cfaps ~cdl —y)ad~pc qac~pd + )bc'Jad 0pda ac'

By the stereographic projection

q = P(z )z" (o. = 1, 2, 3, 0),
q'=~ 'e(z)/e(z),

(A3)

(A4)

(A5)
Using (5.2) and (5.4), we can analyze the geomet-
ries associated with the gauge symmetries.

For the translational gauge invariance, we may
setA„'~=0. As a result, we obtain

with

P(z) =(1+-,'X'z„z ) '=(1+A.q')/2,

g(z} =(1——,'X z z )
' =(1+Xq )/(2Xq ),

(A6)

(A7)
(5.6)

which characterizes a spacetime of teleparallel-
ism. e This contradicts Cho's claim that the vier-
bein field (4.3) lacking the A field leads uniquely
to Einstein's theory of general relativity. In order
to obtain Einstein's theory we must assume no tor-
sion, S» ——0, hence imposing. the condition

one can induce on the hypersphere (A2) a confor-
mally flat metric

g„d(z) =P (z)y} d . (A8)

bg (A9)

The infinitesimal de Sitter transformation with ten
parameters, 6' =-6",

A) d-Ad )
——h) hd"(B„b„»—B„b,a), (5.7) is translated in the language of z variables as

Without the restriction (5.7), we are led, as Kib-
ble suggested, to the Einstein-Cartan theory.

After completing this manuscript, we became
aware of Hayashi's paper' which points out, in
accordance with our result, that the gauge theory
of the translation group leads to a spacetime of
teleparallelism.

APPENDIX:, DE SITTER GROUP

The de Sitter world is a spacetime with uniform
curvatur e

bz" =pa'g. ,a(z),

where

~ad ~(5e zd 58 za)i

f py —& '[bay+ —a'&2(5 yZdZd —2Za Zy)],

or more simply,

bz =Pdzd +e fd™(z),

with

e P=Xe, fd

(A10)

(A11a)

(A11b)

(A12)

(A13)

&udya =~ (gayg'da —gad gay)i
2

which can be realized as a hypersphere, "
'gqbg' g =A,

(A1)

(A2)

in a five-dimensional flat space with real coordin-
ates q' (a = 1, 2, 3, 0, 5) and with the metric tensor

It is quite clear that in the limit ~- 0, the de
Sitter coordinate transformation (A10) or (A12)
becomes the Poincare transformation. This limit-
ing process, called contraction, reduces the al-
gebra (A3) to that of the Poincare group with the
generator of the translation,

P =limZ p/X. (A14)
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