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The method of Debye scalar superpotentials has previously been extended by the authors to curved spaces
to yield a constructive procedure for neutrino, electromagnetic, and gravitational perturbations of
algebraically special spacetimes. The solution of a decoupled scalar wave equation is differentiated to give the
solution of the corresponding spinor or tensor perturbation field equations. In this paper covariant
formulations and proofs are given. The results are derived in a general spinor formalism framework which
extends earlier exterior differential form and tensor treatments of the electromagnetic case.

I. INTRODUCTION

Recent advances in the explicit computation of
perturbations of spacetimes have stemmed from
the study of congruences of null geodesics and
from the development of a formal calculus based
upon null frames. These basic investigations were
done largely by Sachs, ' Goldberg and Sachs, ' and
Newman and Penrose. ' The Price4 and Bardeen-
Press equations for perturbations of Schwarzs-
child' space represent the first use of the null-
frame formalism to obtain decoupled, separable
equations governing spacetime perturbations and
the first change in approach to the problem since
the earlier Regge-Wheeler' ' methods. The es-
sential similarities between the Schwarzschild
and Kerr" spacetimes when viewed from suitably
chosen null frames (they are of the same Petrov"
type) led very soon to an extension of the Price and
Bardeen-Press approach to yield a treatment of
perturbations of the Kerr rotating-black-hole
spacetime. Fackerell and Ipser~ derived the first
decoupled equation for a Newmann-Penrose (NP)
null-frame component of the Maxwell tensor, al-
though it failed to separate variables. Teukolsky, "
by choosing to work with the radiative NP compo-
nents of the fields, obtained decoupled equations
for these two components of neutrino, electro-
magnetic, and gravitational perturbations which
did, in fact, separate variables in the Kerr metric.

This line of development, while making tract-
able the computation of zero-rest-mass fields
around a rotating black hole, has left open the
following aspects of the problem of constructing
spacetime perturbations: (a) a treatment of per-
turbations of nonvacuum spacetimes, (b) compu-
tation of the full perturbation of the Kerr space-
time, i.e. , of all components of the perturbing
Maxwell tensor, metric tensor, or Weyl tensor in

terms of a single complex scalar, (c) a covariant
formulation of the scalar wave equation and co-
variant proof that the field components given by
the scalar indeed satisfy the perturbation field
equations, and (d) a demonstration that the pertur-
bation components of the Weyl tensor are "metric, "
i.e. , that appropriate integrability conditions are
satisfied which ensure that they are derivable from
a perturbation of the metric tensor.

During this period other investigators were using
the techniques of Hertz" and Debye" potentials to
calculate perturbation fields. Mo and Papas"
treated Maxwell fields in spherical spacetimes by
a generalized three-vector analysis extension of
the Debye method. Hertz and Debye potential ap-
proaches were used by Sachs and Bergmann' and

by Campbell and Morgan'8 for linearized or weak-
field gravitational perturbations. Penrose" gave
a Hertz potential treatment for arbitrary-spin
zero-rest-mass fields on a Minkowski background.
Cohen and Kegeles" utilized the machinery of ex-
terior differential forms to generalize electromag-
netic Hertz potentials to all curved spacetimes.
This curved-space Hertz potential treatment, in
conjunction with the null-frame formalism, has
been shown to yield a curved-space extension of
the scalar Debye potential method whereby all of
the perturbation field components are given in
terms of the solutions of a single separable scalar
wave equation for each value of spin. '

'/he main result of this paper is the presentation
of a spinor framework for Hertz and Debye poten-
tials for zero-rest-mass field perturbations of
the generalized Goldberg-Sachs"' spacetimes
(i.e. , all algebraically special spacetimes admit-
ting a shear-free congruence of null geodesics
along the repeated principal null direction of the
Weyl tensor). This includes an alternate formula-
tion of the earlier differential form and tensor
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treatments of electrodynamics, "as well as spinor
proofs for the analogous treatments of neutrino
and gravitational per turbations. " The gravitation-
al results are valid in all vacuum algebraically
special spaces, while the neutrino formulation
covers the full (nonvacuum) class treated earlier'o
in the electrodynamic case.

The spinor-formalism proof of this result which
is presented in this paper provides the following
answers to the above questions regarding space-
time perturbations: (a) For spins —', and 1, the
method applies to a class of spacetimes which in-
cludes not only the vacuum black-hole spaces,
but also the matter-filled cosmological models of
Friedmann, Godel, Kantowski and Sachs, and

all other perfect-fluid mode& with local rotational
symmetry. "'~ (b) All 2s+1of the field compo-
nents are given directly in terms of the scalar
superpotential. (c) The basic spinor framework
leads to covariant formulations and proofs for
the wave equations and field-component expres-
sions. (d) Metric perturbation expressions are
given by construction as derivatives of the super-
potential, establishing that the Weyl tensor per-
turbations are "metric. "

In Sec. II we review the arbitrary-spin Hertz
potentials introduced by Penrose" in flat space.
We present a further aspect of these potentials:
A treatment of gauge transformations of the third
kind ' is given for arbitrary spin, ' which is es-
sential for the subsequent reduction of the 2s+1
components of the Hertz potential in curved space
to a single. scalar Debye potential.

Section III presents a curved-space spinor Hertz
and Debye potential treatment of electromagnet-
ism." It may be viewed either as an extension of
the spin-1 results of Sec. II to curved space, or
as a translation of the earlier exterior form and
tensor formulations~0 into the language of spinor
analysis. The final results, when summarized in
the NP' formalism, . are identical to those of Ref. 20.

A curved-space version of the neutrino Hertz
and Debye potentials" is given in Sec. IV.

The analogy between the flat-space spinor for-
mulas for the lower spins and their curved-space
generalizations leads in Sec. V to a curved-space
treatment of gravitational perturbations. Proofs
are given for metric and Weyl tensor perturbations
in all algebraically special vacuum spaces. The
results are as referred to in Refs. 20 and 21, al-
though the proofs are given here for the first time.

For ready reference, the Appendix contains
a brief recapitulation of the exterior form Hertz
and Debye potential formalism for electromagnet-
ism, as well as those formulas and identities of
spinor analysis which are essential in the above
presentation.

II. FLAT.-SPACE HERTZ POTENTIALS FOR ARBITRARY
SPIN

A. Arbitrary-spin Hertz potentials of Penrose

In investigating the asymptotic properties of
zero-rest-mass fields, Penrose" introduced a
class of potentials for arbitrary-spin fields in
Minkowski space. One of these types of potentials
is a natural extension to arbitrary spin of the
Hertzian electromagnetic or spin-1 potential
formalism. Since it is this formalism which is
extended in the present work to curved space for
spins s=-,', 1, and 2, this section is devoted to
a sketch of Penrose's treatment.

The minimal gravitational coupling rule by
which partial derivatives are replaced by cov@riant
derivatives is used to write the covariant zero-
mass field equation for a free spin-s field as

AX'V pw« ~ «0 (2.1)

where p„s. . .« is a totally symmetric spinor with
2$' lndlces

The generalized Hertzian potential of Penrose is
a spinor of the same type as the physical field,
that is, a totally symmetric 2s-spinor I'». . .~,
which is assumed to satisfy

TN' ~ ~ w' 0 (2.2)

B. Gauge freedom

Gauge transformatjons of the third kind ' are
now considered in spinor notation. These are
inhomogeneous terms which appear on the right-
hand side of Eq. (2.2) but which, with a suitable
modification of Eq. (2.3), preserve the source-
free (i.e. , free-field) character of Eq. (2.1).

The gauge terms in question are given by speci-
fied derivatives acting upon an arbitrary gauge
spinor G„„.. .~.=G„(„.. .~.) with one unprimed

where the spinor d'Alembertian operator denotes
0 =- V».V~', for, if the physical field is given by

.«=V««iV«« ''V«w P ''
1 (23)

then the field operator expression (2.1) becomes
»'' —z'ar ' ~ ~ ~ w'V (f)«s. . .«-V V~«iVaw, ~ ''V«w'P

"x' .
—u9r' ~ ~ ~ w'=V~~r ~ ~ ~ V~wiV V~~.P

(by the commuting of covariant derivatives in flat
space)

=2'"«'a« '«w~P"'" "'
by Eq. (A8)

=0 by Eq. (2.2),
which establishes that expression (2.3) is indeed a
solution of Eq. (2.1).
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and 2s —1 symmetrized primed indices. Kith
such terms included, the gauge transformed ver-
sions of Eqs. (2.2) and (2.3) are"

Px N' ' ' ' w' —2VA(x
A (2.4)

(where the symmetrization applies to the 2s primed
indices on the right side) and

—u'N's ~ ~ ~ W4 AB ~ ~ ~ K AN' BN ' VKW iP

N t ~ ~ ~ Wl—V~ SN S ~ ~ ~ VK W.G (2.5)

(where the symmetrization applies to the 2s un-
primed indices in the last term). That ItIAB. . .K
given by Eq. (2.5} is indeed a solution to Eq. (2.1}
is now shown:

I

AX ' — AX' Af 'N 'S ~ ~ ~ V W' AX' N'S' ~ ~ ~ 7' W'
%ABC ' ' '1K VAN' BN' CS' ' J'V' KW'P V(8N'Vcs' ' ' VJv'VKW'GA)

N'N'S' ~ V' W
' . AX'1 N'S' ~ ~ ~ V'W'

AN BN' C S' J ' KW''V 2s
——V (VBNiVCS' ' ' ' Vzv'VKW'GA

N'SS ~ ~ ~ V'W '
+VAN Vcs . VJv VKW ~a + e o ~

N' s' ~ ~ ~ v'w'i+ V &NIVC SI ~ ~ ~ VJV VAW QE

(with 2s terms contained in parentheses, which arise from the definition of symmetrization of indices)

[VAX'V PN'N'S' ' ' 'V'W' (VAX'g N'Si F'W' VAN G
X'S' ' 'V'W'

aW' CS' ' '' Jv' Kw' 2$

pVAW'G N'S' ' ' ' V'X')]

ie A N' X' S' ~ ~ ~ V'W ' AX' ¹S'~ ~ ~ V'W 'i.+ V BNPVcsv w w ~ V JvsVKWIV QA2$ AN' CS ' JV' KW' B + W W W

A W' N'S' ~ ~ V'X' AX' N'S' ~ ~ - V'W' iBN' CS ' ' J'V' KIV' GA BN' CS JV' Aw GK

(where there are 2s terms in the first set of parentheses, 2s —1pairs of terms in the second set of square brack-
ets, and 2$ —1 terms have been added and subtracted, making use of the commuting of covariant deriva-
tives in flat space)

(~I+ XN' 'S' ' ' V'O' VA(X'G N'S' ' V'W'))
aN' C S'

r j. x's' ~ ~ v'w' x' NS ''~VW+—I( Vcs "Vzv VKw 5B2$ 2VCS' JV' Kw'5 RGB + ~ ~ ~

j. N'S' ' ~ V'X' X' N'S' ~ ~ ~ V'W'vi ~(2 BN CS' JV'5K GA BN' C S' JV' W'PGK

[where there are 2s —1 pairs of terms in the
square brackets and repeated use has been made of
the identity, Eq. (A8}]= 0 by the wave equation (2.4)
for the first term and by pairwise cancellation for the
remaining 2s —1 terms.

This section has established Eqs. (2.4) and (2.5)
as the flat-space arbitrary-spin analogs of the
electromagnetic theory equations (Al) and (A4).

The chief results of this paper consist of an ex-
tension of Eqs. (2.4) an'd (2.5) to curved space for
the cases $ = —,', 1, and 2 and a subsequent Debye
complex scalar reduction of the potential for these
cases.

differentiated once to obtain the vector potential,
which in turn is differentiated once to produce the
Maxwell field, while (2) the spin-2 Hertz potential
is differentiated twice to yield the metric, which
is differentiated twice again to give the %eyl ten-
sor.

(1) For the spin-1 case, this result is proved in
exterior form and tensor notation in Ref. 20 and
the relevant formulas are repeated here in the
Appendix, Eqs. (Al) -(A4). An equivalent flat-
space spinor treatment is as follows.

