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The method of Debye scalar superpotentials has previously been extended by the authors to curved spaces
to yield a constructive procedure for neutrino, electromagnetic, and gravitational perturbations of
algebraically special spacetimes. The solution of a decoupled scalar wave equation is differentiated to give the
solution of the corresponding spinor or tensor perturbation field equations. In this paper covariant
formulations and proofs are given. The results are derived in a general spinor formalism framework which
extends earlier exterior differential form and tensor treatments of the electromagnetic case.

I. INTRODUCTION

Recent advances in the explicit computation of
perturbations of spacetimes have stemmed from
the study of congruences of null geodesics and
from the development of a formal calculus based
upon null frames. These basic investigations were
done largely by Sachs,! Goldberg and Sachs,? and
«Newman and Penrose.® The Pricet and Bardeen-
Press® equations for perturbations of Schwarzs-
child® space represent the first use of the null-
frame formalism to obtain decoupled, separable
equations governing spacetime perturbations and
the first change in approach to the problem since
the earlier Regge-Wheeler” ™ methods. The es-
sential similarities between the Schwarzschild
and Kerr?!® spacetimes when viewed from suitably
chosen null frames (they are of the same Petrov'!
type) led very soon to an extension of the Price and
Bardeen-Press approach to yield a treatment of
perturbations of the Kerr rotating-black-hole
spacetime. Fackerell and Ipser®? derived the first
decoupled equation for a Newmann-Penrose (NP)
null-frame component of the Maxwell tensor, al-
though it failed to separate variables. Teukolsky,'?
by choosing to work with the radiative NP compo-~
nents of the fields, obtained decoupled equations
for these two components of neutrino, electro-
magnetic, and gravitational perturbations which

did, in fact, separate variables in the Kerr metric.

This line of development, while making tract-
able the computation of zero-rest-mass fields
around a rotating black hole, has left open the
following aspects of the problem of constructing
spacetime perturbations: (a) a treatment of per-
turbations of nonvacuum spacetimes, (b) compu-
tation of the full perturbation of the Kerr space-
time, i.e., of all components of the perturbing
Maxwell tensor, metric tensor, or Weyl tensor in
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terms of a single complex scalar, (c) a covariant
formulation of the scalar wave equation and co-
variant proof that the field components given by

the scalar indeed satisfy the perturbation field
equations, and (d) a demonstration that the pertur-
bation components of the Weyl tensor are “metric,”
i.e., that appropriate integrability conditions are
satisfied which ensure that they are derivable from
a perturbation of the metric tensor.

During this period other investigators were using
the techniques of Hertz!* and Debye!® potentials to
calculate perturbation fields. Mo and Papas®®
treated Maxwell fields in spherical spacetimes by
a generalized three-vector analysis extension of
the Debye method. Hertz and Debye potential ap-
proaches were used by Sachs and Bergmann'” and
by Campbell and Morgan®® for linearized or weak-
field gravitational perturbations. Penrose® gave
a Hertz potential treatment for arbitrary-spin
zero-rest-mass fields on a Minkowski background.
Cohen and Kegeles®® utilized the machinery of ex-
terior differential forms to generalize electromag-
netic Hertz potentials to all curved spacetimes.
This curved-space Hertz potential treatment, in
conjunction with the null-frame formalism, has
been shown to yield a curved-space extension of
the scalar Debye potential method whereby all of
the perturbation field components are given in
terms of the solutions of a single separable scalar
wave equation for each value of spin.2°-2!

The main result of this paper is the presentation
of ‘a spinor framework for Hertz and Debye poten-
tials for zero-rest-mass field perturbations of
the generalized Goldberg-Sachs??? gpacetimes
(i.e., all algebraically special spacetimes admit-
ting a shear-free congruence of null geodesics
along the repeated principal null direction of the
Weyl tensor). This includes an alternate formula-
tion of the earlier differential form and tensor
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treatments of electrodynamics,?® as well as spinor
proofs for the analogous treatments of neutrino
and gravitational perturbations.?! The gravitation-
al results are valid in all vacuum algebraically
special spaces, while the neutrino formulation
covers the full (nonvacuum) class treated earlier?®
in the electrodynamic case. )

The spinor-formalism proof of this result which
is presented in this paper provides the following
answers to the above questions regarding space-
time perturbations: (a) For spins 3 and 1, the
method applies to a class of spacetimes which in-
cludes not only the vacuum black-hole spaces,
but also the matter-filled cosmological models of
Friedmann, Gddel, Kantowski and Sachs, and
all other perfect-fluid models with local rotational
symmetry.2®?* (b) All 2s+1 of the field compo-
nents are given directly in terms of the scalar
superpotential. (c) The basic spinor framework
leads to covariant formulations and proofs for
the wave equations and field-component expres-
sions. (d) Metric perturbation expressions are
given by construction as derivatives of the super-
potential, establishing that the Weyl tensor per-
turbations are “metric.”

In Sec. II we review the arbitrary-spin Hertz
potentials introduced by Penrose® in flat space.
We present a further aspect of these potentials:

A treatment of gauge transformations of the third
kind®® is given for arbitrary spin,?® which is es-
sential for the subsequent reduction of the 2s +1
components of the Hertz potential in curved space
to a single scalar Debye potential.

Section III presents a curved-space spinor Hertz
and Debye potential treatment of electromagnet-
ism.2® It may be viewed either as an extension of
the spin-1 results of Sec. II to curved space, or
as a translation of the earlier exterior form and
tensor formulations®® into the language of spinor
analysis. The final results, when summarized in

the NP? formalism, are identical to those of Ref. 20.

A curved-space version of the neutrino Hertz
and Debye potentials?® is given in Sec. IV.

The analogy between the flat-space spinor for-
mulas for the lower spins and their curved-space
generalizations leads in Sec. V to a curved-space
treatment of gravitational perturbations. Proofs
are given for metric and Weyl tensor perturbations
in all algebraically special vacuum spaces. The
results are as referred to in Refs. 20 and 21, al-
though the proofs are given here for the first time.

For ready reference, the Appendix contains
a brief recapitulation of the exterior form Hertz
and Debye potential formalism for electromagnet-
ism, as well as those formulas and identities of
spinor analysis which are essential in the above
presentation.

II. FLAT-SPACE HERTZ POTENTIALS FOR ARBITRARY
SPIN

A. Arbitrary-spin Hertz pbtentials of Penrose

In investigating the asymptotic properties of
zero-rest-mass fields, Penrose’® introduced a
class of potentials for arbitrary-spin fields in
Minkowski space. One of these types of potentials
is a natural extension to arbitrary spin of the
Hertzian electromagnetic or spin-1 potential
formalism. Since it is this formalism which is
extended in the present work to curved space for
spins s=%, 1, and 2, this section is devoted to
a sketch of Penrose’s treatment.

The minimal gravitational coupling rule by
which partial derivatives are replaced by covariant
derivatives is used to write the covariant zero-
mass field equation for a free spin-s field as

VA G ape v =0, 2.1)

where ¢ 45 ...¢ is a totally symmetric spinor with
2s indices, 2773

The generalized Hertzian potential of Penrose is
a spinor of the same type as the physical field,
that is, a totally symmetric 2s-spinor P,p ...k,
which is assumed to satisfy

op¥ %' =0, (2.2)
where the spinor d’Alembertian operator denotes
O=V,,VAY', for, if the physical field is given by

Sap - k=VauVpyre+- VKW'PMIN’ o ’ (2-3)
then the field operator expression (2.1) becomes

VAX’¢AB . 'K=VAX,VAM;VBN" . VKW’P"’N' e

=Vgyre e VKW'VAXIVAM'T)MIN' T
(by the commuting of covariant derivatives in flat
space)

= 46X, Vyy+ -+ Ve OP¥'¥ =¥ by Eq. (A8)

=0 by Eq. (2.2),

which establishes that expression (2.3) is indeed a
solution of Eq. (2.1).

B. Gauge freedom

Gauge transformations of the third kind?®°® are
now considered in spinor notation. These are
inhomogeneous terms which appear on the right-
hand side of Eq. (2.2) but which, with a suitable
modification of Eq. (2.3), preserve the source-
free (i.e., free-field) character of Eq. (2.1).

The gauge terms in question are given by speci-
fied derivatives acting upon an arbitrary gauge
SPinor Gy: ...y =Gy’ . . . ys) With one unprimed
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and 2s — 1 symmetrized primed indices. With
such terms included, the gauge transformed ver-

sions of Eqgs. (2.2) and (2.3) are®®
OPX'N' - W = guAR G N - WD) (2.4)

(where the symmetrization applies to the 2s primed
indices on the right side) and

-J

AX'’ —gAXx’
v ¢ABC"~JK_V VAM'VBN'VCS""VJ'V'VKW

— g AX’ DM'N'S «
=VAXY Vo Vet -+ Vi Vw P

—ratat,
'PMNS
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= MIN' v o oW
'I{—VAM’VBN’ e VI(W'P

¢AB"

' "

= Vignr o Ve GV (2.5)

(where the symmetrization applies to the 2s un-
primed indices in the last term). That ¢,,...,
given by Eq. (2.5) is indeed a solution to Eq. (2.1)
is now shown:

ceviw! Ax’ N'S' eV W'
=V VawVes * VipVewG g
1
VW' _* o AX’ N'S' oo VW
- ZSV (VawVes Yoy Vgw/Ga
. N'S' e o oV'W/!
+VawVes o Vi Ve Gy +o
NS ey
+VpwVes = Vo Vaw Gy )

(with 2s terms contained in parentheses, which arise from the definition of sy>mmetrization of indices)

=VewVes *

AX': PUN'S" < e ovV'W! _1__ AX' N'S' - VW’ AN'~ X'S' o 2 o V'W!
oV Ve VAXY o P -35 (V46 ," VLAY G,

+l .. +VAWIGANIS' o .VIX,)]

1 AN’ X’SI Vlwr A -’ NI ’ 4 ’
L) LS 4 .
+§§[(va'vcs" < Vo Vew VTG Y = VY 4y Ves s Vo Vi Ge™'s A ETEE

. rat .
+(VpyVes: o VoV VAV GN'S

cey'x’ AX’ N'S' o« vV'W?"
) = VAV Vot v o VgV Gy )]

(wherethere are 2s terms in the first set of parentheses, 2s —1pairs of terms in the second set of square brack-
ets, and 2s~1 terms have been added and subtracted, making use of the commuting of covariant deriva-

tives in flat space)

=VpnVes -

. VJV,VKW,(%DPX'N'S' ceeVIW VA(X’GAN’S' AL A0

1 ) 1Qt o 4 Jyiw? ’ Q! W . »
+2—s[(%vcs, oo Vo V8t 0G K TV L IV e e e Y Ve 8K OGNS T 4L

+(%VBN'VCS’ tte VJV'GKADGAN S %VBN’VCS’ te VJV’GX'W’DGKN Sy W’)]

[where there are 2s —1 pairs of terms in the
squarebrackets and repeated use has been made of
the identity, Eq. (A8)]=0by the wave equation (2.4)
for the first term and by pairwise cancellation for the
remaining 2s -1 terms.

This section has established Eqgs. (2.4) and (2.5)
as the flat-space arbitrary-spin analogs of the
electromagnetic theory equations (A1) and (A4).

The chief results of this paper consist of an ex-
tension of Eqs. (2.4) and (2.5) to curved space for
the cases s=%, 1, and 2 and a subsequent Debye
complex scalar reduction of the potential for these
cases.