The spin-1 or 2-index case of Sec. IIA above
states that

C. Vector potential and metric perturbations VAX'y =0 (2.6)

Potentials intermediate between the Hertzian
superpotentials and their corresponding zero-mass
fields for spins 1 and 2 are well known —they are
the vector potential and metric fields, respectively.
These potentials are "half-way" between the Hertz
potentials and the zero-rest-mass fields, in the

sense that (1) the Hertz potential for spin 1 is

—x'r '
O'AB AX' BY'

provided that the Hertz potential I'x ~ obeys

(2.7)

pP'"' =0. (2.8)

that is, Maxwell's source-free equations are iden-
tically satisfied, for any IfIAB given by
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If now the vector potential is defined by
zl

ABY' V ps Y' cB ~ (2.9)

[cf. Eq. (A2)], then the tensor f„„which is defined
in the usual way in terms of this potential, i.e. ,
f~= V„A„-V„A„, is related under the standard
skew 2-tensor-symmetric 2-spinor correspon-
dence [Eq. (A10)] to (j)AB given by Eq. (2.7) and
therefore is a Maxwell field. (Here and below,
c.c. denotes complex conjugate. ) To see this,
consider the tensor

fAX BF AX'ABY' BF AAX' &

we wish to show, for JAB given by Eq. (2.7), that

fAX'BY' AB 4'Y' 'XFA AB&

which is done by direct substitution:

z fl
fAF, BY) =VAxiVBztPFe VBY VAziPxr +c,c.

Zl Zl
AX' Bz' F' BX' Az Y'

by Eq. (2.9) is indeed the vector potential in the
standard sense and is given by a simple differ-
ential operation on the Hertzian superpotential.
We see, furthermore, from Eqs. (2.7) and (2.9)
that

JAB =VAX AB
X' (2.10)

VAF'y 0 (2.11)

i.e. , the source-free Maxwell equations are still
satisfied, for JAB of the form

~xt Y' x'
CAB AX' BF' (AX' B) (2.12)

where GBx is an arbitrary spinor of indicated
type, provided that the wave equation

since the conjugate term in Eq. (2.9}contributes
nothing to Eq. (2.10) by virtue of the wave condition
(2.8).

In the presence of gauge transformations, the
2-index case of Sec. IIB becomes

z' z'
BX' Az' F ' BY"' Az' Xl

(by addition and subtraction of terms}
H

— Z' —R'z'
Ap px' z PY + CxtY lVB~tV AzlP

[by Eq. (A6)].

Jj)x'r ' 2vA(x'G Y' ')

is obeyed by the potential and gauge spinors.
Here it is shown that the expression

zAer' = V Bz P r' —GB„.+ c.c.

(2.13)

(2.14)

But Eq. (A8) and the wave equation (2.8) for P" "
imply that the first term vanishes, leaving

RZ
fAx BYi ExerrVBBIVAziP xerz(t)AB +c~ c ~

as claimed. This establishes that A» as given

is the gauge-transformed vector potential corres-
ponding to Eq. (A2) from which the field JAB given
by Eq. (2.12) is obtained by the standard rule. The
proof is carried out much as above in the absence
of gauge terms:

fAX'BF' AX'ABF' BF'AAX'
zt z'

VA (VBz PY GB Y ) VBF (VAz P —GAX)+C. C.

z' zt zt zt
VAx.VBztPY l VBx VAzlP~l +VexlVAztP&t Va&tVAztPxt

BY'GAX' AX ~BÃ'
z' ~tz'

~ABVHxtV ztPY' + ~x'Y'tV BatV Az'~ Var'GAxt Ax'~B Y'.

In this case Eq. (A8) and the wave equation (2.13)
allow the substitution e»VH~x. G „.~ for the first
term, while Eq. (A13) gives for the last two terms
the alternate expression -e»V«x.g "~

&

-ex Y V~»GB) . With these substitutions, we
have

X H
fAx'BY' ~ABi H(r Y') VH(x'G Y')}

—R'zt S i+ Bri Y i(V BB' VAziP —V( AziG B)

eX PA FB

that the relation between the vector potential and
the Maxwell spinor is

CAB V(AX' AB)
Y' (2.15)

since the contributions to this expression from the
conjugate terms in Eq. (2.14) vanish by the wave
equation (2.13).

(2) In the spin-2 or linearized gravitational case,
it is claimed that the metric perturbations of flat
space are given in the absence of gauge terms by"

Thus we have shown that Eq. (2.14) is the standard
vector potential for the Maxwell field (2.2) in
terms of a Hertz potential and gauge spinor obeying
Eq. (2.13). From Eqs. (2.12) and (2.14), it is seen

uter' —~'z'ptq'
A g D Vg plV gqtP +C.C.

That is, the 4-index case of Sec. IIA,
Ax' i

VABCD

(2.16)

(2.17)
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PN'N'P'q' 0 (2.18)

and that the perturbed Weyl tensor $ABcD is re-
lated through the standard formula. "

(interpreted as the free spin-2 field equation for
the perturbed Weyl tensor), is satisfied identically
provided that the potential obeys

the arbitrary-spin proof of Sec. IIA gives the
desired result.

The proof which shows that R 8 =0 is satisfied
by the perturbed metric (2.16) is immediate and
involves only the repeated use of Eq. (A8) and the
wave equation (2.18) for the potential. Substitution
of (2.16) into (2.20) gives

2~a/y & ~ay;8& ~85;ay ~ay', a& ~ah, sy
(0) a (0) a
aayb 8 R Soyh a (2.19)

E — R'P'q'2R As 'ar' ax' As ' Ep' q' R'

ERt plql+ V V ERtV Apt VBqlPSr txl

W'X'
~ABC D AW '+ Br' C D (2.21)

which in combination with' the formula (2.16) and

to the perturbed metric and hence via Eq. (2.16)
to the potential (the background curvature terms
are included for the discussion below of perturba-
tions of curved space, although of course they are
absent in the present considerations}.

This result is shown in two ways, one of which
focuses attention on the perturbed curvature and
the other on the metric. The first approach shows
by direct calculation that the metric (2.16) is a
solution of the perturbed Einstein vacuum field
equationR 8=0, which in terms of the metric
becomes'~ "

2&„s=h. B+h B, r-hr„.sr-brB. r=0, (2.20}

where h denotes the trace of h„„(indices always
being raised and lowered with the background
metric). The second proof establishes that Eq.
(2.19) in spinor notation becomes simply

E —R' p'q'
ER' BX' P' Aq' W '

E ~Rt prqr
VERtV Aw tV prVBqrP xt + c wc ~

Each term vanishes by application of the identity
VBB VBP =-',

esca

[Eq. (A8)] in combination with
the wave equation (2.18) and the commuting of
covariant derivatives in flat space, except for the
second term which contains the d'Alembertian
operator directly.

Alternatively, the proof which concentrates on
the perturbed%eyl tensor and mades use of the
results of Sec. IIA proceeds by substitution of
Eq. (2.16) into Eq. (2.19), which leads eventually
(up to a constant factor} to

Aw'Bx cY Dz' ~w'x eY'z 4ABcD

[cf. Eq. (A14)]

with $ABcD given by Eq. (2.21) or by the 4-index
case of Eq. (2.3), as claimed. To see this, one
writes Eq. (2.19) as

R Aw''ax'c r 'Dz' ax' Dz' As 'c r' + Aw' c r't ax'Dz' As ' Dz' ax'c r ' ax' cr ' Aw'Dz'

Aw' cr ~Br Dz' Bw' cr' Ax'Dz' Bw' cr' Ax'Dz' Bx' cr' Aw'Dz'

ax' Dz' Aw'c Y' Ax' Dz' aw'cr ' Ax' Dz' aw'cr' Aw't oz' 'ax'cr '

(by addition and subtraction of terms)

V ~ z. R'
CAB v ESrt v Crti& XtDZr + ESrtxt aR C r A 'DZ + CBA EX DZ St Cr + &X St ARt DZr

[by application of Eq. (A6)]

l EvEW. v Cr.- X DZ. —CABVEwtvDrtk XtCZ. +EABvEWt vDrtn. XrCZ

~AS EX' Dr't W'tCZ ' ~AB "EX'"DY' W'CZ' ~AB EX' DZ' W CY'

y
R r'c

R' R'+ E'W rXtV aRtVC rtrcA DZ' —CwrxtVBRrVCZr rcA D Y r + CWrx tVBRtVcztrcA D Y

-r'c
R' r'- "'

r'c
R'—E'w x VAR Vcz.rc& Dr +E'w x VAR Vcz rca Dr 'Qw x AR Dz rca cr

(by addition and subtraction of terms)

y„EF L ER' t.E R
&AB~CD "EW'"Fr'" X'Z'+ &Aa&wtX'"ER'VDY'" CZ'+&AB&Y'Zt v EX' DR'" W'C

Rr S' y ER' RE+Cwtxt E'Y zr VBRrVcstkAD + E'wtxtE'BAvERt&cz i& Drt+Cwtxr ccDVARrVEzrr B (2.22)
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[by application of Eq. (A6)]. If now the first term
of Eq. (2.16) is substituted in this expression for
the perturbed Riemann tensor, all terms except
the fourth vanish by application of Eq. (A8) and
the wave equation (2.18). Similarly, when the con-
jugate term in Eq. (2.16) is substituted, only the
first term in this expression contributes. To-
gether, they yield

2R Aw BX«CY«'DZ« = EABCCDPW«X Y«Z«

+~W«X«&Y«Z«PABCD r

with $»cD given by the spin-2 case of Eq. (2.3).
This result, together with the proof of Sec. IIA
that $»cD satisfies the zero-rest-mass spin-2
wave equation, establishes that Eq. (2.16) gives
the metric perturbations of Minkowski space.

The final results to be shown in this section con-
sist of a generalization of these two proofs for the
metric perturbation formula (2.16) to include gauge
transformations of the third kind. That is, it is
now shown that

OP jI N P Q 2VA(N G
N'P'Q') (2.24)

and that the Weyl tensor is given by Eq. (2.19)
which becomes

PABCD V(AZ«VBF'@CD)

or, in terms of the potential,
—u/Ntp'q'

&ABCD
= Az' an" cp' Dg'

Ntptq t

(BN' cs ' Dq'G A)

(2.26)

(2.26)

[the conjugate terms in Eq. (2.23) not contributing
to PAacD because of Eq. (2.24)].

For the first proof, direct substitution of the
perturbed metric (2.23) into the perturbed vacuum
field equation R„a =0 [Eq. (2.20)] gives

—.e/N'P'Q' u/N/P'
Ac~ —Vcp/V~q/P V(cpt GD) +c.c,

(2.23)

gives the metric perturbations of flat space, pro-
vided that the 4-index case of Sec. II8 holds, i.e. ,
that the potential obeys

E — R/P'q' E) R/Pti ER' r p/q/ P'x
2RAW«axi =V a»««7AW «(Vzp«V gr Pzi —V(zpr G zi }+V Vzzr(VAp Vaqi Pwrxr —V(Ap Ga)w«ixi )

—R' s 'q' (E R' P' E .—R' p'q' (E R' s '
zz' Bx'( p' Aq' w' p' A) w' ) zz' Aw'( p' aq'' x' p' a) x'

The two terms in the first parentheses each vanish since contraction on a pair of symmetrized spinor in-
dices gives zero (which shows that hcaz" is trace-free). The remaining terms may be written as

ptql Plqt 1 E Ptqt 1 Ept Qt 1 Eqt P'x
2RAW«a»r =VAp«Vagr( Pwr»r —zV w«GB». —ZV»iGzw' z& Gzwrx«&'"ri Gzw'»' )

rl E P/q/ 1 E S 'q' 1 ES ' q' 1 Eg' P'x
+vip/vBQ (2v w' GEx + 2v xt GEwt + 2v GEwtx/ + 2v GEwtx/ )

1 P/ E R' S' ER' P/x
22j vApt Gzw/xt + v-'Bp/ GAW/x/ ) + 2vER/vBxtl(v p/ GA w t + vApt G

1 E R' P' ERI P'i 1 R/ P/g/ R' P'Q'
2 ER Aw ( p B x + Bp G x ) 2 Bx/E'R p OVAQ/P wt 2 Aw/E'R/p/OVBQ/P

by addition and subtraction of terms. The last two terms are obtained by application of Eq. (A8) and each
vanishes since the potential is symmetric in A and P while E'R p is skew. Recombination of these terms
gives

ptq / Ptq')) E ptqt
RAw'ax' = Ap' Bq'( w'x' (w' Gzx' /+ a Ap' Bq' w' Gzx'

1 ptq/ EP' Q' Eq/ P/ P/ p/
+ 2 Ap'V BQ' z' GEW' + 2 AP' Bq' GEW''x' + 2 AP' Bq' GEW'x' ~~ AP' G Bw'X ™& VBp' GAW'x'

1 E R' ER/ S' E R' S' ZR/ S'
ER'V Bx' s ' GA w' + 2 ER'V Bx' Ap' G w' + 2 ER'VAw' s ' GB x' + 2 ER' Aw' BP' G x'

The terms in parentheses add up to zero by the wave equation (2.24). Qf the remaining ten terms, the sec-
ond and eighth may be combined using Eq. (A6) to yield

1 E P'Q' Egt P/ z/ E Ptg/——,VEx VBQ/VAP/ G w. +,VEq.VBx/V„p. G w. —2&gtx/VEz/VB VAP'G wt

which may in turn by use of Eq. (A8) by written as —,'eq.»rzzaVAp GB„Pg or —,'VAp. Gaw.»P. Similarly,
the first and tenth termS combine to give —,'Vap GAw. x,~. Furthermore, Eq. (A8) may be used to generate
the d'Alembertian operator in each of the remaining terms. With all of these substitutions, we have

1 Pl Pl gt
Aw Bx =4 Bp GAw x +4 As GBw x +4 Bq Awtx

1 p/ Pt P/
4 Ap OGBw x 2 Ap Gaw x 2 Bp GAwtx 4VBx ~R p GA w' 4VAW O~R p'GB x

The last two terms each vanish by contraction of symmetric indices, while the remaining terms cancel,
thus completing the proof.