C. Vector potential and metric perturbations

Potentials intermediate between the Hertzian
superpotentials and their corresponding zero-mass
fields for spins 1 and 2 are well known—they are

the vector potential and metric fields, respectively.

These potentials are “half-way” between the Hertz
potentials and the zero-rest-mass fields, in the
sense that (1) the Hertz potential for spin 1 is

—

differentiated once to obtain the vector potential,
which in turn is differentiated once to produce the
Maxwell field, while (2) the spin-2 Hertz potential
is differentiated twice to yield the metric, which
is differentiated twice again to give the Weyl ten-
sor.

(1) For the spin-1 case, this result is proved in
exterior form and tensor notation in Ref. 20 and
the relevant formulas are repeated here in the
Appendix, Egs. (A1) —(A4). An equivalent flat-
space spinor treatment is as follows.

The spin-1 or 2-index case of Sec. IIA above

states that
VAX,(I)AB:O’ (2.6)

that is, Maxwell’s source-free equations are iden-
tically satisfied, for any ¢ ,, given by

b48=VaxVarP¥7, @.7
provided that the Hertz potential PX'Y’ obeys
_OP¥Y’'=0, (2.8)
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If now the vector potential is defined by
A”,=VM,F’,,Z'+c.c. (2.9)
[cf. Eq. (A2)], then the tensor f,, which is defined
in the usual way in terms of this potential, i.e.,
fw=VyA,=V,A,, is related under the standard
skew 2-tensor-symmetric 2-spinor correspon-
dence [Eq. (A10)] to ¢4, given by Eq. (2.7) and
therefore is a Maxwell field. (Here and below,
c.c. denotes complex conjugate.) To see this,
consider the tensor
Sax'sy?=Vax Apy'— VayriAayx;
we wish to show, for ¢,, given by Eq. (2.7), that
Saxay = €andyryr +€xryPun
which is done by direct substitution:
Faxnr:=VaxVezPyZ = VgyV 40 Pyp? +c.c.
= VAX-rVBzrﬁylz, - VBX'VAZ’ﬁY'Z'
+V oV az Py Z =V pyiV 40Py
(by addition and subtraction of terms)
=€ 45 VgV 3Py 4 €40y V gV 47 PRZ
[by Eq. (A6)].
But Eq. (A8) and the wave equation (2.8) for PX'Y’
imply that the first term vanishes, leaving
faxsr =€xy VorVazP¥? =€xpidap+e.c.

as claimed. This establishes that Ay, as given

—

Saxar'=Vax Apy'— Vay Apy

by Eq. (2.9) is indeed the vector potential in the
standard sense and is given by a simple differ-
ential operation on the Hertzian superpotential.
We see, furthermore, from Egs. (2.7) and (2.9)
that

¢A8 = VAX’ Anx, )

since the conjugate term in Eq. (2.9) contributes
nothing to Eq. (2.10) by virtue of the wave condition
(2.8).

In the presence of gauge transformations, the
2-index case of Sec. II B becomes

VA% 45 =0,

(2.10)

(2.11)

i.e., the source-free Maxwell equations are still

satisfied, for ¢, of the form
Pan=Vax Voy PV =V 0 Gpy", (2.12)

where G,* is an arbitrary spinor of indicated
type, provided that the wave equation

D—px'y'___ZVA(x'GAr')

is obeyed by the potential and gauge spinors.
Here it is shown that the expression

(2.13)

A,_,Y:=VBZJ3,~Z'— GBY'+C‘C' (2.14)

is the gauge-transformed vector potential corres-
ponding to Eq. (A2) from which the field ¢ ,, given
by Eq. (2.12) is obtained by the standard rule. The
proof is carried out much as above in the absence

of gauge terms:

=V, x(VazPyZ = Gyyr) = Vgy AV 45 Py = G 4y0) +C.C.

= b2z B2z oz b 2z
=Vax' Vs Py = VgV g Py +VpxV 42 Pys® = VgyV 4z:Py

+Vpy'Gax — VaxGpy

- z S
= €45V V I g Py + €y V griV az PY% 4V G ayr = V y5Gpyr

In this case Eq. (A8) and the wave equation (2.13)
allow the substitution €4,V ,(G*+ for the first
term, while Eq. (A13) gives for the last two terms
the alternate expression —e 45V (G

- €y ViarGpt . With these substitutions, we
have

— H H
Fax'nr = €an(VywGiyny = VG yr)
—=r'z’ 7
+€xpy(Vpt VagPRZ = Vi 4,Gg?)
=€xyrPyptcC.C.

Thus we have shown that Eq. (2.14) is the standard
vector potential for the Maxwell field (2.2) in
terms of a Hertz potential and gauge spinor obeying
Eq. (2.13). From Egs. (2.12) and (2.14), it is seen

—

that the relation between the vector potential and
the Maxwell spinor is '

¢AB=V(AX’AB)X” (2}15)
since the contributions to this expression from the
conjugate terms in Eq. (2.14) vanish by the wave
equation (2.13).

(2) In the spin-2 or linearized gravitational case,
it is claimed that the metric perturbations of flat
space are given in the absence of gauge terms by*®

hop"'V =V opiV o PY VP tec. (2.16)
That is, the 4-index case of Sec. IIA,
VA anep =0 (2.17)
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(interpreted as the free spin-2 field equation for
the perturbed Weyl tensor), is satisfied identically
provided that the potential obeys

OpH'N'PQ = (2.18)

and that the perturbed Weyl tensor ¢, is re-
lated through the standard formula®

zRuB’y ﬂ=ha'y ] 8+h85w7 —hsy:aﬁ "'houS:By
+RQ%yeh° 5= RQYy sh (2.19)

to the perturbed metric and hence via Eq. (2.16)
to the potential (the background curvature terms
are included for the discussion below of perturba-
tions of curved space, although of course they are
absent in the present considerations).

This result is shown in two ways, one of which
focuses attention on the perturbed curvature and
the other on the metric. The first approach shows
by direct calculation that the metric (2.16) is a
solution of the perturbed Einstein vacuum field
equation R g =0, which in terms of the metric
becomes” %33

ZRaB =h':ccﬂ +haﬂ;pp_hpa:5p_hpﬂzap=0 ’ (2-20)

where % denotes the trace of z,, (indices always
being raised and lowered with the background
metric). The second proof establishes that Eq.
(2.19) in spinor notation becomes simply

Yanco=Vaw Vaxlcp © (2.21)

which in combination with the formula (2.16) and

the arbitrary-spin proof of Sec. IIA gives the
desired result.

The proof which shows that R g =0 is satisfied
by the perturbed metric (2.16) is immediate and
involves only the repeated use of Eq. (A8) and the
wave equation (2.18) for the potential. Substitution
of (2.16) into (2.20) gives

2R gyr oy =V pxV aw Vep Ve P T'Y
+VER'Y oV 0pr Vg Pyt @
- VER'VBx'VEP'VAo'T)R’W'P’Q’
= VerVag VEpV go PX P e c.

Each term vanishes by application of the identity
VierVEp = s€pp [ [Eq. (A8)] in combination with
the wave equation (2.18) and the commuting of
covariant derivatives in flat space, except for the
second term which contains the d’Alembertian
operator directly.

Alternatively, the proof which concentrates on
the perturbed Weyl tensor and mades use of the
results of Sec. II A proceeds by substitution of
Eq. (2.18) into Eq. (2.19), which leads eventually
(up to a constant factor) to

R aw'pxtcr'pz = €wry'€yiz¥ascp +C-Co
[cf. Eq. (A14)]

with ¢ ,5.p given by Eq. (2.21) or by the 4-index
case of Eq. (2.3), as claimed. To see this, one
writes Eq. (2.19) as

2R AW'BX'CY'DZ’ =VBX’VDZ’hAW'CY’ +Vaw 'ch'th'Dz' - VAW’VDZ'hBX’CY’ - VBX’VCY'hAW’DZ’

=VAW’VCY'h’BX'DZ' - VBW’VCY’hAX’DZ' +VBW'VCY’hAX'DZ’ - VBX’VCY’hAW’DZ'

+V8X’VDZ'hAW'CY' - vAX’VDZ'hBW'C]"' +VAX’VDZ'h’BW’CY' - VAW’VDZ’hBX'CY'

(by addition and subtraction of terms)

= E R’ E R'
‘EABVEWIchlh X'DZ'+€W'X'VBR'VCY'hA DZ'+€BAVEX’VDZ'h ch}ra+€er:VARrVDzlhB cy’

[by application of Eq. (A6)]

- E E E
=€a5VawVor " xpz = €4sVew Yoy REx1070 + €4V Vpy A prcgr

E E E
- eABVEX"VDY"h w'cz’ +€ABVEX'VDY'h w'cz' — €ABVEX'VDZ'h w'cy’

+eprVerVor B 4% pgr = €4V Vog Ma® pyr+ €V ppVogh & pyr

’ U - U
= €prpVarVozhs® pyr +€yix VarVezhs® pyr = €yipV apVpzhs® oy

(by addition and subtraction of terms)

- EF ER' E R
=€xp€cpVaw Vry " xiz +€4p€ 0wV arVpy B*F cpr + € 45€ 412V gV preh By i

’

)t , ,
+tEyrg €rrgr Vg Voghap® S + €yigp€g Ve Vg B pyi+ ey €cpVarVezhs® Fyr (2.22)
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[by application of Eq. (A6)]. If now the first term
of Eq. (2.16) is substituted in this expression for
the perturbed Riemann tensor, all terms except
the fourth vanish by application of Eq. (A8) and

the wave equation (2.18). Similarly, when the con-
jugate term in Eq. (2.16) is substituted, only the
first term in this expression contributes. To-
gether, they yield

2R AW'BX'CY'DZ' T €ap€cp¥wixryiz’
+€yix€yizPapcn >

with ¢ ,5.p given by the spin-2 case of Eq. (2.3).
This result, together with the proof of Sec. IIA
that ¢, 5., satisfies the zero-rest-mass spin-2
wave equation, establishes that Eq. (2.16) gives
the metric perturbations of Minkowski space.

The final results to be shown in this section con-
sist of a generalization of these two proofs for the
metric perturbation formula (2.16) to include gauge
transformations of the third kind. That is, it is
now shown that

J
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hCDM'N-_—VcPrVDQrpM’N'P’Q’ - V(Cpl‘GmM,N,P, +C.C.
(2.23)

gives the metric perturbations of flat space, pro-
vided that the 4-index case of Sec. II B holds, i.e.,

that the potential obeys

OPWNPY - gyAl'G NPQ) (2.24)

and that the Weyl tensor is given by Eq. (2.19)
which becomes

I

Yasco=VauVanhten"™, (2.25)
or, in terms of the potential,
Yapep = VAM’VBN'VCP’VDQ’ﬁM ¥PQ
- V(BN’VCP’VDQ’GA)NIP,Q, (2.26)

[the conjugate terms in Eq. (2.23) not contributing
to P ,pcp because of Eq. (2.24)].

For the first proof, direct substitution of the
perturbed metric (2.23) into the perturbed vacuum
field equation R .5 =0 [Eq. (2.20)] gives

_ = pI'pro’ E) R'P ER’ - P'Q’ pr
2R AW'BX’' =V BX’VAW’(VEP'VEQ’ PR’R P V(EP’ G )R' )+V VER'(VAP’VBQ’ Pw’x' - v(AJ-"' GB)W’X' )

= VoV ax(VE ¥ 4 PRy P =V B, G oF P) = VoV 4y (V¥ g PR L BV~ VB, Gy P +e.c.