Finally, the proof of the perturbed metric expression (2.23) which concentrates on the perturbed Weyl
tensor is generalized to include gauge transformations of the third kind. To do this it suffices to show
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that with the perturbed metric given by Eq. (2.23), the perturbed Weyl tensor which follows from Eq.
(2.19) is in fact just Eq. (2.25), or equivalently, Eq. (2.26). The proof itself then follows from the arbit-
rary-spin results of Sec. IIB.

A spinor computation which shows directly that Eq. (2.19) does in fact yield Eq. (2.25) for the Weyl tensor
is now sketched. As shown above, Eq. (2.19}may be transformed to the spinor expression (2.22) for the
perturbed curvature spinor. Substitution of the first term of Eq. (2.23) into Eq. (2.22), with repeated ap-
plication of Eq. (A8} yields

f 1 plqr p' pr 1 F P'x
2+AWrBxrc YtDzr = CAB&CDR 46Wrp &r rqr Q PXrzr ~&Wrpr Vp rr G xtzr gCrtpr Vp w t G Xrzr )

j1 —R' prqr ER' Prw
~AB w' x~~ R'P'+ Dr'r CQ' z 4 R P + DY' GC z' 2 ER' DY' CP' z

/1 prQr 1 R' ER' P'x
+~AB~r rZt&2~X'p' VDR'V Cq'~ W' 4~X'p'+ DR' GC W' 2 EX' DR' Cp' G

—Rr SrP'Q' Rr Srpt RI SIP+ Ewtxte F tzt(V 2RtV c s,V APt VDC tP 2VBR' CS'VAPZ GD ~ BR' CS DP GA

Il prqt pr ER' Pti
+EWrxrEBA(2&RrprC3VCzrVDqlP rt gkRrpt Vczr GD rr zVERrVczlVDpr G rr

Il —R' J'q' ER' Rr p'i
+&w'x'&CD(2eztqtGVAR VBp P r' —2VAR Ez Bp G r —2ez PG AR'GB r' ).

In the second and fifth set of parentheses, the first two terms each vanish by contraction of symmetric
spinor indices. The strategy at this point is to regroup the remaining terms by adding and subtracting
suitable terms in such a way as to generate the expression (2.26) for (ABcD and also to generate the differ-
ence between the potential and gauge terms in Eq. (2.24) [which then cancel by the wave equation (2.24}].
This procedure gives

mN 'N'P'Q' Nrprqri
+AW'BX'CF'DZ' ~ XW' F'Z'( AN'VBN' CP' DQ'P —V(BN.V CprV Dqr GA)

1 ER'S'P' ER'SrPri
&~W rxr~r'z'&ecDV BRrV AprVESi G + EBAVC Sr &p ER G

1 Il R' E+4&AS'ECtP(z&X'F' V R'GBW' z'+ 2&z W'V R'GB x'F'}
1 E R'S'q' 1 ER' q' 1 Eq' R'—2EABCFtztVDRtVCc t(z&WtztV St GB + 2V GBWtzt +2V GB 2 tzt)

1 gl E R S'P 1 ER' EP'
c D~w 'x' AR' BP'i Ze F'z' s' GB 2V Gzz'Y ' + 2V GB Y 'z')

1 ER' r ER Pt
2 AB~W'x'VER'VDY' CP' G Z' 2~AB W''x'VER'Vcz VDp' ~ Y'

R' R'
A~Fr z 0 DR Gc wtx + 4&wrx&cD~ AR GB r'z' t

where terms canceling by Eq. (2.24} have been
omitted. All terms beyond the first may be shown
to cancel one another by suitably combining them
and applying Eq. (A8), as well as by addition and
subtraction of terms followed by use of Eq. (A6).

The whole procedure outlined here may be re-
peated for the complex-conjugate term in the
metric (2.23), giving finally

N' ~ ~ ~ W'
V~ BNr ~ ~ ~ Vz'wr G4 (2 5)

with { AN' ~ ~ ~ w GA(N' ~ ~ ~ w') an arbitrary spj
of indicated type, and that (2) a wave condition

are satisfied by Hertzian superpotentials P». . .~
of the same spinor type as the fields themselves,
provided that (1) the fields are given by

—e'Nr ~ ~ ~ W'
JAB. . .X

—VA„tVB„t ~ ~ ~ Vx„,tP

~AW'BX'CY'DZ' ~AB~CD4'XtYtzt ~W X ~Y z'0tAtBCDtt +yx'N' ~ ~ w 2VA(x' G
N' ~ ~ w')

A (2.4)
with $ABcD given by Eq. (2.26). This result, with
vanishing perturbed Ricci tensor, establishes that
Eq. (2.25) [or equivalently, Eq. (2.26)] indeed gives
the %eyl tensor as claimed. The results of Sec.
IIB then complete the second proof that Eq. (2.23)
gives the metric perturbations of flat space with
gauge transformations of the third kind.

D. Summary Of Sec. II

It has been shown that in flat space, the arbi-
trary-spin zero-rest-mass field equations

z'
pB rr VBZt PYI GBYt + CoCo (2.14)

and

is satisfied by the potential and the gauge spinor
G N ~ ~ ~ W'

A

Furthermore, the flat-space vector potential and
metric perturbations are obtained by simple dif-
ferentiations of the corresponding Hertzian poten-
tials, which in turn yield ihe Maxwell field or Acyl
tensor, respectively, by further differentiation.
These relations are

AX'
O'AB t X (2.1)

x'
CAB V(AX' +B) (2.15)
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w x'
~ABCD (AW' BX' CD)

for spin 2 or linearized gravitation.

(2.25)

for spin 1 or electrodynamics, and
v'ar' —u'ar'I"q' ~F9'Acg —Vcp BV~i P —V(cpi GD) +c.c.

(2.23)

and

rank spinor does not correspond to the d'Alember-
tian operator [the first term of Eq. (3.6)j, except
in flat space where the remaining terms of Eq.-
(3.6) vanish by the Ricci identities.

The same procedure when applied to the pre-
scriptions (A4) for the Maxwell field yields two ex-
pressions for JAB in terms of Pw x, which be-
come identical by virtue of the wave condition, Eq.
(3.6). The expressions are

III. SPIN-1 HERTZ, DEBYE, AND VECTOR POTENTIALS
IN CURVED SPACE

—R'Z' DR'
I}AB

= V(ARiVB)xrP —V(ARiV PB)D (3.7a)

The results of this section may be viewed either
as a translation of the results of Ref. 20 into spin-
or notation, or as a generalization of the spin-1
results of the last section to curved spacetimes.
Either viewpoint leads in a fairly natural way to
the formalism below, although the first provides a
more systematic development.

The correspondence of spinors and tensors
given by Eq. (A10) is now used to show that Eq.
(2.1) for s = 1,

VAx'y 0

is indeed the spinor version of Maxwell's equa-
tions, which for convenience are repeated here in
tensor notation:

—R'Z' Dz'
P&B +v(~.vB)z iP —v v(BZ.PgD

(3.7b)

where the symmetrization applies to A and B. To
show that these are in fact the same one uses the
spinor identity

~AB (AR ~B)C (BR'OAC &

CR' CR'
(3 8)

CR'
(AR' B)C (3.9)

Next Eq. (3.7b) becomes, by virtue of Eq. (3.8),

which is given in the Appeiidix as Eq. (A16) and is
proved there. The first application of this identity
will be to Eq. (3.6), where direct substitution
shows that the wave operator becomes

V„f„,+V„f,„+V}f}p = 0,
V"f„, =0.

Writing

(3.2a)

(3.2b)

JAB =V(ARPV PB}c+V(ARIVB)xsP (3 10)

Finally, the harmonic condition (3.9) is used in
Eqs. (3.7a) and (3.10) to show that they both be-
come

fAW'BX' ~ABC W'X' XW'CAB (3.3) —R'Z'
AA 8 ( AR B)X' (3.11)

according to the bivector-spinor correspondence
of Eq. (A10) and expressing Eq. (3.2b) in spinor
notation gives

wx'
(~ABew x +ew x PAL =o. (3.4)

Ax'
( ABAW X - ~W X AAB) (3.5)

Subtracting Eq. (3.5) from Eq. (3.4) yields Eq.
(3.1) as claimed.

A. Hertz potentials

Similarly a direct transcription of the harmonic
operator of Eq. (Al) via the correspondence Eq.
(A10) into spinor notation yields

CR' CR'
PAB +V(ARIV PB)c V V(BR~PA}c —0 s (3 6)

where the free unprimed indices A and B are sym-
metrized and the symmetric spinor P» corres-
ponds to the Hertz potential by the standard rela-
tion (A10), P —eABPw, x +ew.x.PAB. It is to be
noted that the harmonic operator on a second-

Moreover, Eq. (3.2a) states that V"(*f„„)=0, which
by Eq. (A15) becomes

This. equation together with the complex conjugate
of Eq. (3.9),

V~(x'V PR')z' 0 (3.12)

are the desired curved-space extensions of Eqs.
(2.3) and (2.2) for spin s =1. It should be remarked
that Eq. (2.3) has been generalized to curved space
in the most natural and obvious way, by mere sym-
metrization of the derivatives, the flat-space ex-
pression being automatically symmetric in the
derivatives by the flat-space commutation property.

That JAB given by Eq. (3.11) satisfies the Max-
well equation (3.1) by virtue of the wave condition
(3.12) is now proved in spinor notation. One ap-
proach would be to transcribe the tensor proof of
Ref. 20 into spinor notation, but a more direct,
purely spinor approach will be adopted instead.
The basic strategy of the proof is to break up
V JAB with JAB given by Eq. (3.11) into a piece
which vanishes because of Eq. (3.12), and other
terms which are commutators and vanish by the
Ricci identities, Eqs. (A19) and (A20). The com-
putation is presented here:
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V" 'OAR=V '(V(»VB)s P'')
gaby Eq. (3")i

—2(V VA VBS P +V VBRiVASiP )

=V»VBsiVAR. PR s + —,'V"x(V» VBs.—VBEV„R)P" s (using the symmetry of P" s)

VBS'V VAR ~ (V VB2 BS )VARiP 2 (VAR'VB 2 VBS VAR )P
1 wx' —z's' ~X' S'S' ~' —'s'= 2V BSiV V ASAP + 2VBSV».V 7 + 2V BS.(V VAR. —VARV )P

BS' BS' ) AR' 2 ( AR' BS' BS' AR')

But V""P" 2 —V"s P"» =ex V"2 PRE, so the second term may be replaced by ,'VBs—VARi(VAs P»
+s»sV siPRE). Furthermore, V„RV"s P"» =V"sV„R,PR» +(V„R,V"s -V"sV», )P ", so the expression
for the seoond term becomes 2V» V—"sV».P"x + —

V2Bs.(V»V~ —V"s V» )P"~+ ,'V B"V—»VAs, PR s.
Hence, substituting,

4AB BS' AR' 2VBS( AR' AR')P 2 B AR'

+ —V,(VA» V, V V»')PR's + (VAx'V V V Ax') V +R's' + VAx'(V V V V )PR'S'

(3.13)

These three terms are now expressed via the
Hicci identities in terms of curvature quantities.

In the first term-, the last two operators
V z V„R,P =V «,V„„.)I' may be expressed,
using the complex conjugate of Eq. (A19) and the
Leibnitz product rule, as

A z' R'x' —R' z'& (z &~z')& --+Rz & +2~ (g&z)

R' —z'x' ~zs a'
z' ~'I + 2 AP (R'gz') ~

But the %ey1 spinor is totally symmetric and hence
the contractions vanish. The terms involving the
curvature scalar are

A(2P „+P" 5„»)+A+ 5 " +2P )
~R' 0

by the symmetry of the potential. Hence the first
term vanishes.