The two terms in the first parentheses each vanish since contraction on a pair of symmetrized spinor in-
. . o .
dices gives zero (which shows thathc,,""” is trace-free). The remaining terms may be written as

- —_ el 1 N’ 1 Uald 1 EPI ’ 1 E ’ P'
2R 4y oy =V ap Vg OPy gt ¥ = 3VE L Gy Y = 395 Gy Y = 3VEF Goyrg® = 3VEY G o™

1gE P'Q’ , LgE P'Q’' | 1 EP' Q' LgEQ’ P’
+VAPIVBQI(2V W'GEX' Q +EV XIGEWI Q +2V GEWIXI +2V GEW'X’ )

¢ Y L R’ P’ ER' P’
= UV 40 Girx” +V3pr Gayrg? ) + 3V grV gur(VEpi G Xy B 49 40 GER P

’

’ "’ ’ —_p '’ 1 —_—r Vsl
+ 3V em Vaw (Ve o GgF P + V g piGE® (P) = 4V € OV 4 n PR L P = 3V €0 OV o PR

by addition and subtraction of terms. The last two terms are obtained by application of Eq. (A8) and each
vanishes since the potential is symmetric in R’ and P’ while €/, is skew. Recombination of these terms
gives
- 3 7, ’ 'y’ l E PIQI
2R 1oy =V aprV pgrOPy P = 2VE () Gpy® ) + 3V 45V 50V E 1 Gy
'y ’ 7’ 1 ’ 4 1 ’ Pl
+3V 4oV e Ve 0 GpyF @ +3Y 40V 50 VE G o™ + 3V 4oV 50 VEY Gryoy® = 30V 400 G gyrg® = 30V 51 G pprgr
+ 3V Ve Ve G ¥ + 3V nVa eV apr GER L P 4 5V iV 4 VP o Gg® P + 5V ooV gy Ve GER P

The terms in parentheses add up to zero by the wave equation (2.24). Of the remaining ten 'terms, the sec~
ond and eighth may be combined using Eq. (A6) to yield

1. ‘ E PQ', 1, EQ' P _1 z' E PQ'
""ZVEXIVBQIVAPIG w’ +2VEQIVBXIVAP'G w —2€QIX:VEZIVB VAP’G w' ,

which may in turn by use of Eq. (A8) by written as f€gir€zaVap OGE, Y 0r §V 000Gy P Similarly,
the first and tenth terms combine to 'give 1V, 0G4y +x* . Furthermore, Eq. (A8) may be used to generate
the d’Alembertian operator in each of the remaining terms. With all of these substitutions, we have

ZRAW'BX' :%VBP' DGAW :erl + %VAPI DGBW’X'P’ +%VBQIDGAleIQ’
+%VAP:DGBpr:P, - %VAlecswlxIP' - %VBP' DGAW'XIP, + %Vax'f:‘eklpl GAR'W:P' +~;‘VAwlD€RIP/GBRlxIP,-
The last two terms each vanish by contraction of symmetric indices, while the remaining terms cancel,
thus completing the proof.
Finally, the proof of the perturbed metric expression (2.23) which concentrates on the perturbed Weyl
tensor is generalized to include gauge transformations of the third kind. To do this it suffices to show
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that with the perturbed metric given by Eq. (2.23), the perturbed Weyl tensor which follows from Eq.
(2.19) is in fact just Eq. (2.25), or equivalently, Eq. (2.26). The proof itself then follows from the arbit-

rary-spin results of Sec. IIB.

A spinor computation which shows directly that Eq. (2.19) does in fact yield Eq. (2.25) for the Weyl tensor
is now sketched. As shown above, Eq. (2.19) may be transformed to the spinor expression (2.22) for the
perturbed curvature spinor. Substitution of the first term of Eq. (2.23) into Eq. (2.22), with repeated ap-

plication of Eq. (A8) yields

- 1 5  PQ _ 1 F P _1 F P
2R sy pxrcyinz = €an€co(i€y €y g O0P gy V- d€yrp OVey Gy’ = 5€y i OVpyi G xz" )

—_— A’ ’ W ’ 4
+€AB€waI(%€RIPI DvDychQrPR ZIP P —;‘ERIPI DVDY' GCR zlp - %VER'VDY'VCP’ GER zIP )

’ Nt ’ ’ ’
+€Aaerlzl(%exrpl DVDRIVCQlPR W'P Qe _ %lepl DVDR' GCR W'P' -— %VEX'VDR'VCP' GER WIP )

—RlslPI ’ L R'slpl L Rlslpl
+ €y g€y iz (Vap VgV apVpgPE S = 4V Vo sVap Gy — ViRV sV pp G, 5F)

1 —p! p'g’ 1 , ’ DY)
+eW’x’eBA(EGR’P'Dch’VDQ'PR Y,PQ - j€RvPIDVCZl GDR YrP - %VERIchlVDPl GER va)

= Pt 1 - P
+€pr€op(3€20 TV 4pVgp PRy PV m 3V 40V s Vi GER L P 26, OV 400 G % P,

In the second and fifth set of parentheses, the first two terms each vanish by contraction of symmetric
spinor indices. The strategy at this point is to regroup the remaining terms by adding and subtracting
suitable terms in such a way as to generate the expression (2.26) for §,,., and also to generate the differ-
ence between the potential and gauge terms in Eq. (2.24) [which then cancel by the wave equation (2.24)].

This procedure gives

_ —MINIPIQI N,P’QI
ZRAW'BX'CY'DZ' _EW'X'GY'Z'(VAM’VBN'VCP'VDQ'P - V(BN'VCP'VDQ' GA) )

1 ol p! ? Qtpt
— d€yrp€yiz(€cpVarV apV s GEF S t €5,V oV p oV prr GER'SP')

1 1 E RL1 E R
+5€0p€c G4y VE g Gy 21 +5€50 VE i GgF yry1)

1 1 R'S'Q’ , 1w ER' ' 1 EQ' R’
—EEABeY'Z'VDR'VCQ :(§€W1xlvgsl GE Q +§V GEWIXIQ +‘2‘V Q GE WIXI)

1 1 E R'S’P" | 1. ER; P’ ) gEP' R’
- ZGCDGW'X'VAR'VBP'(ZeY'Z’V slGE +3V GEZlyl +2V GE ylzl)

N - ,
— 3€45€w ' VerVpy Vepr GFF X + 3€45€y xVerVerVop G y

P?
’

1 R’ 1 R’ .
+2€4p€y 1z OV prr Ge™ iyt + 3€g1x€cplIV 4 G~ yrg7 s

where terms canceling by Eq. (2.24) have been
omitted. All terms beyond the first may be shown
to cancel one another by suitably combining them
and applying Eq. (A8), as well as by addition and
subtraction of terms followed by use of Eq. (A6).

" The whole procedure outlined here may be re-
peated for the complex-conjugate term in the
metric (2.23), giving finally

2R sy 1pxioy'pzt =€ ap€cpVwixy iz +€wrx €y z¥ancD »
with ¢ 4g0p given by Eq. (2.26). This result, with
vanishing perturbed Ricci tensor, establishes that
Eq. (2.25) [or equivalently, Eq. (2.26)] indeed gives
the Weyl tensor as claimed. The results of Sec.
II B then complete the second proof that Eq. (2.23)
gives the metric perturbations of flat space with
gauge transformations of the third kind.

D. Summary of Sec. II

It has been shown that in flat space, the arbi-
trary-spin zero-rest-mass field equations

VAX'¢AB vo.g =0 2.1)

-
are satisfied by Hertzian superpotentials P, ...x
of the same spinor type as the fields themselves,
provided that (1) the fields are given by

_ SUIN e oW’
¢AB---K‘VAM’VBN""VKW'PM v
_V(HN""VKW'GA)NI'.'W" (2.5)

with G,V """V =G, ***¥) an arbitrary spinor
of indicated type, and that (2) a wave condition

OpXN W soyAlX g N ec W) (2.4)

is satisfied by the potential and the gauge spinor
GA",,_- . W'. .

Furthermore, the flat-space vector potential and
metric perturbations are obtained by simple dif-
ferentiations of the corresponding Hertzian poten-
tials, which in turn yield the Maxwell field or Weyl
tensor, respectively, by further differentiation.
These relations are

Agyr=VygpPyZ = Ggyr+e.c. (2.14)
and

bas=Viaxr An* (2.15)



1648 LAWRENCE S. KEGELES AND JEFFREY M. COHEN 19

for spin 1 or electrodynamics, and
Bop" ™ =V op VW pg PYNP'Y _ 0 GNP tc.c.
(2.23)

and

Yascop =Viaw Vaxhcn” X . (2.25)

for spin 2 or linearized gravitation.

III. SPIN-1 HERTZ, DEBYE, AND VECTOR POTENTIALS
IN CURVED SPACE

The results of this section may be viewed either
as a translation of the results of Ref. 20 into spin-
or notation, or as a generalization of the spin-1
results of the last section to curved spacetimes.
Either viewpoint leads in a fairly natural way to
the formalism below, although the first provides a
more systematic development.

The correspondence of spinors and tensors
given by Eq. (A10) is now used to show that Eq.
(2.1) for s=1,

VA =0, (3.1)

is indeed the spinor version of Maxwell’s equa~-
tions, which for convenience are repeated here in
tensor notation:

Vufu)\+vvau+V)fpu=0; (3.23)

V¥ =0. (3.2b)
Writing

Faw x' = €anPurxr +€yrgr® an 3.3)

according to the bivector-spinor correspondence
of Eq. (A10) and expressing Eq. (3.2b) in spinor
notation gives

VAX (€ a g Pyryr +E€grgr D ap) =0. (3.4)

Moreover, Eq. (3.2a) states that V¥(*f ) =0, which
by Eq. (A15) becomes

VAX (€ g bwryr = €prprd ag) =0. (3.5)
Subtracting Eq. (3.5) from Eq. (3.4) yields Eq.
(3.1) as claimed.

A. Hertz potentials

-Similarly a direct transcription of the harmonic
operator of Eq. (Al) via the correspondence Eq.
(A10) into spinor notation yields

‘ DPAB +V(ARIVCR'PB)C'— VCR'V(BRIPAC =0 N (3.6) :

where the free unprimed indices A and B are sym-
metrized and the symmetric spinor P,, corres-
ponds to the Hertz potential by the standard rela-
tion (A10), Py, ~~€,5Py ey +€pryePag. It is to be
noted that the harmonic operator on a second-

rank spinor does not correspond to the d’Alember-
tian operator [the first term of Eq. (3.6)], except
in flat space where the remaining terms of Eq.
(3.6) vanish by the Ricci identities.

The same procedure when applied to the pre-
scriptions (A4) for the Maxwell field yields two ex-
pressions for ¢, in terms of P¥'¥', which be-
come identical by virtue of the wave condition, Eq.
(3.6). The expressions are

—_—pltgt ’
048 =Var Yoz P* % = Vap V¥ Py (3.7a)
=0P 45 +V(ar'Vez PP % = VP2V 3P 41
(3.7b)

where the symmetrization applies to A and B. To
show that these are in fact the same one uses the
spinor identity

O ap '_‘V(AR'VCR"’?B)C +VOF VisrMac. (3.8)

which is given in the Appendix as Eq. (A16) and is
proved there. The first application of this identity
will be to Eq. (3.6), where direct substitution
shows that the wave operator becomes

V(ARIVCRIPB)C =0. (3.9)
Next Eq. (3.7b) becomes, by virtue of Eq. (3.8),
(PAB = V(AR:VCRIPB)C + V(ARIVB)ZI?RIT . (3. 10)

Finally, the harmonic condition (3.9) is used in
Eqgs. (3.7a) and (3.10) to show that they both be-
come

¢AB=V(AR'VB)Z'I—)R’Z,' (3.11)

This equation together with the complex conjugate
of Eq. (3.9),

VA(X'VAZ'T)R')Z’ =0, (3'12)

are the desired curved-space extensions of Egs.
(2.3) and (2.2) for spin s=1. It should be remarked
that Eq. (2.3) has been generalized to curved space
in the most natural and obvious way, by mere sym-
metrization of the derivatives, the flat-space ex-
pression being automatically symmetric in the
derivatives by the flat-space commutation property.
That ¢, given by Eq. (3.11) satisfies the Max-
well equation (3.1) by virtue of the wave condition
(3.12) is now proved in spinor notation. One ap-
proach would be to transcribe the tensor proof of
Ref. 20 into spinor notation, but a more direct,
purely spinor approach will be adopted instead.
The basic strategy of the proof is to break up
VAX' ¢ 45 With ¢, given by Eq. (3.11) into a piece
which vanishes because of Eq. (3.12), and other
terms which are commutators and vanish by the
Ricci identities, Egs. (A19) and (A20). The com-
putation is presented here:
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VA ) 15 =V (V 42V p o PS) [by Eq. (3.11)]

=3(VAY'Y (o Voo PR'S 4+ VAX'Y L0, o PF'S))

¢

=VAXY oV ar PV + 3VAX(V oV g = VoV 4p)PR'S (using the symmetry of PR'S))

=V g VAY'Y o PR 4 (VAX'Y g = W o VAX)Y o PR'S 4 10AX (Y, Y, =V, T ) RS

e -
=3V p o VAV o PR S 4 4V oV o VAN PR'S 4 1y (VAY'Y o) = ¥, o VAX)BR'S

_ , —rr , .
H(VAXY o = Vg g VATV (o PR'S 4 30AX(V 0V o0 = V g oV 4 o) PR'S

But VAX' PF'S’'_ gAS'DRX' = (X'S'yA  PRZ’ | g0 the second term may be replaced by iV, oV (VA4S PRX
+€¥'S'V4,, PR?), Furthermore, V,, VA4S PRX =vAS'y,  BRY 4(v,, . vAS - vAS'y,_)PR'T' 5o the expression
for the second term becomes 3V, VA5V (0, PR 11V, (Vo V4 = VAS'Y  )VPRX 4 1y X'y, V4, DRZ,

Hence, substituting,

VA § ap =V g o VAX'Y 0 PSR 4149 AV, VA4S = VAS'Y ) PRY 11y X'y, vA, PR'Z

1 i I\ ==t ot ’ -, Xy ’ —plo!
+2Va s VAV g = V g VAT)PR'S 1 (WAX'Y |, = ¥, o VAT)Y o BRS L AVAT (Y, 0, = VooV, ) PR

The first term vanishes by the wave condition Eq.
(3.12). The second and fourth terms combine by
Eq. (A6) to yield 3€S%'V o (V p VA, = V4,9, o) PR,
which in turn combines with the third term, leav-
ing
VAX'¢AB = %V BX’VAZ’VAR'PR‘Z,
+H(VAX'Y o = Vo VATV o PR'S
+3VAX(V 1V g = VoV 4o PR,
(3.14)

These three terms are now expressed via the
Ricci identities in terms of curvature quantities.

In the first term, the last two operators
VA,V 4w PF% =94,V oy PR? may be expressed,
using the complex conjugate of Eq. (A19) and the
Leibnitz product rule, as

A -—RIZ’ - — Z' —RI ’ —Rl Z,
v (ZIVARI)P = - \I/szl X'P X +2AP (Rlézl)
_— RI lel zl ’
- ‘IIR'Z' X'ﬁ + 21\? (R:EZu)R .

But the Weyl spinor is totally symmetric and hence
the contractions vanish. The terms involving the
curvature scalar are

AQ2PF' o+ P® ,.65%") + A(PZ 6,7 +2P% ;)
= GAPR'R, = 0

by the symmetry of the potential. Hence the first
term vanishes.
The second term may be rewritten as

(-84, v (XVE Gy = 65 V4, v, %), S, (3.15)

where £,5'=V,,, P¥S" and where use has been
made of Eq. (A12). In evaluating the first term in
Eq. (3.15), one finds by the conjugates of Eqs.
(A19) and (A20) and the Leibnitz rule that

(3.13)

E - T z'
v (x'VEs')‘EAY"‘“I’x's'Y'z'gA
+2AE y(x€snyy = P apxrsEl e
Hence
! ’ —pt ’ 4
Ve TV GE S =05 oSk )2
- ZAEA(X'ES,)SI +¢AEX'8'£ES' .

The contracted Weyl tensor vanishes and the re-
maining terms work out to be

—A(EK 24 E 4 0e¥ ) 48 X G EES
= _3A£AX' + QAEX ’slgES

Hence the first term in Eq. (3.15) is

=3AVyp PPX = 8, X JVELPR'S | (3.16)

The second term in Eq. (3.15) is evaluated simil-
arly, making use again of Egs. (A19) and (A20),
the Leibnitz rule, and the Hermiticity of & 45,/
and reality of A. The result is just the negative
of Eg. (3.16), so the second term in Eq. (3.14)
vanishes.

The commutator in the third term in Eq. (3.14)
may be rewritten by Eq. (A12) as

E _BR'S Z'BR'S'
€anVar V. s\ PT ¥ +€pgViaVy? PFS .

The second of these vanished by the antisymmetry
of € ¢ and the symmetry of PX'S’, The first term
contains the factor Vg pVEP¥S', which was
shown above to vanish in the discussion of the
first term of Eq. (3.14).

Hence it has been established that if the po-
tential obeys the harmonic condition (3.12), then
¢ 45 given by the second-order operation (3.11)
is a solution to Eq. (3.1), i.e., ¢, Oobeys Maxwell’s
equations.
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The formalism for gauge transformations of
the third kind is now expressed in spinor notation
for the curved-space case. The analogs of the
flat-space Egs. (2.4) and (2.5) of the last section
for s=1 are

VA(x'VAZJ—;R')z' = VA(x'GAR')
and
bas= V(AR'VB)Z'ﬁR'Z, - V(AR’GB)R' .

(3.17)
(3.18)

J

AX' —vAX'o- 'z A - !
v ¢AB*V XV(AR'VB)Z’PR -V XV(AR’GB)R

These are the spinor translations of Eqs. (A1) and
(A4), i.e., of Egs. (3.7) and (3.8) or Egs. (4.6) and
(4.7) of Ref. 20. They are the spinor version of
the Hertz potential formalism as generalized to all
curved spacetimes.

The proof is now presented that ¢ ,, given by
Eq. (3.18) is a source-free Maxwell field, i.e.,
obeys Eq. (3.1):

=VAY gV g PR = 3V g VAYG R e J(VAXV s = VeV AX)G SR

’ 4 ’ ’ A ’ RI
= 2V VARG X + 4(Vep VARG X = VAX'Y 0. GR).

The second and fourth terms combine to yield
~VorVAXG,F). The commutator in the third
term is seen to vanish by the Ricci identities:

(VAY'Y prr = Vg VAX)G & = (=84 ,v, X'V 0y
=X VALY PG, F
[by Eq. (A12)].

This is the same as expression (3.15) which was
shown above to be zero. If Eq. (3.13) is now sub-
stituted for the first term in Eq. (3.19), making
use of the fact that all terms in Eq. (3.13) except
for the first have been shown to vanish identically
by the Ricci identities, Eq. (3.19) becomes

VAX'¢AB =v, SIVA(X’VARIT_)S’)R' - VBs,VA't’x'GAs')
+3(Var VAV G ¥ = VAV 12G5®) .
(3.20)

The first two terms cancel by the assumed poten-
tial wave equation (3.17). The last term is now
shown to vanish. The first term in the parentheses,
Vo VA*'G X', may be rewritten as follows: Since

Var VARG X = VAV R G X =6,40G 5 =06~ ,

which may be written as

2V 5o VARG X + (VAR'Y g = Vo VARG X =0G X,

we have for the first term

VBR’VAR,GAX’ = %DGBXI - %(,VAR,VBR’ = VBR'VARI)GAX'-
(3.21)

Similarly, the second term is shown to be

VAV 4G " = =G 5™ +3(V g VA = VAY'Y 2)G ™.
(3.22)

Hence in the sum of Eqgs. (3.21) and (3.22) the
d’Alembertian terms cancel one another. The

(3.19)

—

remaining commutators cancel as well, as may
be seen by applying the Ricci identities: From
Eq. (3.21), the commutator is

(VAR'Y ppr = Vg VAR)G X = =84,V BV G X
—2V4, VPG X

The first term contains a contracted symmetrized
pair of indices and hence vanishes. The second is

2(=3AGp" +® 5,5 oGES') (3.23)

as indicated in the discussion of Eq. (3.15) where
the same expression occurs. Similarly the com-
mutator in Eq. (3.22) is :

(Vo VA VAX'Y )G %
=2V (V¥4 6, RV 4oV AP)G R .

The second term vanishes because of the con-
tracted symmetrized indices; the first is equal to
(3.23) as shown by the Ricci identities and dis-
cussed above in connection with Eq. (3.16). Hence
the sum of Eqgs. (3.21) and (3.22) vanishes, and

the entire right-hand side of Eq. (3.20) has been
shown to be zero. This establishes the spinor
form of the electrodynamic Hertz formalism, Egs.
(3.17) and (3.18), with gauge transformations of
the third kind.

B. Vector potentials

Equation (2.14) for the vector potential in flat
space expressed as a covariant derivative of the
Hertz potential is in fact equally valid in curved
space. The proof that this is so requires only a
minor modification of the proof of Eq. (2.14). Here
it is shown that if the Hertz potential obeys Eq.
(3.17), then the quantity

(3.24)
generates the field spinor ¢ ,, given by Eq. (3.18)

Apy =V Py =~ Ggyrte.c.
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via the usual relation between the field tensor and
the vector potential. Since ¢,, obeys Maxwell’s
equations as just shown, Apy. is therefore the
usual vector potential. To see this, note that the
field tensor

Sax'sy'=VaxrAgy = VarAsx
becomes

= H B 2’ DR'Z’
folsy,—GABV”x:V Z'PY’ +EX'Y'VBR'VAZ'P

+VBY:GAXI—VAXIGBY,+C.C. (3.25)

on substituting from Eq. (3.24). An analogous com-
putation which involves the addition and subtrac-
tion of V 45V 5,.P,% [as opposed to Vg,V 4, Py /2
which was added and subtracted to obtain (3.25)]
gives

Faxar'=€anVar ¥V pPy” +egryV 4g Vg PP 7

+VgyiGaxr = V giGgyr. (3.26)
Taking half the sum of Eqgs. (3.25) and (3.26) and
applying Eq. (A13) to the last two terms, just as in
the flat-space case, gives

faxar: = €aa(VaxG vy = V(G yn)

+ Exry :(V(AR:VB)Z:?RIZ’ - V( APIGB)P,) 5
where use has been made of the wave equation
(3.17). Equation (3.18) for the field spinor shows
that this expression is just

Sax'sy'=€xryrPaptc.C.,

which shows that Eq. (3.24) is the curved-space
vector potential with guage transformations of the
third kind.