The second term may be rewritten as

(-5",V, (»'V', , ) —5' s,V("S,V„')(„',
where $~ =-V„R P, and where use has been
made of Eq. (A12). In evaluating the first term in
Eq. (3.15), one finds by the conjugates of Eqs.
(A19) and (A20) and the I,eibnitz rule that

(3.15)

The first term van'ishes by the wave condition Eq.
(3.12). The second and fourth terms combine by
Eq. (A5) to yield 2s'»'v». (v»,v",, vAs, v—»,)PR",
which in turn combines with the third term, leav-
ing

i& ri&w & yR z
YAg 2 B

+(V VBSr —VBS.V )VARiP"

~X' R's+ 2V (VAR'VB S' VB S'VAR')P

(3.14)

g zs
(X' ES')~AY +»S'Y' '2~A

+ A&A(»&S)Y -@AE»S& Y"g

Hence

(x' 8 s' —x' s' z'
E S')~A S' 2'~A

(x' s' x' zs'—2A)A SS.) +C AE

The contracted Weyl tensor vanishes and the re-
maining terms work out to be

-A(4 2'&A )+O'A S&

X +@»'
DIES

Hence the first term in Eq. (3.15) is
g~ ~ (x'~z ~ yR's's'} xs'

,PR»' @,
x' VE PR's' (3 15)

The second term in Eq. (3.15) is evaluated simil-
arly, making use again of Eqs. (A19) and (A20),
the Leibnitz rule, and the Hermiticity of @»~,x
and reality of A. The result is just the negative
of Eq. (3.15), so the second term in Eq. (3.14)
vanishes.

The commutator in the third term in Eq. (3.14)
may be rewritten by Eq. (A12) as

z —a' s' z'~z's'
-&&8&a(R'& s')& + &z's'&(wz'&a) ~ ~

The second of these vanished by the antisymmetry
of c~.s. and the symmetry of P"'s'. The first term
contains the factor V~(„.V~s,)PR, which was
shown above to vanish in the discussion of the
first term of Eq. (3.14).

Hence it has been established that if the po-
tential obeys the harmonic condition (3.12), then

JAB given by the second-order operation (3.11)
is a solution to Eq. (3.1), i.e. , P» obeys Maxwell's
equations.
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(3.17)
and

~)9"g'
AAB (AR' B)Z' V(AR'GB) (3.18)

The formalism for gauge transformations of
the third kind is now expressed in spinor notation
for the curved-space case. The analogs of the
flat-space Eqs. (2.4) and (2.5) of the last section
for s = I are

VA(x'V PR')z' V A(x'G R')
AZ' A

These are the spinor translations of Eqs. (Al) and

(A4), i.e. , of Eqs. (3.7) and (3.8) or Eqs. (4.6) and
(4.7) of Ref. 20. They are the spinor version of
the Hertz potential formalism as generalized to all
curved spacetimes.

The proof is now presented that pA~ given by
Eq. (3.18) is a source-free Maxwell field, i.e. ,
obeys Eq. (3.1):

AX' AX' ~m'z' Ax&V JAB =V V(AR.V B)z ~ —V -
V(AR G»

Ar' —R'Z' AX R' AXB AX' R'
V(AR'VB)Z~+ 2 BR' GA 2(V VBR. — BR.V )G„

—BVBR V"'GA +z(VBR V"'GA -V" VAR GB (3.19)

The second and fourth terms combine to yield
-V».V" Q„" . The commutator in the third
term is seen to vanish by the Ricci identities:

(V VBR. —VBR V" )GA =(-5 BV» V R.)
x' (A—5 RIV B.VB) )G„

[by Eq. (A12)j .
This is the same as expression (3.15) which was
shown above to be zero. If Eq. (3.13) is now sub-
stituted for the first term in Eq. (3.19), making
use of the fact that all terms in Eq. (3.13) except
for the first have been shown to vanish identically
by the Ricci identities, Eq. (3.19) becomes

VAX'y . —V VA(X'V PB')R' V VA'(X'G B')

+ B(VBR stV GA V V ARsGB )

(3.20)

The first two terms cancel by the assumed poten-
tial wave equation (3.17). The last term is now

shown to vanish. The first term in the parentheses,
V».V GA, may be rewritten as follows: Since

VAR'g X' VA V R'G X' —g AgG X'
G

X'
BR' A R' B A B A B

which may be written as

2VBR V GA + (V V BR.—V BRiv )GA — GB

we have for the first term
AR' X' ~ X' j, AR' AR' X'

VBR.V GA —MBGB —z(V V»RE- VBRiv )GA

(3.21)

Similarly, the second term is shown to be
AX' R' 1 X' Ag' AX' R'-V VAR.G B

—-M~GB + z (VAR.V —V V AR. ) G B

(3.22)

Hence in the sum of Eqs. (3.21) and (3.22) the
d'Alembertian terms cancel one another. The

2( 3AG
x' ~@ x' GBB') (3.23)

as indicated in the discussion of Eq. (3.15) where
the same expression occurs. Similarly the com-
mutator in Eq. (3.22) is

(VAR V -V VAR )GB

-(2V V»x')p5 R'V VA)P')G R'

The second term vanishes because of the con-
tracted symmetrized indices;. the first is equal to
(3.23) as shown by the Ricci identities and dis-
cussed above in connection with Eq. (3.16). Hence
the sum of Eqs. (3.21) and (3.22) vanishes, and
the entire right-hand side of Eq. (3.20) has been
shown to be zero. This establishes the spinor
form of the electrodynamic Hertz formalism, Eqs.
(3.17) and (3.18), with gauge transformations of
the third kind.

B. Vector potentials

Equation (2.14) for the vector potential in flat
space expressed as a covariant derivative of the
Hertz potential is in fact equally valid in curved
space. The proof that this is so requires only a
minor modification of the proof of Eq. (2.14). Here
it is shown that if the Hertz potential obeys Eq.
(3.17), then the quantity

z'
ABy = VBz PY' 6 Bgi+ C.C. (3.24)

generates the field spinor pAB given by Eq. (3.18)

remaining commutators cancel as well, as may
be seen by applying the Ricci identities: From
Eq. (3.21), the commutator is

AR' X' A (R' lf X'-
(V VBRt V»»&V )GA 5 BV» V Rt)GA

(A P' X'~ 2V ~sVB) QA

The first term contains a contracted symmetrized
pair of indices and hence vanishes. The second is
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via the usual relation between the field tensor and
the vector potential. Since P„s obeys Maxwell's
equations as just shown, A.~~. is therefore the
usual vector potential. To see this, note thai the
field tensor

fAX'Br' AX'+Br' Br'+Ax'

becomes
H — z' —R'z'

flax'sr, e~sVHx. V zPr. +exir.VssiV~z P

+ V~ ~rg~xi —V~~zGI3~ z (3.25)

+ Va r'Gwx' Vm'Ger'. (3.26)

Taking half the sum of Eqs. (3.25} and (3.26) and

applying Eq. (A13) to the last two terms, just as in
the flat-space case, gives

fAx'Br' ~As(~z(x'G r') z(x'G r')}8 8

-R'z' gl+~x'r'( (AR' B)z' V(AP'GB)

where use has been made of the wave equation
(3.17). Equation (3.18) for the field spinor shows
that this expression is just

axis r i —ex'r '$gs+ c.c. ,

which shows that Eq. (3.24) is the curved-space
vector potential with guage transformations of the
third kind.

Furthermore, the relation of Eq. (2.15) between
the field spinor and the vector potential,

(3.27)

holds as well in curved space; this is seen by ob-
serving that substitution of Eq. (3.24) for Asx into

on substituting from Eq. (3.24). An analogous com-
putation which involves the addition and subtrac-

Zr z~tion of VAY'VBz. Px. ~as opposed to VBx Vgz PF'
which was added and subtracted to obtain (3.25}]
gives

z' —R'z'
foxier I ~~sVzr tV zrPxr + e xr r tV~ssV zztP

this expression generates Eq. (3.18), the conjugate
terms not contributing by virtue of the wave condi-
tion (3.17).

C. Debye potentials

The basic equations (3.17) and (3.18) of the Hertz
potential formalism provide the framework for a
one-component Debye reduction of the potential in
the generalized Goldberg-Sachs class of space-
times, as in Ref. 20. (For other approaches to the
formulation of electromagnetic Debye potentials in
certain classes of spacetimes, see e.g. Refs. 16
and 34.) This procedure is now outlined for the
spinor case.

A spin dyad frame is chosen so that one of the
basis elements, say 0, is oriented along the re-
peated principal null direction of the Weyl tensor
[one orients a. spinor along a null vector in the
sense of Eq. (A11)]. Alternatively, one accom-
plishes the same result Qy choosing 0" to coincide
with the repeated principal spinor of the Weyl
spinor. "'I (For a discussion of the motivation
for this choice, see Ref. 20, Sec. V.) Next the no-
tation P is introduced for the dyad component P»
of the Hertz spinor; other components are zero
with respect to the chosen dyad. The gauge spinor
is chosen to be G» ~ = 2TP, -G» ~ =-2pg (other com-
ponents are zero) where r and p are spinor affine
connection components as discussed e.g. in Refs.
26 and 36 (they are also called "spin coefficients"
in the NP formalism). With these choices for
P„8 and G~., Eqs. (3.17) and (3.18) are writte'n in

the NP formalism according to the rules in Refs.
26 and 36, and the dyad components of P» are
given their NP labels Po=—P», P, =—P~, and P, —=P».
(This procedure is illustrated in detail below for
the simpler spin- —,

' case. ) Then the dyad compo-
nents of the wave operator acting on the potential,
the left side of Eq. (3.17), become

X'R' = 1' 1':[-(6 —y +y + g )(D + 2Y —p) + (5 + n + p —r )(5 +2 p —T) + vZ —Xo]$,

1'2':—',[(5-n+p+z+T)(D+2e —p)- (D+c Z-+p+p)(5+2p-T)+(b, —y-y+p, -g)(( —(5- n+ p-7(-r)o]p,
2 2:[+(D + e —e —p)o —(5 —n P+ z)K —o(D +-27 —p) + K(E + 2 P —T)]P,

while the dyad components of the gauge terms,
the right side of Eq. (3.17), are

X R = 1 1:[-(6-y +y + p)(-2p) + (5 +n + p- r)(-2T)]$,

1'2':-',[+(5- n+ p+z+T)(-2o)

—(D+&+&-p+p)(-2T)]$,

2'2':[-(r(-2p) +)((-2T)]$.

Equality of the (2'2') components holds identically
because of the alignment of 0 along a principal
direction of the Weyl tensor: a calculation in the
NP formalism shows the (2 2 ) component of the
left side to be just (2po —2T((+4,)$. For the (1'2')
component of the left side, an Np calculation gives

[(D +g +g —p)T —(li —n + /+ z)p —o(5 +2n +T()

+7(((). +2y+ p) —24,]$,
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Qo
= -(D - E + E - p)(D +26 +p)$ )

2P, =-[(D +a +a +p —p)('t) +2P+v)

+('t-)n +P - w T) (D-+2Z +p) ]rtr,

(t, =-[(|)+n+P-7)(5+2j3+~) — )((D+2e +p)]g,

(3.29)

where terms proportional to X and a have been
omitted from these expressions. These field
components and scalar wave equation are just Eqs.
(5.5) and (5.6) of Ref. 20. The vector potential,
Eq. (3.24), becomes for this P» and G~i,

Ar =-mr(D+2e+p)/+I"(5+2p+r)$+e. c. , (3.30)

where P' and m~ are elements of the null tetrad
canonically associated~ with the chosen spin dyad.

Similarly, the two alternate formulations of the
Debye potential derived in Ref. 20 for type D
spacetimes follow directly from the spinor formu-
las (3.17), (3.18), and (3.24), as is now shown.