Furthermore, the relation of Eq. (2.15) between
the field spinor and the vector potential,

b45=VaxAn®

holds as well in curved space; this is seen by ob-
serving that substitution of Eq. (3.24) for AB’" into

—

(3.27)
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this expression generates Eq. (3.18), the conjugate
terms not contributing by virtue of the wave condi-
tion (3.17).

C. Debye potentials

The basic equations (3.17) and (3.18) of the Hertz
potential formalism provide the framework for a
one-component Debye reduction of the potential in
the generalized Goldberg-Sachs class of space-
times, as in Ref. 20. (For other approaches to the
formulation of electromagnetic Debye potentials in
certain classes of spacetimes, see e.g. Refs. 16
and 34.) This procedure is now outlined for the
spinor case.

A spin dyad frame is chosen so that one of the
basis elements, say 0*, is oriented along the re-
peated principal null direction of the Weyl tensor
[one orients a spinor along a null vector in the
sense of Eq. (A11)]. Alternatively, one accom-
plishes the same result by choosing 0* to coincide
with the repeated principal spinor of the Weyl
spinor.3+% (For a discussion of the motivation
for this choice, see Ref. 20, Sec. V.) Next the no-
tation y is introduced for the dyad component P,,
of the Hertz spinor; other components are zero
with respect to the chosen dyad. The gauge spinor
is chosen to be Gy, ==279, G,.=-2pP (other com-
ponents are zero) where 7 and p are spinor affine
connection components as discussed e.g. in Refs.
26 and 36 (they are also called “spin coefficients”
in the NP formalism). With these choices for
P,z and G 44, Egs. (3.17) and (3.18) are written in
the NP formalism according to the rules in Refs.
26 and 36, and the dyad components of ¢, are
given their NP labels ¢,= ¢,,, ¢,=d,, and ¢, =¢,,.
(This procedure is illustrated in detail below for
the simpler spin-3 case.) Then the dyad compo-
nents of the wave operator acting on the potential,
the left side of Eq. (3.17), become

X'R' =1"1"[-(&-y+y+p)(D +2e-p) + (6 +a +}3—T)(5 +2B=T)+VK - X5 |9,

1'2:3[(5 - a+B+7+7)(D +2€-P)= D +e +€—p+p)(F+2B-T)+(A =y -y +u Q)R = (6 - @ +B-T-T1)5]7,

2’2" :[+(D+e~-€-p)o— G -a-B+mE-G(D+2€-p)+K(E +28-7)]7,

while the dyad components of the gauge terms,
the right side of Eq. (3.17), are

X'R =11 [=(A =y +7 +)(=2p) + (6 + @ + B—T7)(-27)]P,
1'2":4+(@ - a +B+7+7)(~2D)
~(D+e+e—p+p)(-27)]7,

2'2":[-5(~2p) +R(~27)]9.

r

Equality of the (2’2’) components holds identically
because of the alignment of o* along a principal
direction of the Weyl tensor: a calculation in the
NP formalism shows the (2'2’) component of the
left side to be just (2p5 — 27K +¥,)3. For the (1'2")
component of the left side, an NP calculation gives

[(D+e+E=p)r=(B—a +B+mp —0(5+2a +7)
+R(A +27 +10) - 28,19,
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which again is identically equal to the right side
because G, X, and ¥, vanish by assumption.
Finally, the equality of the (1’1’) components,
omitting quantities proportional to ¥ and &, yields
a scalar wave equation for P:

[(a = v +¥ +p)(D +22 +p)
—(6+a@+p-7)T+2B+7)P=0, (3.28)

whose solutions P contain all of the information of
the Maxwell field. In fact, Eq. (3.18) explicitly
gives the Maxwell field spinor in terms of ¥, the
three components of which become

$o=—(D—€+E=Dp)(D +2€+p)¥,

2¢,=-[(D +e +2+p -Pp)(T +2B+7)
+(B-a+B-1-7)(D +22+p)]P, (3.29)
2= -[(E+a +B-T)([0 +2B+T) = x(D +2¢ +5)]w ,

where terms proportional to ¥ and & have been
omitted from these expressions. These field
components and scalar wave equation are just Egs.
(5.5) and (5.6) of Ref. 20. The vector potential,
Eq. (3.24), becomes for this P,z and G 44,

A¥ =-mH(D +2€ +5)$+l“(8+23 +T)P +c.c., (3.30)

where [ and 7" are elements of the null tetrad
canonically associated® with the chosen spin dyad.
Similarly, the two alternate formulations of the
Debye potential derived in Ref. 20 for type D
spacetimes follow directly from the spinor formu-
las (3.17), (3.18), and (3.24), as is now shown.
For the formulation which interchanges the roles
of the congruences with tangents /¥ and »"*, the two
shear-free null geodesic congruences of the type
D space, we take P, =9, G,y ==-27, G,y =-20P;
the remaining components of the potential and
guage spinor vanish. Proceeding as above, omit-
ting quantities proportional to ¥,;, A, and v which
are the NP quantities whose vanishing ensures the
shear-free null geodesic condition for the n* con-
‘gruence as well as that n* be a repeated principal
direction of the Weyl tensor, we obtain the wave
equation

[(D+e-e-p)a-27-T0)

-(F-a-B+nG-2a-n]F=0 (3.31)

for the (2’2’) component of Eq. (3.17) and identities
for the other two components. The field tensor
components, Eq. (3.18), are

$o=—(6—a—p+7)(6-2a-77,
2¢,=[-(6-@+p+7+7)(Aa =27 = TI)

-(a-y-y-p+mG-2a-7y,
G ==(A +y =y +I)(A =27 =T,

(3.32)

and the vector potential obtained from Eq. (3.24)
is

Al=—pH(5 - 2a - F)P+mH(A =2y =Ti) +c.c. - (3.33)

In each of these formulations, the vector poten-
tial is transverse to the special congruence, that
is, A"1,=0 in the first case and A, =0 in the sec-
ond. The third scheme involves a vector potential
transverse to neither congruence: Choose P,, =9,
other components zero, and Gy =-279, G,y =~-21,
Gy ==2py, G,y =-279. Then the scalar wave equa-
tion for the potential is

[(A=y-F+u~-TDD=(6-a+p-7—7)5]P=0 (3.34)
and the field components are
bo=[(D-€e+2+p)6+(6-a@-p+7DIP,

¢, =[(D+e+e+p-p)a+(F-a+B-n-7)5]F, (3.35)
by =[(a+y -7 +DT+(B+a +B-7)A]

from Egs. (3.17) and (3.18), respectively, omitting
terms proportional to k, o, A, and v. The vector
potential from Eq. (3.24) is found to be

AF=ptDP ~ mVBP +WHSP - I"AP. (3.36)

These constructive procedures for the Maxwell
field tensor and vector potential are not restricted
to vacuum spaces, nor is the first of the three
schemes [Egs. (3.28)—(3.30)] restricted to type D
spacetimes; the method covers the generalized
Goldberg-Sachs??2 class of spaces: all those al-
gebraically special spaces—vacuum or not—which
possess both a repeated principal null direction of
the Weyl tensor and a shear-free congruence of
null geodesics along that direction. Illustrations
showing the applicability of this method of con-
structing Maxwell fields to astrophysical space-
times are given in Ref. 20,

D. Summary of Sec. ITII

In this section it has been shown that the curved-
space generalizations of Egs. (2.12)—(2.15) are

VA(x'vAz,pY’)z’ =VA(X’GAY') , (3.17)

Apy'=Vgy Py % =Gy +e.c., (3.24)

®48=Viax AB)X' s (3.27)
and

b5 =Viax Vo PX7 =V xGp* . (3.18)

In other words, if a Hertzian potential spinor

P¥'% and gauge spinor G, are related by the wave
condition (3.17), then the vector potential Ay, of
Eq. (3.24) and the field spinor ¢, of Egs. (3.18)
and (3.27) identically solve the curved-space Max-
well equations.
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These spinor equations are the equivalents of
the corresponding differential form equations

AP=dG+8W,
A=6P~-G,
f=dA,
and
f=dsP - dG =5W — 6dP

of Ref. 20.

The above Hertz potential formulas, valid in all
spacetimes, are shown to yield a scalar Debye
superpotential for the electromagnetic field in the
generalized Goldberg-Sachs class of spacetimes.
The general Maxwell field is explicitly constructed
by solving the scalar wave equation (3.28) and dif-
ferentiating its solution to yield the vector poten-
tial (3.30) or field components (3.29).

IV. THE WEYL NEUTRINO IN CURVED SPACE

The two-component or Weyl neutrino equation in
curved space is just the one-index case of Eq.
(2.1). In the section, Egs. (2.2) and (2.3) for the
spin-3 case will be generalized to curved space ,as
willthe version incorporating gauge transforma-
tions, Eqs. (2.4) and (2.5).21*?¢ ADebye one-com-
ponent reduction of these equations will then be de-
rived inthe NP formalism using the spindyad frame
methods of Refs. 3, 26, and 36.

In order to solve

vAX'$, =0, (4.1)
a potential P, of the Hertz type is introduced and
assumed to obey

VA,V 4 PY =0, (4.2)
Then if the neutrino field is given by

a=Vay P, (4.3)

Eq. (4.1) is immediately verified to be satisfied by
¢4 by virtue of the wave equation (4.2).

If gauge transformations are now included in the
form suggested by Eqgs. (2.4) and (2.5), the wave
equation becomes

VALV P =V4,G, (4.4)
and the neutrino field is given by
Ga=VauyP"' -G,. (4.5)

Again the Weyl neutrino equation is immediately
seen to be solved by ¢ ,.

Equations (4.4) and (4.5), which comprise a
generalization to curved space of the s =% Hertz
formalism with gauge transformations, are now

used as a framework for a Debye-type one-com-
ponent reduction of P4 in the generalized Goldberg-
Sachs class of spaces. To this end a spin dyad
frame is chosen with o* oriented along the re-
peated principal null direction of the Weyl tensor,
with the result that spin coefficients k and o and
NP Weyl tensor components ¥, and ¥, are zero.

As an illustration of the method of translating
from spinor to NP notation, Eq. (4.1) will be writ-
ten in the latter formalism. In terms of the quan-
tities ¢,# which connect lower-case dyad indices
to upper-case spinor indices via

na=§a AnA7 "7-4:‘5“,4714,
and which are chosen in the NP formalism to be
£,4=6,4, Eq. (4.1) becomes
0= VAx"PA =V x€a A¢u
=PV 4y 8a A+ L, AV 4prd? Dby the Leibnitz rule
=€®e*%(,V 4xL0n + LanV ax D) - (4.6)

The definition?®+% of the dyad components of the

spinor affine connection gives
Vaxtan = =8 4T 'yt 5 uponr -
Furthermore,
EanV ax Do ==L 4T &’ 5(£aVor 105) ,
so that Eq. (4.6) becomes
0 =—e®eABc’ T ’X'ng((bbFafex 1+ €0 Vor 1 Dp)
=—€®e*25° 6% 118’ 5(dpTapex’ + €0 Vex 1 Ds) - (4.7)
Writing out the ¥ =1’ component explicitly yields
0=—€e®(¢Tya1y + €12V 1ra) — €2€ (9, T110v)
- €2€(¢,Tonrp) = €€ (91 Taay + €2, Var dy)
==(Vay +Tragy = Triar) 2 +(Vay + Ty = Tapap) bs
Substituting the NP notation?®+3® gives
0==(D+e=-p)p,+BT+1=a)o,. (4.8)

Similarly the x’ =2’ component of Eq. (4.7) be-
comes

0==(B+B8=T)p+(A +u=7)0,. (4.9)

- Equations (4.8) and (4.9) are the NP spin dyad form

of Eq. (4.1) and are fully general; the special
properties k =0 =¥,=¥, =0 for an aligned dyad in
the generalized Goldberg-Sachs class of spaces
have not been used in their derivation.

The above methods are now used to derive from
Eqgs. (4.4) and (4.5) the spin-% Debye potential
formalism for the generalized Goldberg-Sachs
spacetimes. The choices P,=y, P,=0 for the
potential and G, =p¥y, G, =79 for the gauge spinor
are made in order to obtain a Debye one-com-
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ponent potential which satisfies a decoupled scalar
wave equation. With these special choices, Eq.
(4.4) is now written in an aligned NP dyad frame.

The form of the right-hand side of Eq. (4.4) is
just the negative of Eq. (4.6) by the dummy index
rule. Thus the right-hand side of Eq. (4.4) in NP
notation is given by Eqgs. (4.8) and (4.9) with the
above choices for G, and G,:

VAI'GA=(»D+€-D)?m"(5 +71-a)py, (4-103-)
V4G, =(0+8=T)TP— (A +u-v)pP. (4.10Db)

Next it is noted that the factor V., P¥’ in the left-
hand side of Eq. (4.4) is just the complex conjugate
of V5 ,.PE. Since this is again the same form as
Eq. (4.6), one finds from Egs. (4.8) and (4.9) that

Vi P¥ ==(D+€-p)7P, (4.11a)
Vow P¥' ==(3+B=7)7. (4.11p) .

Using the notation V ,,.P* =y,, it is seen that the
left-hand side of Eq. (4.4) is V4,x,, which again
is given by the negative of Eqs. (4.8) and (4.9),
with dyad components of y , substituted from Egs.
(4.11): :

VAN 4y P¥ =[=(D +e = p)(E +B-7)

+@ +7—a)D+€-p)1P, (4.12a)
VA P =[-(6+B-T)(E+B-7)
+(A+u=-y)D+e-p)P. (4.12p)

Several of the NP-notation Ricci identities and
derivative commutators are now used to show that
Eq. (4.10a) and (4.12a), the two sides of Eq. (4.4),
are identically equal under the assumption that
k=0=¥,=¥, =0. The calculation begins with the
NP expression in (4.12a):

VAyVAW,ﬁW'z[(-5+1r—a)(D +€=p)=-D=-p +€)(5+B-~T—)]ﬂi
=[8D = DB +5(€ - 0) = D(B=T) + (1~ a)(D +2=P) +(o - ) E +B-T)IP
=[(@ +B=MD +RA =G6— (0 +E = €)5+5(€=p) =D(B=7) +(n= @)D +€=p) +(p - €)(T = E=7)]P

(by the commutator Eq. (4.4) of Ref. 3).

But by Eq. (4.2€) of Ref. 3,
DE-PBD=%¢e-cb=(@+mo+(p—-€)f
- (@+Y)K - (@ -me+¥,.

Substitution of this expression and subsequent can-
cellation yield

VANV apPY =[(D+e=p)7 = B+~ )plP
+(terms proportional to k, o, and ,).

But this is identically equal to (4.10a) as claimed.
Hence Eq. (4.4) gives

VAN 4y PY =V4,G,=0, (4.13a)
VAN 4y PY = V4G, =[(A +p=7)(D +7)
-(6+p-1)E+PJg=0.
(4.13D)

This is the desired decoupled wave equation for .

The dyad components of Eq. (4.5) are now written
in the NP notation. They may immediately be found
from Eqgs. (4.11) and the assumed form of G, and
are given by

¢, ==(D+€)7, (4.14a)
¢, == +P)7. (4.14b)

Equations (4.13b) and (4.14) are the Debye poten-
tial scheme for the Weyl neutrino field; they may

be written in coordinates in specific spacetimes
of astrophysical interest.

An alternative Debye potential scheme valid in
type D spaces with a shear-free congruence of
null geodesics along each of the repeated principal
directions of the Weyl tensor may be obtained by
taking P, =¢, P, =0 and suitable gauge terms, or
alternatively by applying the [ «~—n, m 7 trans-
formation of the NP formalism to Egs. (4.13b) and
(4.14).

V. CURVED-SPACE TREATMENT OF GRAVITATIONAL
PERTURBATIONS

A. Metric and Weyl tensor perturbations of spacetimes

The computation of gravitational perturbations
of algebraically special vacuum spacetimes is re-
duced to solving a linear wave equation for a com-
plex scalar superpotential. The procedure by
which this is accomplished is a generalization to
curved spaces of the spin-2 Hertz formalizm of
Sec. II above® +®¢ and gives the proofs for our pre-
viously published results.?0+?!

One consequence of the results of this section
may be regarded as an extension of a theorem of
Wald® concerning the determination of a gravita-
tional perturbation of a spacetime by a scalar quan-
tity. His work shows that knowledge of a single
gauge-invariant tetrad component of the perturbed
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Weyl tensor of a type D vacuum spacetime, ob-
tained by solving Teukolsky’s equation,®® in princi-
ple determines all aspects of the perturbed space-
time. (This statement in turn generalizes the
analogous result of Fackerell and Ipser® for elec-
tromagnetic perturbations of type D vacuum
spaces.) The present Debye potential procedure,
extends the result in two respects, in that (1) it
applies to the wider class of algebraically special
vacuum spaces, and (2) the perturbed space is
uniquely fixed not only in principle but by direct
construction. Thus, it is shown below that for a
vacuum space, the existence of a single perturbed
curvature component which is both tetrad- and
identification-gauge-invariant in the sense of
Stewart and Walker?® is sufficient to ensure that
the full perturbation is explicitly determined by
the information in one complex scalar (the Debye
potential). '

There is an added degree of complication in the
field equations for gravitational perturbations of
spacetimes beyond that which is encountered in
extending the lower-spin zero-rest-mass field
treatments to curved space. For spins % and 1,
one argues that the correct formulation for weak
zero-rest-mass fields on a curved background is
just the corresponding test-field equation, since
both neutrino and electromagnetic fields produce
contributions to the stress-energy tensor which
are quadratic in the field strength and which hence
may be neglected in a consistent linearization of
the Einstein-Maxwell or Einstein-Weyl neutrino
system. In the gravitational case, on the other
hand, it is the Bianchi identities®® involving the
Weyl tensor,

VA% 4pcp = V(Bz $en* 2 (6.1)

(with & , g,y the trace-free Ricci spinor), which
bear the formal resemblance to the spin-2 test-
field equation treated above in linearized theory
(perturbations of flat space). The spin-2 test-
field equation is in general

VA Y upcp =0 (5.2)

in a fixed background; this is nof the perturbation
version of Eq. (5.1), not even under the assumption
that the Ricci spinor vanishes in the perturbed
space, since the covariant derivative operator will
also acquire a perturbed part of the same ovder as
the perturbation in P ,p.p itself. -

Fortunately, by working with small perturbations
of the metric tensor, it is possible to obtain a
second-order equation representing a linearization
of the Einstein vacuum field equations about a given
exact background space which overcomes this dif-
ficulty: Its dependence on the perturbed space is
only through explicit occurrence of the perturbed

metric; all differentiations are purely background
operations. This equation is just Eq. (2.20),

ZRaB :h;al; +ha8;pp_hpazsp —hpB;otp =0 ’ (5-3)

sometimes referred to as the Palatini identity.39
For these reasons, of the two proofs in Sec. IIC
for the gravitational perturbations of flat space,
the one which concentrates on the metric perturba-
tions and shows that Eq. (5.3) is satisfied is the
one which will be generalized here to curved space.
What will be shown in this section is that a

metric perturbation given by

HIN' _ = MNPQ
hcn =Vicr'Vnia P .
- VepGpy VP +c.c. (5.4)

obeys Eq. (5.3), provided that the totally symmet-
ric Hertz spinor P¥'¥P'?" and the gauge spinor

G 'V =G (M'N'P) obeys a generalized version of
the wave equation (2.24) given by

VALY PYPAOX 45T, WV BPAXY

= VA(M'GAN’P’Q 0, (5.5)

Then the perturbed Weyl spinor, which follows
from Eq. (2.19), is just

’

Yancp =V(Aw'vax'hcu)w'
=Viaw ’VBX'VCY’VD)Z'TDW’XIY’Z,

- V(AW’VBX’VCY'GD)WIX’Y,
+V(AW’VBX'VE(W,VFX')PCD)EF

= Vi Vax V¥ GX o (5.6)

In fact, the results for the gravitational case
are slightly more special than the lower spins in
the following respect: for spins 3 and 1, the
equations analogous to (5.5) and (5.6) are estab-
lished for all spacetimes and are only subsequently
specialized to the generalized Goldberg-Sachs
class when a one-component Debye potential is
chosen in a special aligned null frame. In the
gravitational case, we proceed by specializing
Egs. (5.4) and (5.5) to a one-component Debye
potential in the vacuum algebraically special
spaces in the course of the proof.

The proof that Eq. (5.4) is the solution to Eq.
(5.3) by virtue of the wave equation (5.5) involves
somewhat lengthy spinor manipulations which will
be sketched here. As in the curved-space spin-1
treatment of Sec. III, the strategy of the calcula-
tion is to substitute the expression (5.4) into Eq.
(5.3) and to group the resulting terms into those
which cancel one another by the wave condition
(5.5), and the remainder which vanish by the Ricci
identities.
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On substitution of the metric (5.4) into the field
operator (5.3), the first term %, .4 vanishes by the
traceless property of the expression (5.4) for the
metric (symmetric pairs of spinor indices being
trace-free). The remaining terms of Eq. (5.3)
become

Ax -
Bogip® = VAV 45 (VcpV o P ?