For the formulation which interchanges the roles
of the congruences with tangents l& and n&, the two
shear-free null geodesic congruences of the type
D space, we take P» =g, G», = —2wP, G», =-2';
the remaining components of the potential and
guage spinor vanish. Proceeding as above, omit-
ting quantities proportional to 4„X, and v which
are the NP quantities whose vanishing ensures the
shear-free null geodesic condition for the g" con-
gruence as well as that g~ be a repeated principal
direction of the Weyl tensor, we obtain the wave
equation

which again is identically equal to the right side
because g, t&, and 4, vanish by assumption.
Finally, the equality of the (1'1') components,
omitting quantities proportional to R and o, yields
a scalar wave equation for $:

[(~ —r +r +p.)(D +2~ +p)

-(5+n + p-v)(5+27(+v)]rzr=0, (3.28)

whose solutions P contain all of the information of
the Maxwell field. In fact, Eq. (3.18) explicitly
gives the Maxwell field spinor in terms of P, the
three components of which become

and the vector potential obtained from Eq. (3.24)
ls

A" =-n"(5-2n —w)P+m"(b, —2y- p) +c.c. (3.33)

A" =n "Dp —m~+m "6$—fr a'$. (3.36)

These constructive procedures for the Maxwell
field tensor and vector potential are not restricted
to vacuum spaces, nor is the first of the three
schemes [Eqs. (3.28)-(3.30)] restricted to type D
spacetimes; the method covers the generalized
Goldberg-Sachs"' class of spaces: all those al-
gebraically special spaces —vacuum or not —which
possess boih a repeated pr. incipal null direction of
the Weyl tensor and a shear-free congruence of
null geodesics along that direction. Illustrations
showing the applicability of this method of con-
structing Maxwell fields to astrophysical space-
times are given in Ref. 20.

D. Summary of Sec. III

In this section it has been shown that the curved-
space generalizations of Eqs. (2.12)-(2.15) are

(3.17)

In each of these formulations, the vector poten-
tial is transverse to the special congruence, that
is, A~l„=O in the first case and AQ„=O in the sec-
ond. The third scheme involves a vector potential
transverse to neither congruence: Choose P» = P,
other components zero, and G» =-2', G~rr =-2~,
G», =-2pg, G», = 27-rtr T.hen the scalar wave equa-
ti.on for the potential is

[(~ r -r+ -p 0)D-- (~ —n+ 0 w -r)&-P =0 (3 34)

and the field components are

Qo
= [(D ~ E + f +p) 6 + (5 —n —P + w)D ]$,

P, =[(D.+e+e+p —p)6+(() —n+'P —w —v)6]P, (3.35)

A. =[(&+y-r+~)&+(&+n+P-~)&]V

from Eqs. (3.17) and (3.18), respectively, omitting
terms proportional to K, cr, X, and v. The vector
potential from Eq. (3.24) is found to be

[(D + ~ —~ —p)(~ —2r —0)
—(6- n —T)+ w)(6 —2n —w)]/ =0 (3.31)

for the (2'2') component of Eq. (3.17) and identities
for the other two components. The field tensor
components, Eq. (3.18), are

2'
Appal Vgg/P yp Qpyt +c c (3.24)

(3.27)

(3.18)

y, = -(6 —n —(3+ w)(5 2(7 w)$, — —

2p, = [-(()—n + p+w+7. )(s —2y —p,)

-(a-y -y —p, +P)(6 —2n - w)]g,

p. =-(&+r -r+r)(& —2r-) )7,

(3.32)

In other words, if a Hertzian potential spinor
P" and gauge spinor G». are related by the wave
condition (3.17), then the vector potential Asr' of
Eq. (3.24) and the field spinor p» of Eqs. (3.18)
and (3.27) identically solve the curved-space Max-
well equations.
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These spinor equations are the equivalents of
the corresponding differential form equations

hP =dG+5%',

A=OP- G,

f=dA

and

f=d5P —dG =5W- 5dP

of Ref. 20.
The above Hertz potential formulas, valid in all

spacetimes, are shown to yield a scalar Debye
superpotential for the elect'romagnetic field in the
generalized Goldberg-Sachs class of spacetimes.
The general Maxwell field is explicitly constructed
by solving the scalar wave equation (3.28) and dif-
ferentiating its solution to yield the vector poten-
tial (3.30) or field components (3.29).

used as a framework for a Debye-type one-com-
ponent reduction of P" in the generalized Goldberg-
Sachs class of spaces. To this end a spin dyad
frame is chosen with 0 oriented along the re-
peated principal null direction of the Weyl tensor,
with the result that spin coefficients v and 0 and
NP Weyl tensor components 4p and +y are zero.

As an illustration of the method of translating
from spinor to NP notation, Eq. (4.1) will be writ-
ten in the latter formalism. In terms of the quan-
tities f, A which connect lower-case dyad indices
to upper-case spinor indices via

~a ~a 9A~ 7A ~ A1a&

and which are chosen in the NP formalism to be

g, "=5,", Eq. (4.1) becomes

0 = Vm. g" = V w«'fo

=p'V~, f, "+r,"V~.p' by the Leibnitz rule

IV. THE WEYL NEUTRINO IN CURVED SPACE
= &"&"'(A»~«&aa+ &asv~ 4n) ~ (4.6)

VA«'P (4.1)

a potential P„of the Hertz type is introduced and
assumed to obey

V z.VAw.P =0. (4.2)

Then if the neutrino field is given by

The two-component or Weyl neutrino equation in
curved space is just the one-index case of Eq.
(2.1). In the section, Eqs. (2.2) and (2.3) for the
spin- —,

' case will be generalized to curved space, as
will the version incorporating gauge transforma:-
tions, Eqs. (2.4) and (2.5)."'"ADebye one-com-
ponent reduction of these equations will then be de-
rived in the NP formalism using the spin dyad frame
methods of Refs. 3, 26, and 36.

In order to solve

The definition"' of the dyad components of the
spinor affine connection gives

e -~' f
AX'~ aB ~ A~ X'~ B~ofex ' '

Furthermore,

„«.P» — fg -«f s(f«V«i/~),

so that Eq. (4.6) becomes

0 =-e' e g wp f«~(/sr««+e«v«. $~)

EE 5-~5 «i6 s(QQr««i+&«V«If'} (4 7}

Writing out the x' =1' component explicitly yields

2 r121l' 12vll'4 2} (42 r1121')

(Alr2Rll } (AlrR121' 21V21 4 l)

= -(v„,+r„„,—r „„,)y, + (v„,+ r„„,—r. ..)y, .
Substituting the NP notation2"" gives

—w'
4A AIV ' (4.3) 0 =-(D+q —p}P, +('5+v —o.)P, . (4.8)

wV ziVAwiP
' =V ziGA

and the neutrino field is given by
—w'V~w.P —G„.

(4.4)

(4.5)

Again the Weyl neutrino equation is immediately
seen to be solved by P„.

Equations (4.4) and (4.5), which comprise a
generalization to curved space of the s = —,

' Hertz
formalism with gauge transformations, are now

Eq. (4.1) is immediately verified to be satisfied by

P„by virtue of the wave equation (4.2).
If gauge transformations are now included in the

form suggested by Eqs. (2.4) and (2.5), the wave
equation becomes

Similarly the x' =2' component of Eq. (4.7) be-
comes

0 =-(5+p ~)y, +(Z+p, y)y, . - (4.9)

Equations (4.8} and (4.9) are the NP spin dyad form
of Eq. (4. 1) and are fully general; the special
properties z =0 =Op +y 0 for an aligned dyad in
the generalized Goldberg-Sachs class of spaces
have not been used in their derivation.

The above methods are now used to derive from
Eqs. (4.4) and (4.5) the spin- —,

' Debye potential
formalism for the generalized Goldberg-Sachs
spacetimes. The choices P, = g, P, =0 for the
potential and G, =p$, G, =T$ for the gauge spinor
are made in order to obtain a Debye one-com-
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Vxw'P = (D + e p)$

v, ~,p '=-('6+(-r)$.
(4.11a)

(4.11b)

ponent potential which satisfies a decoupled scalar
wave equation. With these special choices, Eq.
(4.4) is now written in an aligned NP dyad frame.

The form of the right-hand side of Eq. (4.4) is
just the negative of Eq. (4.6) by the dummy index
rule. Thus the right-hand side of Eq. (4.4) in NP
notation is given by Eqs. (4.8) and (4.9') with the
above choices for G, and G, :

V",,G„=(D + e —p)r$ —(5 + v —o.)p$, (4.10a)

v",,G„=(5 + p —z)z$ —(6 + p, —y)p$. (4.10b)

Next it is noted that the factor V„~.P in the left-
hand side of Eq. (4.4) is just the complex conjugate
of V».I' . Since this is again the same form as
Eq. (4.6), one finds from Eqs. (4.8) and (4.9) that

Using the notation V„~.I'~'=—X„, it is seen that the
left-hand side of Eq. (4.4) is V"~.lt„, which again
is given by the negative of Eqs. (4.8) and (4.9),
with. dyad components of X„substituted from Eqs.
(4.11):

V",,V„v,P
' =[-(9+a —p)(5 +tj y)-

+ ('5 + v e)(-D +Z p-)]$,

v",,v„,pv' =[-( 5+p ~)('5+ p r)--
+(&+p y)(D-+& - p)]V.

(4.12a)

(4.12b)

Several of the Np-notation Ricci identities and
derivative commutators are now used to show that
Eq. (4.10a) and (4.12a), the two sides of Eq. (4.4),
are identically equal under the assumption that
z =o =+,=4, =0. The calculation begins with the
NP expression in (4.12a):

V lvAw P =[(&+&-&)(D+e P) —(-D- p+e)(&+0-~)]V
= [5D —D6+ 5(7 —p) —D(tI —7') + (v —&)(D + e —p) + (p —&)('5+ P —~)]$
= [(cl + P —1T)D + Kb —V6 —(p +7 —e)5 + E(E —p) —D(P —7') + (v —Q)(D + e —p) + (p —e) (5 —P -7)]$

(by the commutator Eq. (4.4} of Ref. 3).

A —w'
1 AW' 1 A

v",,v„,P - "v,, „G=[( dp+- )(y+D-)~
(4.13a)

—(6+0 r)(&+P)]4-=0.

(4.13b)

This is the desired decoupled wave equation for g.
The dyad components of Eq. (4.5) are now written

in the NP notation. They may immediately be found
from Eqs. (4.11}and the assumed form of G„and
are given by

(4.14a)

(4.14b)

Equations (4.13b) and (4.14) are the Debye poten-
tial scheme for the Weyl neutrino field; they may

But by Eq. (4.2e) of Ref. 3,

DP PD ='Ee. —e—5=(o7. +w)c+(p —e)P'

—(P+y)~ —(a —v) e + @,.
Substitution of this expression and subsequent can-

cellationn

yield

V ~ivgviP = [(D + e —p)T —(5+ v - B}p]$

+ (terms proportional to x', &x, and 0,) .
But this is identically equal to (4.10a) as claimed.
Hence Eq. (4.4) gives

be written in coordinates in specific spacetimes
of astrophysical interest.

An alternative Debye potential scheme valid in

type D spaces with a shear-free congruence of
null geodesics along each of the repeated principal
directions of the Weyl tensor may be obtained by
taking P, = P, P, =0 and suitable gauge terms, or
alternatively by applying the l —z, m —m trans-
formation of the NP formalism to Eqs. (4.13b} and

(4.14).

V. CURVED-SPACE TREATMENT OF GRAVITATIONAL

PERTURBATION S

A. Metric and Weyl tensor perturbations of spacetimes

The computation of gravitational perturbations
of algebraically special vacuum spacetimes is re-
duced to solving a linear wave equation for a com-
plex scalar superpotential. The procedure by
which this is accomplished is a generalization to
curved spaces of the spin-2 Hertz formalizm of
Sec. II above"'~' and gives the proofs for our pre-
viously published results.

One consequence of the results of this section
may be regarded as an extension of a theorem of
Walds' concerning the determination of a gravita-
tional perturbation of a spacetime by a scalar quan-
tity. His work shows that knowledge of a single
gauge-invariant tetrad component of the perturbed
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Weyl tensor of a type D vacuum spacetime, ob-
tained by solving Teukolsky's equation, " in princi-
ple determines all aspects of the perturbed space-
time. (This statement in turn generalizes the
analogous result of Fackerell and Ipser~ for elec-
tromagnetic perturbations of type D vacuum
spaces. ) The present Debye potential procedure,
extends the result in two respects, in that (1) it
applies to the wider class of algebraically special
vacuum spaces, and (2) the perturbed space is
uniquely fixed not only in principle but by direct
construction. Thus, it is shown below that for a
vacuum space, the existence of a single perturbed
curvature component which is both tetrad- and
identification-gauge-invariant in the sense of
Stewart and Walker" is sufficient to ensure that
the full perturbation is explicitly determined by
the information in one complex scalar (the Debye
potential).