M'N'P’
=VierGp ),

N (g pXM'PQ’
hpa:ep"’ Vix'Vp (v p'Vc)o'P
r pr
- V(AP’GC)X u'e ) ,
M (g(A DX'N'P'Q’
h"s:o,p«— Vax'Ve (v p'VD)o'P

- V(AP,GD)X NPy

SO
2R MV =VAX'Y 0
X(Vicp Vg P ™Y =V (pG ' V)
_VMIVDN’(V(AP’VC)Q’PX'M’P'Q'
- V(APIGC)X’M'P’)
- vAxlvcM’(V(AP’VD)QIP’(’N’P’Q:

- V(APIGD)X’N’P’) . (5.7)

First the terms proportional to the gauge spinor
are combined. It is convenient at this stage to_

note that the first term of Eq. (5.7), OVgp: Vo PH¥ ¥P'9",
may be rewritten as V pV o OP¥*'¥7" plus com-
mutators, and to note further that OP#'¥'P'Q’
=2vAW'y , PYPQX plus commutators [see Eq.
(A18)]. Hence the wave equation (5.5) may be used
to express OV opV o P¥ VP as 2Vp Yy VAW G, NP
plus terms proportional to P*'¥'P?" (which will be
treated in detail below). Therefore the gauge
spinor terms in Eq. (5.7), denoted for convenience
by R;, are

R =2Y(cpV g VAU G V79 = VAY'Y 1V Gy P

+V 4V N VAL G X P 4,V MV ALG L E N
(5.8)

By suitable ordering of the derivative operators,
these gauge terms may be written as the same
gauge terms appearing in the flat-space proof of
Sec. IIC (2) above (which cancel one another),

plus commutator terms which may be expressed
via the Ricci identities in terms of the background
curvature spinors. Toward this end, R, is written
as

Rg =3V opV pgVAH G NP 4 39 oV g VAV G M P 4 3V 0V o VARG, 'V

L S w1 rpr
+ 3V op Vo VAYG MV — 10V oG N = 30V ppiG MY

) . N w1 . w1 . -
+ 3V eV NV N VALGE M P 4+ 4V 4V V'V G KM P 44V 4V M VAL G XY

+ 3V eV Ve GAX NP 4 (V 0V o pr = VoV pg WAM' G NP (5.9)

Of these eleven terms, the second and eighth may be combined to give

L 2 ANNR L L AN AN P
3V 4z V2 VorG +3Vepr (Voo VAN = VAV 100G,

_1 AN’ AN’ 1pin’ 1 ’ ot
+35(Vep VA = VANV )V pgiG 4 ¥ P + 394 (Vo iV pgr = V pgr Vo p)G . P

the first and tenth similarly give

1 7 ’ ’ 1 MI AMI NI ! 1 AM! AM’ - NIPI I.
1V 42V E Vo GAY VR 4 39 (U g VA = TAH'G 0 )G VPV 4+ H(Vop VA = VAV )V o G,V P

the third is rewritten as

1 AzZ' M'N'R' | 1. AP’ AP’ M'N'Q’,
197 V47V Gy +3V o (Vo VAP = VAP'Y )G, ;

the fourth as

L Az’ I P A" w40 e
Vo VAV G 4"V E + 5V pV por = Vo Vep)VAYG 4 +3Vp(Vep VA = VAV )G , ;

the seventh as

1 N’ A X'M'P’ | 1 N N A X'M'P' .
ZVD VA(X’V Pl)Gc . +2(VAXIVD _VD VAX')V P'GC M

and theé ninth as

1 M A X'N'P', 1 M’ M’ A X'N'P’
VMV V4G +3(V Vo =V MY ) V4G .

In all terms thus generated which contain once-contracted second covariant derivatives, the identity (A9),
the curved-space generalization of Eq. (A8), is applied. When expression (5.9) for R, is rewritten in this
way, all terms containing d’Alembertian operators cancel one another, as do several of the commutators,
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leaving only commutator terms. These in turn are expressed as symmetrized once-contracted second
derivatives by application of Eq. (A12), with the intention of applying the Ricci identities (A19) and (A20)
to express all of R; in terms of curvature quantities. The remaining terms in R; obtained in this manner
are . )
R =3VepV pr VARG NP 49 (p VARV 0 G VM 49, VIV 0, G MY
+VH(P’VH”,)V(DQ'GC)N,PIQI+%VCP'VH(Q'VHM,)GDN'PIQ,+%VCP'VH(Q'VHN,)GDM’P10,
+ %VCP,VH(Q’VHP’)GDM’N'Q’ + %ecDVH(PlVHQ')VAQ’GAM'N'P' + EDCV”(Q,VHP‘)VA(M’GAN’P'Q')

M'PQ’ AZIGAM’N’Z’ VHQ’)GCM’N’P’

-3V cr V¥V +3V oV i
+ %VDQ’V(CR'VA)RIGAM’NIQ’ + %VDN,VA(X’VAP’)GCXIM’PI + %VCM’VA(X’VAP’)GDXIN'P'
+ 3V I R VALG M VP 4 3V Vo R VARG NP (5.10)
The next step is to apply the Ricci identities (A19) and (A20) to these terms, with the Ricci spinor @ , gy
and the curvature scalar A set equal to zero (vacuum spacetimes). The terms of Eq. (5.10) then yield,

respectively,
. Pyt — gt 1plAt  — ’ 'P'Q’
Rg =0 =g, pp Vg GAV Y 4T, M M oV G R P + Y M,R'V(DQ'GC)R e

— At 'ptny’ p? B-Us — i prnt — z'p!’ rpin’
+ 29 0ol Tg ¥V G B P 4T M P GV R ) + 3V o (TN M G oY 45, NP G M B

L B A RINQ . NP o MR L. (= M oAQ'm RPN oAQ . MIRP
+ 3V o (Ug P M g G ¥ ¥ Y + W VP G ¥ R Y) + e p(Uprig ™ o VA'G 4 + T g VAYG, )

. ,
+3€cp VAN Vy(pVFnGy

+enc(@‘P,Q'M’R'VA(R’GAN'P’Q') +@P,QIN'R'VA(M'GAR';"Q’))

+ —;-ECDVAN'EPIQIM 'RIGARIP'QI +0 + %vnol@PIQIM'R/GCRIN,P’ +EP'QIN’RIGCM'R’P,)

+0+ %VDNlﬁx’P'M,R'GCX,RIP’ +%VCMIEX'P'N,R'GDXIR'P, + %WADCEVAP’GE",NIP’ + %‘I’CDG HVGX'GHM,N'XI ) (5' 11)
where ¥, ., is the Weyl curvature spinor of the unperturbed spacetime. It is seen that the three terms
containing the unconjugated Weyl spinor cancel one another. The remaining terms proportional to the con-
jugate Weyl spinor of the background may then be combined, although it is convenient first to fix the gauge
spinor G,"'¥?' by demanding that the wave equation (5.5) yield a decoupled scalar wave equation for a one-
component potential in an aligned dyad.

Thus the rest of the proof consists of (1) combining the terms in Eq. (5.7) which are proportional to the
potential spinor (to be denoted collectively by R,) and expressing these in terms of the background Weyl
spinor in a manner analogous to the procedure leading to Eq. (5.11) for R;, (2) making special choices for
P, pep and G, in an aligned dyad which lead via Eq. (5.5) to a decoupled scalar wave equation for the
potential, and (3) inserting these choices into R, and R, and showing that they imply R, +R, =0, i.e., that
the perturbed vacuum Einstein field equations are satisfied.

The potential spinor terms R, in Eq. (5.7) are seen to be

Vg VN VALY PYUP Ly v HYA, vy, PYNP (5.12)
plus the commutator terms referred to above which arise from expressing OV cp/V 5o P ¥7?" in terms of
the gauge spinor. These commutator terms are obtained by noting that

[:tv(c,,,v,,),;,,13"’1""""7 =V(epV pgOP* VP + VA (Y 10V pr = ViopV ax) Vg P VY

+ VAV oV eV g = VgV ax VP VEY +(VAX'Y (pr = v(cp,v XYV pyorV ax P NP
+V op(VAX'V g = Vg VAX) T 1 PH VP (5.13)
where symmetrizations are over indices C and D. In the first of these terms, the d’Alembertian may be
rewritten according to Eq. (A18) as

Dpu'N'P'Q’ = 2VA(M’VAx'pN’P’Q')X' + (VAX’VA(M’ - VA(M'VAX')I—;N'IJ'Q')X, , (5014)
where the symmetrization includes just M',N’, P’,Q". The first term of Eq. (5.14) is replaced, as stated
above, by 2vAW'G NP 6§, "N PP'AIX'Y 'via the wave equation (5.5); the gauge term is accounted for
above in R,. When the terms thus given by Egs. (5.13) and (5.14) are included, we find that

Rp ==V 1V V' VALY o PX P LV VALV o PEVPY 4V iV o (VAX 7, O, G gAX' PN'PRY)
VAX’(VAx'V( cr' = Vicr'V ax)V o P e +VAXI'V( cp(VaxV nor = VD)Q'VAx')PM,N'P'QI
(VA (cpr = V(op VAN oV gy PH VP 4V o(VAXY o = V0 VAX) Y, PHNPQ
=6V (cprV pglyry M N PEOIXY . (5.15)
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The first two terms are put into a form suitable for application of the Ricci identities by noting that
=V VN VALY o PX PR = V' VA,V o PXHPY

= (Vg V o = Vo'V ) VALY o PP 2y NG (Vo VA = VAV o) PX P

. (5.16)
and similarly that
=V VM VARV g PYNER = MG VA5V o PX VY
(Vg VM = VMY )V ALY o PX VP
= 3V gV ppr Vg = V4GV pp ) P VE (5.17)

After substitution of Eqgs. (5.16) and (5.17) into Rp, all commutators are replaced by symmetrized once-
contracted second derivatives, just as above for R,, by application of the identity (A12). The resulting ex-
pression for R, analogous to Eq. (5.10) is '

vHM 4 )pN’P'Q'x' vHN )1—9 M'P'Q'X’

Rp=3Vcp Vo Vax +3V eV oo Vacx
+39 oV 0oV eV PH UYL 39 prV oV VIO PHNEE

+ é(VCX’VH(X'VHP’) + VAP’V(AR’VC)R’)VDQ’PM’N’P’Q, + %(VDX’VH(X'VHP') + VAP'V(AR’VD)RI)VCQ’PM,N,P’Q,

+ %(VDX,VCP’VH(X'VHQ’) + VAO’VCP'V(AR’VD)R')'J_JM’N’P’Q’ + %(VCX,VDP’VH(X’VHQ' ) +VAQ’VDP’V(AR'VC)R’)_PM'NIP’Q’
= 3V, XV )V pgV oy + VARV BV pr ¥ o ) PH VY = (Y, KV ) VgV g + VAV RV i ) PH VP
- %VCP'(VH(X'VHQ’)VDX’ +V(AR,VD)R’VAQI)pu'N'P’Q' - %VDP'(VH(X'VHQ’)VCX’ +V(AR’VC)R'VAQ,)pM'N’P’Q’

= V"V VAo Vg PP = ¥y VIOV iV gy PX M

- V(AR,VD)R’V(AP’VC)Q,’PM’N'P’Q’ - éVDNIVCX’VH(P’VHQ')—pX'M’PIQ’

-Ve M,VA(X’VAP')VDQ’PX,NIP’QI - VH(x’vl{m’)V(cp’V D)Q'PX’N‘P’Q,

- VCAR'VC)R,V(AP’VD)Q’T)MIN'P’Q’ - %VcM'V DX’VH(P’VHQ')PXIN,P’Q, = 6YcpV D)Q'EX’Y JNpPANXY ! (5.18)

To this expression for R, the Ricci identities (A19) and (A20) are applied, yielding an expression analogous
to Eq. (5.11), with each term proportional to the background Weyl spinor. This procedure gives, after
some simplifications,

- J_,M'N_ PRPQX' M'N PX'R'PQ’
Rp=VicpVpo¥x" " rP = 29" " eV o'V )P

- @ZIP'Y 'R’V(CP’VDY DUNR'Z _ 2“\I‘,x’PIR,(M'V(CX’VD)QII—;N')R'P'Q’

- ZWXIP’R’(” 'V(CQ’VD)X'—PN’)RIP'Q’ - VDN'@x'P'MIR'VCQ’ﬁX'RIP'o'

- éVDN'ch@P'Q,M’RIPX’R'P'Q' - %VDN’ch'EP'Q,X’RIpM’R'P’Q'

- VcM'EX,P,N'R,VDQ'T)X’R'P'Q’ _ %VcM'VDX,“I,P'Q,X’R,pMR'P'Q’

- %VcM’VDx'—‘T’P’Q'N’R'TJX'R’P’Q’ = 6Y(cpVnoTxy Qv pranx” ’, (5.19)

whereé terms containing the unconjugated Weyl spinor are omitted since they cancel one another as in R.
[Certain of the manipulations used in obtaining Eq. (5.19) involve application of the vacuum Bianchi identity
Eq. (A21) to commute the Weyl spinor and covariant derivative operator. ]

The next step in the calculation is to make the assumption that the Weyl spinor of the background space
is algebraically special, to align a spinor dyad frame so that one dyad leg coincides with the repeated
principal spinor of the Weyl spinor, to choose a special potential P,z., with only one nonvanishing com-
ponent in this dyad, and finally, to make a choice of the components of the gauge spinor G ,*'** in this
dyad which reduces Eq. (5.5) to a decoupled scalar wave equation. Thus a dyad 04, I* is chosen with o4
oriented along the repeated principal spinor of the Weyl spinor, and the potential is fixed to be P**¥¥ =7
in this dyad; other components vanish. Direct computation shows that if the choice G,"** =453, G,**¥ =477
is made (other components vanish), then the five dyad components of Eq. (5.5) become

2'2'2'2": Both sides zero; identically satisfied.