There is an added degree of complication in the
field equations for gravitational perturbations of
spacetimes beyond that which is encountered in

extending the lower-spin zero-rest-mass field
treatments to curved space. For spins —,

' and 1,
one argues that the correct formulation for weak
zero-rest-mass fields on a curved background is
just the corresponding test-field equation, since
both neutrino and electromagnetic fields produce
contributions to the stress-energy tensor which
are quadratic in the field strength and which hence
may be neglected in a consistent linearization of
the Einstein-Maxwell or Einstein-Weyl neutrino
system. In the gravitational case, on the other
hand, it is the Bianchi identities" involving the
Weyl tensor,

AX' z' x'
PABCD (B @CDI 2 (5 1)

(with @AB,„.the trace-free Ricci spinor), which
bear the formal resemblance to the spin-2 test-
field equation treated above in linearized theory
(perturbations of flat space). The spin-2 test-
field equation is in general

AX'
PABCD (5.2)

in a fixed background; this is got the perturbation
version of Eq. (5.1), not even under the assumption
that the Ricci spinor vanishes in the perturbed
space, since the covariant derivative operator will
also acquire a perturbed part of the same order as
the perturbation in (lIABcD itself.

Fortunately, by working with small perturbations
of the metric tensor, it is possible to obtain a
second-order equation representing a linearization
of the Einstein vacuum field equations about a given
exact background space which overcomes this dif-
ficulty: Its dependence on the perturbed space is
only through explicit occurrence of the perturbed

V'N'P'
V(cplGD) + c ~ co (5.4)

obeys Eq. (5.3), provided that the totally symmet-
ric Hertz spinor P" "P Q and the gauge spinorG„=G„"" obeys a generalized version of
the wave equation (2.24) given by

VA(N V gN P'Q')x'+3@ (M N PP Q )x Y

~A(Af'G N'P'Q ')
(5 5)

Then the perturbed Weyl. spinor, which follows
from Eq. (2.19), is just

W 'X'
4ABCD (AW' BX" CD)

—
W 'X'Y''Z'

(AW' BX' CY' D)Z'-

W IXt Y I

(Aw' BX' C Y'GD)

(w' x') EF
(AW' BX' E F CD)

(w' x') E
V(Aw. VBz VE G ca) (5.6)

In fact, the results for the gravitational case
are slightly more special than the lower spins in
the following respect: for spins —,

' and 1, the
equations analogous to (5.5) and (5.6) are estab-
lished for all spacetimes and are only subsequently
specialized to the generalized Goldberg-Sachs
class when a one-component Debye potential is
chosen in a special aligned null frame. In the
gravitational case, we proceed by specializing
Eqs. (5.4) and (5.5) to a one-component Debye
potential in the vacuum algebraically special
spaces in the course of the proof.

The proof that Eq. (5.4) is the solution to Eq.
(5.3) by virtue of the wave equation (5.5) involves
somewhat lengthy spinor manipulations which will
b6 sketched here. As in the curved-space spin-1
treatment of Sec. III, the strategy of the calcula-
tion is to substitute the expression (5.4) into Eq.
(5.3) and to group the resulting terms into those
which cancel one another by the wave condition
(5.5), and the remainder which vanish by the Ricci
identities.

metric; all differentiations are purely background
operations. This equation is just Eq. (2.20),

sometimes referred to as the Palatini identity.
For these reasons, of the two proofs in Sec. IIC
for the gravitational perturbations of flat space,
the one which concentrates on the metric perturba-
tions and shows that Eq. (5.3) is satisfied is the
one which will be generalized here to curved space.

What will be shown in this section is that a
metric perturbation given by

—
SS 'N'P'Q'

"cD V(cp VL)Q p
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On substitution of the metric (5.4) into the field
operator (5.3), the first term h. () vanishes by the
traceless property of the expression (5.4) for the
metric (symmetric pairs of spinor indices being
trace-free). The remaining terms of Eq. (5.3)
become

P AX' —N'N'P'q'
I)' 8 ~ V V AX) (V ( cptv D)Q / P

NCNCPt
(cp'GD)

P N' (A( —xt Ntptq ')z, s VAXeVD (V p VC)Q.P

c)V(A G
X'N P')

h 8;„t—V AX, VC (V "p V»Q, P
V(A G

X'N'P')

so
N'+ = VAx'V

CD AX'

First the terms proportional to the gauge spinor
are combined. It is convenient at this stage to
note that the first term of Eq. (5.7), V«P.V»Q.P""
may be rewritten as V(cp V»q DP" " plus com-
mutators, and to note further that PN "P q

=2V"" V„x,PNPQ ) plus commutators [see Eq.
(A18)j. Hence the wave equation (5.5) may be used—N'N'P'q' A(N' N'p'q', )to express DV(cp VD)q.P as 2V«p VD)q.V GA

plus terms proportional to P" "PQ (which will be
treated in detail below). Therefore the gauge
spinor terms in Eq. (5.7), denoted for convenience
by R~, are

A(N ' N'P'q ') Ax'
R~ = 2v(cp.v D)q.v GA —v v Axtv(cplGD)

X' N'P' (A X'N'P'+VAx VD p Gc) +VAX'Vc V P,GD)

(5.8)
—NCN'P'q'

(V(CP VD)QPP V(CP GD) )

V N'(V( A V PX' N 'P 'Q'

V(A G
X'N'P')

N'(V(A V PX'N'P'Q'

V(A G X'N'P') (5.7)

By suitable ordering of the derivative operators,
these gauge terms may be written as the same
gauge terms appearing in the flat-space proof of
Sec. IIC (2) above (which cancel one another),
plus commutator terms which may be expressed
via the Ricci identities in terms of the background
curvature spinors. Toward this end, R~ is written
as

1 N'p'q' AN' Ntp'q' N'N'q'
Rg = 2VcptVDqtV GA + ~VcptVDqtV GA + ~VcptVDqtV GA

1 Aq' Nt Ntp' N'NCPC+ ~VcptV DqtV G A 22jV cptGD . ~pV DPCGc

j. A xtNCP' X'N'P' & N' A X'N P'+ ~ Ax' D D V p'Gc + ~V Ax' D cp'GA + -" Ax' c p'GD

1 N' AXCNCP' A(N' N'P'q')
zVAx(vc VDptG + (VDQtvcpt VcpiVDQt)V GA

Of these eleven terms, the second and eighthmaybe combined to give
1 zl A@ 'N'R' AN' AN' N'P'q'
—.VAzVD VcRG + pvcp (VDQ.V —V VDQ. )GA

CP' CP') DQ'GA + & ( CP' DQ' VDQ' CP')GA

the first and tenth similarly give
j. zt AN 'N'R' AN' AN' Ncp tq I AN' NtPtql
zVAz Vc VDR ~ + zvcp (VDQIV V VDQI)GA + z(vcplv V Vcp )VDQtGA

the third is rewritten as
1 AZ' N'N'R' AP' Apt NCN'q'.
2 Cz'. DR'GA & CP'( DQ' DQ')GA

the fourth as
1 AZ' NCNCR' Aq' NCNCP' Aq' Aq' NCNCP' .Dz' CR'GA + z( Cp'VDQ' DQ' CP')V GA + 2VDQ'( cp' cp')GA

the seventh as
Nt A X'N'P' x'Ntp'.

zvD VA(x' p')Gc + &( Ax' D D VAx') p'Gc

and the ninth as

(5 9)

N' XCNCP' A X'N'P'zvc VA(x'V p )GD + z(VAx, Vc —Vc V„„,)V P,GD

In all terms thus generated which contain once-contracted second covariant derivatives, the identity (A9),
the curved-space generalization of Eq. (A8), is applied. When expression (5.9) for Rc is rewritten in this
way, all terms containing d'Alembertian operators cancel one another, as do several of the commutators,
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leaving only commutator terms. These in turn are expressed as symmetrized once-contracted second
derivatives by application of Eq. (A12), with the intention of applying the Ricci identities (A19) and (A20}
tp express all of R~ in terms of curvature quantities. The remaining terms in R~ obtained in this manner
are

=3 A) R' N'P'N ' A)R' N'u'q' H N') ~/p'q'
Ra —

2 vcp (D~ v QA + (cR v vDq QA + vH(s DQ Qc
H e/) N/p/q/ Hu/) N/P'g' HN/) u"/p'q'+ VH(p V V(Dg/Qc) + 2Vcp VH(q/V QD + 2Vcp VH(q/V QD

1 HP ') N/N'q' 1 H x AQ' hf 'Ã'P ' H A( O' N/P'Q')
2 CP' H(q' QD 2 CD H(P' Q'~ QA DC H(Q' P') A

1 H u'p'q' .v/Itr/z/ Hg /) ~ /N/P/+ z~cDv vH(p'v Q/)QA —zv(CR'vD) v z'GA + 2vDQ/vH(P/v Gc
1 A) R/ u/N/q/ X/~/P' A X'N'P'+ ~VDQ/V(CR/V QA + zVD VA(x/V p/)Gc + 2Vc VA(x/V p/)QD

(5.15)

+-.V(ARVD)'V pQC" +~V(ARVC) V s QL ~ (5.10)

The next step is to apply the Ricci identities (A19) and (A20} to these terms, with the Ricci spinor C ANN, x,
and the curvature scalar A set equal '.o zero (vacuum spacetimes). The terms of Eq. (5.10) then yield,
respectively,

Acr/ V/q/ — N/~/ R's 'q' R/p/q /

Rg +CADF Q
'G +P' R' DQ'QC +P' R' (DQ'Qc)

(@
N'N'

G
R'P'Q' +y N'P'

G N'R'Q') ~ &P (y N'N'
G

R'P'Q' ~y N'P'
G N'R'Q')

+ lp (@
P'N'

G R'N'Q'+rfrr N'P'
G N R Q ) + ~E (@ N VAQ G R N'P +4 N' VAQ G

O'R'p')

(y
N' p (A'GRN'P'Q') +y N' rVA(NrG R'P'Q'))

1 R's 'q' q' O' R'N'P' Q'N' N 'R'P'~
~ cD p'q' R'QA ~ Dq'~+p' R'Qc ++p'

X/R/P' j. jj(r
'— N' X'R'P' Su'/N/P' H e/nr/x/

D +X'P' R' C & C X'P' R' D 8 ADCE P' ~ C DQH X' (5.11)

where O»cD is the Acyl curvature spinor of the unperturbed spacetime. It is seen that the three terms
containing the unconjugated Weyl spinor cancel one another. The remaining terms proportional to the con-
jugate Acyl spinor of the background may then be combined, although it is convenient first to fix the gauge
spinor G„""P by demanding that the wave equation (5.5) yield a decoupled scalar wave equation for a one-
component potential in an aligned dyad.

Thus the rest of the proof consists of (1) combining the terms in Eq. (5.7) which are proportional to the
potential spinor (to be denoted collectively by Rp) and expressing these in terms of the background Weyl
spinor in a manner analogous to the procedure leading to Eq. (5.11) for Rc, (2) making special choices for
PARcp and G„""P in an aligned dyad which lead via Eq. (5.5) to a decoupled scalar wave equation for the
potential, and (3) inserting these choices into Rc and RP and showing that they imply Rc +Rp =0, i.e. , that
the perturbed vacuum Einstein field equations are satisfied.

The potential spinor terms Rp in Eq. (5.7) are seen to be

-VAx/v D v p/vc)Q. P —v Ax/vc v p/v D)q/P (5.12)

plus the commutator terms referred to above which arise from expressing GV(cp V»q P"" q in terms of
the gauge spinor. These coxnmutator terms are obtained by noting that

—e/ar/p'q' —u/N/P'q' AX/ N /Ã/P/Q/
I-jV(cp VD)q P (CP' C)Q' ( AX' (CP' (CP' AX') D)Q'

—X/N/P'q' AX' AX' —e/N/p'q'+ V V(cpr(VAXrVC)Q VCr)QrVAXr)P + (V V(cpr V (CprV )Vp)Q VAXrPr

+(/(Cpr(r7 V )cQVrg&)Q V)(/rAx P (5.13)

where symmetrizations are over indices C and D. In the first of these terms, the d'Alembertian may be
rewritten according to Eq. (A18) as

pN'N'P'Q' —2rVA(N'r(/ PN'P'Q')x'+(gAx'g (N' g (N'~Ax')pN'P'Q') (5.14)
where the symmetrization includes just M', pf, P', Q'. The first term of Eq. (5.14) is replaced, as stated
above, by 2VA(" G„"PQ ) -6% .r.(N "P Q )" r via the wave equation (5.5); the gauge term is accounted for
above in Rc. When the terms thus given by Eqs. (5.13}and (5.14) are included, we find that

—x'u'p'g' (A X/N/P/q/ (N' (&' Ax' —N'p'q')
VAx.VD V P.Vc)q P —VAx/V c V p/V yq/7 +V(cp, Vc)Q, (V VA —VA V )P x.

Ax' &
—e/ar'p'q' —u'ar/p'q'( ~ (cp (cp ~-) R)Q +V '(/(Cpr(V AXrV D)Qr

—V C)or VAXr)P

+ (V V(cpr V(cprV )(/C)QrVAXrP +V(cpr(V VD)Qr —VC)QrV )VAXrP

(e'N'-~'Q') X'r '
6V (cp/V D)Q /+x/ y /
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The first two terms are put into a form suitable for application of the Ricci identities by noting that
Nf (A

—Xf M fp'q' A X'M'P'Q'—VAX/V D V ptVC)qfP = -VD VA(X.V p )Vcqt~
N' N' (A

—X'M'P'q' ~ Nf A A
—X'M'P'q'

AX' D D AX') P' C)Q'
—2VD VA r(VCprV qr —V QrVCP. )P

(5.16)

and similarly that

(A
—X'N'J 'q' —Xt Nfp'q'-VAx/VC V pfVD)Q.P —-VC VA(xfV pf)V Dq/P

AX' C C AX') P' D)Q'

M' A A INfptq /—2VC VAxr(VDprV Qr V QrVDpr)P (5.17)

After substitution of Eqs. (5.16) and (5.17) into Rp; all commutators are replaced by symmetrized once-
contracted second derivatives, just as above for Ac, by application of the identity (A12). The resulting ex-
pression for Ap analogous to Eq. (5.10) is

1 a M ')—Ntpfq/X/ H Nf )—e'p'O'X'
Pp 2V(cplVD)qlVH(xfV P + 2V(cptV D)q V H(xfV P

j. ap') —M'N'q'x' HQ') M'N'P'X'
.+ 2V (CP.V D)qfV H(xtV P + 2V(cp.VD)qfV H(X.V P

x' H A R' —
Mt N/P'q' ~ X' H A

—M/N/P'q'+ 2( c VH(x' P') +V P' (AR'VC) ) DQ' + f(VD VH(xrV pr)+V P.V(ARrVD) )VCQ.P
x' H A R' —M/Nf pfqf ~ X' H A R' —M/N/p'q'+ 2(VD VcprVH(xrV Qr) + V qrVcprV(ARrVD) )P + 2(VC VDprV„(X.V Qr &+V q, VDprV(AR. VC) )P
(X' H (A

—
M 'N'p'q' & (x' H (A R' —M'N'P'q'

2(VH V pr)VDqrVcxr + V RrVC) VDqrV Apr)P ~ (VH V pr)VcqrVDxr + V RrVD) VcqrV Apr)P

1 (X' H (A R' —M'N'P'q' (X' a (A R' —M'N'J 'q'
CP'( H Q') DX' R' D) Aq') Dp (VH V

Q )Vcx'+V R'Vc) VAq )P
A Xf Mlplql HNf) ~X' M'/P / Q'~ VD VA(x/V pf)VCQ/P Va(x'V V(DP'Vc)q'~

R' (A
—M/Ntp'q' j. Nf H

—Xt M/P'q'
( AR' D) P' C)Q' —2VD Vcx VH(p V q )P

A —XfNtp'q' H M') Xf Nlp /q I
VC V A(xtV pf) VDQ P —Va( /V V(CP.V D)qf

(A
—M/N/P'q' H

—X'Nfp'q' (M'N' ~&'Q')X'Y '—V(AR. Vc) V p VD)q P —~Vc V Dx/V H(pfV qf)P 6V(cp/V D)q f+X/ Y f (5.18)

To this expression for Rp the Ricci identities (A19) and (A20) are applied, yielding an expression analogous
to Eq. (5.11), with each term proportional to the background Weyl spinor. This procedure gives, after
some simplifications,

M'N' R'P'Q'X' M'N' XlR tPtq I

p V (cp VD)Q Itx R P — +x — R (Dp c)q P
pf Y / —M/N/R/Z/. —X' (M' Nf )Rlplqt

R.v(cptv D) Y tP ' 2+ pfR/ v(cxtvD)qfP
—X' (M' —Nt)R/ptqt —X/Rfp'q'

2 iI ' plRt V(cq/V D) xtP D X'P' R' CQ'

N' M' ~xfR'P'Q' & N' X' M'R'P'Q'
2 VD Vcxt4'ptq t Rt 2 VD Vcxt@ptqt RtP

X R'P'Q' j M' X' N'R'P'Q'
C +X'P' R' DQ' C DX'+P'Q' R'

M' N' ~Y/Rtp'Q' (M'N' —I 'q')X'Y '
2VC V Dx/ Jptqt Rt V (CP/VD)qt+xtY f P (5.19)

where terms containing the unconjugated Weyl spinor are omitted since they cancel one another as in ~.
[Certain of the manipulations used in obtaining Eq. (5.19) involve application of the vacuum Bianchi identity
Eq. (A21) to commute the Weyl spinor and covariant derivative operator. ]

The next step in the calculation is to make the assumption that the Weyl spinor of the background space
is algebraically special, to align a spinor dyad frame so that one dyad leg coincides with the repeated
principal spinor of the Weyl spinor, to choose a special potential P»CD with only one nonvanishing com-
ponent in this dyad, and finally, to make a choice of the components of the gauge spinor GAM P in this
dyad which reduces Eq. (5.5) to a decoupled scalar wave equation. Thus a dyad o", f" is chosen with o"
oriented along the repeated principal spinor of the Weyl spinor, and the potential is fixed to be P' ' ' ' =$
in this dyad; other components vanish. Direct computation shows that if the choice G,''' =4pg, G, ''' =4T(II

is made (other components vanish), then the five dyad components of Eq. (5.5) become

2'2'2'2': Both sides zero; identically satisfied.
1'2'2'2': Both sides zero; identically satisfied.
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1'1'2'2': Left side = [4(pe -rz) +C,]P, Right side =4(po —rZ)$ .These are identically equal since align-
ment of the dyad implies +0=0.

1'1'1'2': Left side =[(D +a+ 3e- p+Sp)(5+4p-7) —('5- n +3p+ v+37)(D +4K. —p)]g
+terms proportional to t(, 0.

Right side =4[-(D +e +Se - p +Sp)r +(5- n+ Sp + v+ 37)p]$. These are seen to be identically
equal by application of several NP equations and by use of ~ =0 =+, =0.

1'1'1'1': Imposing equality of the two sides yields the scalar equation"

[(5+Sn+p-7 )(5+4p+3) )- (s -y +3y +p)(D'+4e +Sp) +Se)$ =0.

The final step of the calculation, which consists of substituting the above choices
Pl'1'1'1'

y G
1'l'1' 4-g G

1'1'1'

(5.20)

(5.21)

into Eqs. (5.11) and (5.1S) for R~ and R~, shows that R~+R~ =0, i.e. , the vacuum perturbation field equa-
tions are satisfied: Of the seventeen terms in Eq. (5.11) for R~, the three containing the unconjugated
Weyl spinor cancel, as observed above; also the tenth, fourteenth, and fifteenth terms vanish because the
triple contraction of 4„~,s," with Gc"sp vanishes by the choice (5.21) of Gcxs~ and the algebraically
special assumption for 4~.~.~. . The eight remaining nonzero terms in R~ then give, after they are com-
bined, the following dyad components in NP notation:

(Rg)„"'=-24(D —a +St —2p)pe, g,
(Rg)(,~)'' =-12(D +@ +3@+ p —2p))4,$ —12('5- n +SP-)(-27)p4,$,
(Rg)„"=24xpe, p —24(5+n +3p- 2r)ry, g,

(5.22)

where the Weyl tensor has been commuted to the right through the differential operators by means of the
NP Bianchi identities,

+,D =(D —Sp)+, ,
(5.23)

When the 12 terms of Rp in Eq. (5.1S) are treated similarly, it is seen that the sixth through eleventh
vanish because of triple contractions of 4x.~i~" with P"~ ~ or with V~~,Px ~~. The fifth term equals
the fourth, as seen by commuting the derivatives in the fifth and observing that the resulting commutator
is proportional to the Ricci tensor of the background (which is assumed zero}. When the differential op-
erators in the third term are moved to the left by the vacuum Bianchi identities (A21) and the first and
third terms are translated into NP notation, they are seen to cancel. Of the remaining contributions to R~,
the sum of the second and twice the fourth terms gives dyad components„"=[-6(D —e+Se p)(D+4e —-5p) -24p'g, g,

(„)"=[-3(D+c +73p+—p)('5+4p-5r)-3('5-n+3$- m-r)(D+4e -5p) -24p~]eg, (5.24)„"= [6X(D +4e —5p) —6(5+n +3p —r)('5 +4p- 5).) —24m']y, /, -

where again the Bianchi identies (5.23) have been used in moving the Weyl tensor factors to the right, while
the twelfth term, -6&«~V'»@ C~ ~ ""P x, has NP dyad components

= + 6(D —t+SE —p)(D. + 4f -p}4,$,
(„)"=3(D c +Su+p+- p)(5+4'p-~)e, $+3(5- n+Sp —7(-r)(D+4~ —p)%,$,„"= -6))(D + 4m —p) y,/+6(5+ n + 3p - r)(5+ 4p -r)4,$.

Hence the dyad components of R~, given by Eq. (5.24) plus Eq. (5.25), are

(R~)~~ =[-6(D —e +37 —p)(D +46'- 5p) +6(D —f +37- p)(D +47 —p) —24p ]4'qP,

(Rp)(~)"' = [-3(D + e + 3 e +p —p)(5+ 4P - 5w) + 3(D + e +Se +p —p) ( 54+P r)-
—SP —n+StI- v-r)(D+4e —5p)+3('5- n+O'P-7( 7)(D+4e —p) —-24pT]e, g,

(R~)„"=[6K(D+47—5p) —6X(D+4e —p) —6(7)+n+Sp r)(5 4p--+5v)

+6(5+n + 3p -y)(5+4p - y) 247']y, $.

(5.25)

(5.26)
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It is observed that these are just the negative of the components of Ro as given by Eq. (5.22), so that R~
+R~ =0, which completes the proof. [The complex-conjugate term in the perturbed metric (5.4) may sim-
ilarly be shown to result in the vanishing of expression (5.3) for the perturbed Ricci tensor upon substitu-
tion into Eq. (5.3) and application of the wave equation (5.5) for the potential and gauge spinors. ]

The perturbed metric (5.4), when expressed in terms of a scalar solution $ to the wave equation (5.20),
has coordinate (or frame) components2'

h„„=-(I„lg(5+n + 3P —w)(5 +4P+ Sr) —X(D + 4a +3p)] +m„m„(D —a +SZ - p)(D +47+3p)

—l&„m„~[(D+e+Se+p—p)(5+4P+ST)+(5 n+3'P- w-T)(D+4e +Sp)]}y+ .c.c, (5.27)

where I„, m„, and m„are the coordinate (or frame} components of elements of a null tetrad obtained in
the canonical way from the aligned dyad (0", I"}(i.e. ,

P—e"ow, mw —o"P, n"—I"F ).
The final result of this section is the NP expression for the perturbed Weyl spinor as given by differen-

tiating the scalar $. This expression is obtained by substituting Eq. (5.27) for h„, into Eq. (2.19) followed
by projecting NP components, or alternatively by substituting Eq. (5.27) into Eq. (5.6). The results are
given here for the case X = v =0, that is, for type D spacetimes. Their generalization to the algebraically
special case may be obtained by the above procedure but involves somewhat lengthy additional terms pro-
portional to X which are omitted here. The perturbed Weyl tensor is"

$0 =(D -St+7- p)(D —2m+2@ —p)(D —e+SZ- p)(D+4Z+Sp)$,

4P, =[(D —e+e+p p)(D+—2e+p- p)(D+e+SZ+p- p)(5+4P+3T)

+(D —&+e+p —p)(D+2e+p —p)(5-n+SP- w-r)(D+4e+Sp)

+(D —E +7 +p —p)(5- 2n +2P —2w —'r)(D —w. + St —p)(D + 47 +SP)

+ (5 —3n + P —3 w —T )(D —2e +27 —p) (D + e + 3e —p) (D +47 + 3p) ]$, I

6' =[(D+e+Z+2p —p)( D 2+a+ e2+2p- p)( 5+a+ 3$-r)( 5+4P +SF)

+(D +E+f +2p —p)(5+2P —w-T)(D +6 +37+p —p)(5+4/+37)
(5.26)

(D++e+ +e2p-p)(5 2+P —w-V)(5 —a+SP —w-~)(D+4e+Sp)
+ ('5 —a + p —2w —v) (5 - 2n + 2jg —2w —7) (D —e + Se —p)(D + 4e + Sp)

+(5 —n+P-2w 7)(D +2m-+p —p)('5 —a+SP —w —r)(D+4e+Sp)
+('5 —n +P —2w -7)(D +2m + p —p)(D+a +3K+p —p)(5+4P+Sv)]$,

4y, = [(D +So +a +3p —p)('5+ 2n +2 p 7)(5+a-+Sj3-r)(5+4j3+Sr)
+(5+a +P —w F)(D+2e+2-e+2p —p)(5+n+SP-r)(5+4')+Sr)
+(5+a+p- w-w)(5+2p —w 7)(D+e+S-e+p- p)(5+4jj+3~)

+(5+a +p —w r}(5+2j3-w. T)(5 -n+-3p- w-—T)(D+4r+Sp)]I),

y =(5+Sn+p —r)(5 2 +n2P+-r)(5 +nSP+r)(5 4P+-3 +)$7

+ 34,[r(6+ 4n) —p(b, + 4y) —p(D+ 4&)+ w(6+ 4P)+ 24, ]P .

The terms generated by the c.c. term in Eq. (5.27}
make no contribution here, except in the g,
component as indicated.

The terms proportional to the unconjugated po-
tential P were omitted from the formulas of Ref.
21, although they follow directly from the conjugate
terms of Eq. (5.4) when substituted into Eq. (5.6)
(see also Ref. 40). All such terms are in fact pro-
portional to the background Weyl spinor 4,. This
is most easily seen by noting the requirement that
unconjugated P contributions vanish in Minkowski
space according to Eq. (2.5) [which for spin 2 re-
duces to Eq. (2.26)]. Alternatively, this may be
shown explicitly by commuting the derivative op-

erators and substituting the term 3+wP via the
(conjugate) wave equation (5.20) whenever the ap-
propriate combination of operators appears.

As remarked above, Eq. (5.28) establishes by
direct construction that the perturbed Weyl tensor
is derivable from a metric perturbation, namely
Eq. (5.27).

B. Summary of this section

It has been proved that for algebraically special
vacuum spacetimes, a scalar Debye superpotential
for gravitational perturbations may be obtained
from the wave equation
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A(O ' ~'P Q')&' 3 (O'N P'Q')X Y '
V VA tg + +XY

vA(N'G N'P'o') (5 5)

where 4~.~ ""is Qe unperturbed Weyl tensor and
PNt 'Q' '

and Q
"' 'Q' are a Hertz potential and gauge

spinor, respectively. In terms of these spinors
the perturbed metric is given by

—Wt
PA = V AN.P —GA

for the two-component neutrino case,
VA(o V PN)w' VA(o'g N')

pl
&co' = cp'Pot Gc o'+

and

(4.5)

(3.17)

(3.24)

o' N'
V V Po N P'Q'.

gn (CP' &)Q'

V (gp tG g)) +co co

and the perturbed Acyl tensor by

W X'
'4BCD V(Aw' Bx' "Cg

(5.4)

(5.6)

(3.iS)

-VAOt G NP"Q") (5 5)

W lgt W'
JAB V(~v iVB)re —V(Aq, iGB)

for the case of Maxwell fields, and

VA(N V PN P Q')w +3@ (o'N PP Q )x Y'

The corresponding scalar superpotential formu-
las obtained from the special aligned values [Eq.
(5.21)] for P"P ox and GA+P o are given in Np
notation by Eqs. (5.20), (5.27), and (5.28), re-
spectively.

VI. SUMMARY

and

Pwt (4.4)

This paper presents a covariant spinor frame-
work, for Hertz and Debye potentials for zero-
rest-mass perturbations of certain algebraically
special spacetimes. The covariant potential wave
equations and the fields generated by differentiating
the potentials are

O' N' —OtNtP'Q'
h~~ —V(~ptV ~)QtP —V(~ptG~) + c.c. ,

(5.4)

and

W X
4ABCD V(AW' BX' CD) (5.6)

for gr avitational per turbations.
The practical consequence of these results is a

computational scheme for perturbations of this
class of spacetimes (including many of astro-
physical importance —black holes and various
cosmological models, for example'B'4) requiring
only the solution of a decoupled scalar wave equa-
tion. This equation may be summarized for the
neutrino, electromagnetic, and gravitational per-
turbation cases by the NP equation"

((6 —[2s+1]y-y+P)(D-2se —[2s+1]p) —(5 —[2s+1]a+(i r)(5 —-2sp —[2s+l]r) —(s+1)(2s+1)C,)$~'~= 0,
(6.1)

where P'~ is the corresponding scalar Debye po-
tential for s=-—,', -1, or -2, respectively. Equa-
tion (6.1) summarizes Eqs. (3.28), (4.13b), and
(5.20) of the text. The tensor or spinor components
of the physical perturbation field are then given
(in the NP frame) by prescribed differentiation of
g

~'~ according to Eqs. (3.29), (4.14), and (5.27) or
(5.28), respectively.

The differential operators of the egterior form
Hertz potential formalism" have led to further
developments consisting of generalizations of the
notion of harmonic operator and applications to
analysis of the structure of the vacuum Einstein
field equations. 4'~

The linear scalar wave equation (6.1) and that
of Teukolsky" have led to an extensive literature
on perturbations of the Kerr spacetime, including
approaches~ 4B A4 ~' which combine both Teukolsky's
derivation and the notion of a scalar superpotential.
The work of Chrzanowski4' and Chandrasekhd, r44

emphasizes the "intermediate" potentials, the

vector potential44 for spin 1 and the metric per-
turbations for spin 2 (for a treatment of these
potentials in the present context see Secs. DC,
III B, and VA above; see also Ref. 20 for vector
potentials). In addition the approach of Chandrasek-
har has yielded a demonstration of the separability
of the spin--,' case for nonzero mass, i.e. , the
Dirac equation, in a Kerr background. 4' Calcula-
tions of astrophysical processes involving pertur-
bations of black holes and utilizing decoupled
scalar wave equations also comprise a consider-
able literature (see e.g. , Refs. 43-51).

Recent work by Wald has produced very simple
and elegant proofs of the Debye potential formulas
for vacuum algebraically special spacetimes. The
spinor proofs of the present paper (and the treat-
ment of Ref. 20) show that the results are in fact
more general in that the nonvacuum spaces of the
generalized Goldberg-Sachs cia.ss are covered for
spins —,

' and 1. Thus, for example, electromag-
netic and neutrino perturbations ef the locally
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rotationally symmetric perfect-fluid cosmological
models may be computed by these methods.
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APPENDIX

1. Exterior form Hertz potential formalism
for electromagnetism

If a 2-form Hertz potential P obeys

(3.24), (3.27), and (3.18) of spinor analysis. The
formulas (Al)-. (A4) are given in Ref. 20 where
they are shown to give decoupled wave equations
for scalar Debye potentials in the (in general non-
vacuum) generalized Goldberg-Sachs'zz class of
spacetimes.

2. Spinor formalism

In this section those formulas of spinor analysis
used in the text are given; proofs are given here
for those identities not proved in Ref. 36. For
more detailed presentations of spinor formalism,
Refs. 26, 35, 36, and 52 are suggested.

The formulas are

pe)" = ))"Y}A-("dummy index rule, "

p. 309 of Ref. 36); (A5)

XAc-ycA =f
ADDED [Eq. (3.16) of Ref. 36]; (A6)

A=OP- G (A2)

(A1)

where Q is an arbitrary 1-form and W is an arbi-
trary 3-form, then the vector potential 1-form A
is given by

e" ezc =-5"c (p. 308 of Ref. 36);

V V» =-,'5 ~.G in Minkowski space

(where = V~ V~,) .
Proof.

(A7)

(A8)

(note that A is not in the Lorentz gauge) and the
Maxwell field 2-form by

f=dA, (A3)

l.e. ,

f=d5P —dG =5K' —5dP. (A4)

In this formalism, the proof that f is a source-
free Maxwell field (i.e. , that df = 5f =0) follows
immediately from the identity d' —= 5' =— 0; this situa-
tion is in contrast to the relatively tedious proofs
given above for the equivalent formulas (3.17),

V»~VAR -V B VAX = &» B V z VA
'

[by Eq. (A6)],

V VAB. —V BrVA =-5 BrV z.V„[by Eq. (A7)]
wx' I' A ' Az'V V~u, —V& V e. 5 uzV V~z'

[using Eq. (A5) and the commuting of covariant
derivatives]. Next Eq. (A5) is applied to the left
side whose two terms are seen to be equal, giving
the result claimed;

VBRrV = z5B + z(VBRrV -V VBRr) (A9)

[generalization of Eq. (A8) to curved space].
Proof.

VBR.V "R = —,'(V».V» —V"R VBR.}+ —',VB„V"R + —ZV» VBR. (identically)

1(V VAR VAR V ) + (V VAR VA V R ) [by Eq (A5)]

= —,'(VBR,V"R —V» VBR,) + —z'5B"0 [by Eqs. (A6} and (A7)];

FAW'BX' ~AB4W'X' W'X'4 AB r

for F„w.B».=Fz, a real skew tensor and JAB—= ,'F„RrBR [Eq.—(3.26) of Ref. 36];

(A10}

gBF' jB F (A11)

for ABY =K" a real null vector [Eq. (3.24) of Ref. 36];
P'

VAw VB» —VB» VAw = tABV ( VB» ) + f xrV(Ap VB) (p. 327 of Ref. 36);
pt

V„w.GB». —VB».G„w =e»VB&&G" .) +ew »,V&AB G» [proof analogous to that of Eq. (A12)]'

RAW'BX'CY'DZ' 4ABCD W'X' Y'Z' AB~CD~W'X'Y'Z' ~AB~Y'Z'@CDW'X'

+ CCDEWr»r@ABY Z +2A(E'ACE'BDCWr»rE'Y Zr + EABECDEWrZrE'X Y )

(A12)

(A13)

(A14)



19 CONSTRUCTIVE PROCEDURE FOR PERTURBATIONS OF. . . 1663

Wh6r6 +Aw'Bx'cY'Dz' 1s U16 R16mRIlIl t6Ilso1', @ABY'z' @(AB)(Y'z') @ABY'z' ls U16 trRc6-fr66 Ricci splIlor,
and A =~R with 8 the curvature scalar [Eq. (3.52) of Ref. 36];

BX'C Y' ' B C Y' X' C B X' Y'
Aw'Dz' (5A 5D 5w 5N' 5A 6D 5W' 5X

where eAw Dx
Bx c" = e„(B)' is the alternating symbol [Eq. (3.34) of Ref. 36], which implies

(A15)*E~ =i(eAB+,x, ew,x,JAB) [Eq (3 35) of Ref 36)

if E„,is the real skew tensor corresponding to the spinor of Eq. (A10) and the duality operation is F„,
a8z,

&~pv ~' nest

V(AR.V 'qa)c + V V(B~ gA)c, for gAB —
g(A+) .CR' cs'

Proof. The right-hand side is
cz' ~g' cz' cz'

&(~AR' )BC BR' . )AC BR'1AC AR' (BC) '

But VAR, V R —VcR,VAR =6Ac by Eqs. (A6) and (A7}, so this becomes

—,'(() A )) B+c5 B )7Ac) = ))AB as claimed.

Similarly,
PM'N'P'Q' V (M'V Ax'PN'P Q ) ~ VAx'V (M PN P'Q') '

for PM'N'P'O' P(M'N'P'Q')
~

The proof is analogous to that for Eq. (A16};
pN'N'P'Q' 2gA(N'g pN'P'Q')X' +(gAX'g (N' g (N'gAX')pN'P'Q') fcr PN'N'P'Q' —P(N'N'P'Q')

Proof.

(A16)

(A17)

(A18)

pN NPQ p (N +AX pNPQ ++AX p (N pNPQ ) [by Eq (A17)]

2 pA(N'g pN'P'Q')X' + yAX'g (N'PN'P'Q') pA(N'g pN'P'Q')X'

[by addition and subtraction of a term and by use of Eq. (A5)], which is the result claimed. Equations (A19)
and (A20) are the Ricci identities, Eqs. (3.55) and (3.56) of Ref. 36:

(A B)P'~C ~ABCD~ A~(A~B)C &

pl D

H g
N(W' X')~D DBW'X'~ ~

Equation (A21) is the vacuum Bianchi identity, Eq. (3.61) of Ref. 36:

V ~ABCD
—0 .

(A19)

(A20)

(A21)
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stitute of Technology, Hoboken, New Jersey 07030.
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