1'2'2'2": Both sides zero; identically satisfied.
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1'1'2'2": Left side =[4(5G - 7K) + ¥, ]9, Right side =4(55 — 7%)J. These are identically equal since align-
ment of the dyad implies ¥,=0.

1'1'1'2": Left side=[(D +€+3€=p +3p)(6 +4B=7) = (5~ a +3B+7+37)(D +4€ =) 1P
+terms proportional to x,0.

Right side =4[—(D +€ +3€~p +3p)7 + (5 — a +3B+7+37)p]J. These are seen to be identically
equal by application of several NP equations and by use of k =0 =¥, =0.

1'1'1"1": Imposing equality of the two sides yields the scalar equation?!

[(6+3@+R=7)(B+4B+3T)= (A —y +37 +u)(D +4€ +37) +3F,]F=0. (5.20)
The final step of the calculation, which consists of substifuting the above choices

PUY =Y, GV =4pY, G,V =477 (5.21)

into Egs. (5.11) and (5.19) for R, and R;, shows that R, +R; =0, i.e., the vacuum perturbation field equa-
tions are satisfied: Of the seventeen terms in Eq. (5.11) for R, the three containing the unconjugated
Weyl spinor cancel, as observed above; also the tenth, fourteenth, and fifteenth terms vanish because the
triple contraction of ¥ype#’ with G.X®P vanishes by the choice (5.21) of G.*'*'7' and the algebraically
special assumption for Ex.pw”'. The eight remaining nonzero terms in R; then give, after they are com-
bined, the following dyad components in NP notation:

Rg)yy " ==24(D - € +32 - 2p)p L, P,
(Rg)12y" ==12(D +€ +3€ +p - 20)TL, 9 - 12(5 - a +3B - 7= 27)5%, P, (5.22)
(Re)ae'™ =240, 0 ~ 24(5 +a +3B =277, 7,

where the Weyl tensor has been commuted to the right through the differential operators by means of the
NP Bianchi identities,

¥,D =(D - 3p)¥,,
7,5 = (5 - 37), .

When the 12 terms of R, in Eq. (5.19) are treated similarly, it is seen that the sixth through eleventh
vanish because of triple contractions of ¥yipip¥’ with PVXP'®’ or with Vo, PXP’®?, The fifth term equals
the fourth, as seen by commuting the derivatives in the fifth and observing that the resulting commutator
is proportional to the Ricci tensor of the background (which is assumed zero). When the differential op-
erators in the third term are moved to the left by the vacuum Bianchi identities (A21) and the first and
third terms are translated into NP notation, they are seen to cancel. Of the remaining contributions to Rp,
the sum of the second and twice the fourth terms gives dyad components

1t =[-6(D - € +32 - p)(D +42 - 5p) - 249° |9, 7,
a2y Y =[-3(D +€+38 +p =Pp) (5 +4B = 57) = 3(5 — a +3B~ 1= T)(D +4€ - 5p) - 24571, P, (5.24)
2" =[6A(D +4€ - 5p) - 6(5 +a +3B ~T)(5 +4B - 57) - 2472, 7,
where again the Bianchi identies (5.23) have been used in moving the Weyl tensor factors to the right, while
the twelfth term, =6V op/V 5oy W VPPOX'Y" | hag NP dyad components

WY =+6(D—€+32~p)(D +4€-p)T,7,
(12) Y =3(D +€+38+p =p)(F+4B=T)T,0 +3(5 - a +3B = 1=T)(D +4 = p) ¥, 9, (5.25)
2t Y ==6A(D +4€ = 5)T, P +6(5 +a +3B-T)(B +4B-T)T, 7.
Hence the dyad components of R,, given by Eq. (5.24) plus Eq. (5.25), are

(Rp)yy ™Y =[~6(D = € + 32 = 5)(D +4€ - 5p) +6(D — € +3€ = p)(D +4€ - p) - 2452 [¥, 9,
(Rp)(12y** ' =[-3(D +€ +3€+p ~D)(T+4B~-57) +3(D +e +3€ +p = p)(F +4B—T7)

-3@-a+3B-1~T)(D +4€~ 5p) +3(5 — a +3B= 71=T)(D +4€ - p) - 2457 |, P, (5.26)
(Rp)ea™* " =[6X(D +4€ - 55) — 60(D +4€ —p) — 6(5 +a +3B—7)(5 + 4B - 57)

+6(5+a +3B~7)(5 +4B~T) — 2472 |9, .

(5.23)
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It is observed that these are just the negative of the components of R; as given by Eq. (5.22), so that R,
+Rg =0, which completes the proof. [The complex-conjugate term in the perturbed metric (5.4) may sim-
ilarly be shown to result in the vanishing of expression (5.3) for the perturbed Ricci tensor upon substitu-
tion into Eq. (5.3) and application of the wave equation (5.5) for the potential and gauge spinors. ]
The perturbed metric (5.4), when expressed in terms of a scalar solution J to the wave equation (5.20),
has coordinate (or frame) components?!
Ry =={1 0B +a +38—7)(5 +4B+37) = M(D +4¢€ +3p)] +7,M,(D - € +3€ ~p)(D +4€ +3p)
= 1, M,y[(D +e+3€+p —P)(T+4B +37) + B~ o +3B— 71-T)(D +4€ +3p)]} P +c.c., (5.217)

where 1, m,, and 7, are the coordinate (or frame) components of elements of a null tetrad obtained in
the canonical way from the aligned dyad (04 14) (i.e.,

e 040K, mbee 0ATX" | pte IATXY),

The final result of this section is the NP expression for the perturbed Weyl spinor as given by differen-
tiating the scalar J. This expression is obtained by substituting Eq. (5.27) for &, into Eq. (2.19) followed
by projecting NP components, or alternatively by substituting Eq. (5.27) into Eq. (5.6). The results are
given here for the case A=y =0, that is, for type D spacetimes. Their generalization to the algebraically

special case may be obtained by the above procedure but involves somewhat lengthy additional terms pro-
portional to A which are omitted here. The perturbed Weyl tensor is?!

Y =(D ~3€ +€~D)(D ~2€ +2€ ~p)(D — € +3€-D)(D +4€ +3p)P,

49, =[(D—€+E+p-p)(D +2€ +p~Pp)D +€ +3€ +p —p)(B +4B +37)
+(D-€+€+p=-pP)D +2€+p =p)(E ~ a +3B~71~T)(D +4€ +3p)
+(D-€+€+p=-p)(T=2a +2B =27 —-T)(D — € +3€ - p)(D +4€ +3p)
+(B-3a+B-371-7)(D -2€ +2€-5)(D +e +3€-p)(D +4€ +3p) 19,

64, =[(D +e +€+2p = p)(D +2€ +2€ +20 = 5) (T +a +3B ~7)(5 +4B +37)
+(D+€+€+2p-p)(3+2B =7 ~T)(D +€ +3€ +p - p)(5 +4B +37)

_ _ (5.28)
+(D+€+€+2p=-p)(T+2B=1=F)B—a +3B—1=T)(D +4€ +3p)
+(3=a+B=21=T)BT~-2a +2B=27=T)(D - € +3€ —=p)(D +4€ +3p)
+-a+B=-21=-T)(D+2€+p-p)(5 = a +3B—=1=T)(D +4€ +3p)
+(F=a+B=21=T)(D +2€+p=P)(D +€ +3€ +p ~5)(T +4B +37) ]9,
4, =[(D +3€ +€+3p - P)(T +20 +2B=7)(5 + @ +3B—7)(5 +4B +37)
+(B+a+B-71=T)(D +2€ +2€+2p -p)(T +a +3B~T)(5 +4B+37)
+(B+a+B=m1=T)(E+2B-71=T)(D +€ +3€ +p ~p)(5 +4B +37)
+(8+a+B=-1=T)B+2B~1~=T)B = +3B=7~T)(D +4¢ +3ﬁ)]|$,
$,=(F+3a+B-7)B+2a +2B-T)(T+a +3B-7)(5 +4B+37)P
+3W,[T(5+4a) — p(A+4y) — w(D + 4€)+ (5 +4B)+ 2%, [y .
—
The terms generated by the c.c. term in Eq. (5.27) erators and substituting the term 3¥,) via the
make no contribution here, except in the ¥, (conjugate) wave equation (5.20) whenever the ap-
component-as indicated. propriate combination of operators appears.

The terms proportional to the unconjugated po- As remarked above, Eq. (5.28) establishes by
tential § were omitted from the formulas of Ref. direct construction that the perturbed Weyl tensor
21, although they follow directly from the conjugate is derivable from a metric perturbation, namely
terms of Eq. (5.4) when substituted into Eq. (5.6) Eq. (5.27).

(see also Ref. 40). All such terms are in fact pro-

%)ortional to the background Weyl spinor ¥,. This B. Summary of this section

is most easily seen by noting the requirement that

unconjugated ) contributions vanish in Minkowski It has been proved that for algebraically special
space according to Eq. (2.5) [which for spin 2 re- vacuum spacetimes, a scalar Debye superpotential
duces to Eq. (2.26)]. Alternatively, this may be for gravitational perturbations may be obtained

shown explicitly by commuting the derivative op- from the wave equation
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VAW Y PP L3, WNBPAIXT

= VA(M’GAN’P’Q’) , (5.5)
where ¥y /#'" is the unperturbed Weyl tensor and
PY'PUX and G,NP'? are a Hertz potential and gauge
spinor, respectively. In terms of these spinors
the perturbed metric is given by

hep NN _ V(cp'VD)o'P”,N'PIQ,Z
- V(CPrGD)"IN'P’+C.C. (5.4)
and the perturbed Weyl tensor by
Yasep = Viaw '_Vax’th)W'x' . (5.6)

The corresponding scalar superpotential formu-
las obtained from the special aligned values [Eq.
(5.21)] for P¥P'AY’ and G ,M'F'?' are given in NP
notation by Egs. (5.20), (5.27), and (5.28), re-
spectively.

VI. SUMMARY

This paper presents a covariant spinor frame-
work for Hertz and Debye potentials for zero-
rest-mass perturbations of certain algebraically
special spacetimes. The covariant potential wave
equations and the fields generated by differentiating
the potentials are

VAN'Y P¥ =046, (4.4)

and

G4=V 4y P = Gy (4.5)
for the two-component neutrino case,

vA( M'VAWJ—;N')W "= VA(M'GAN’) , (3.17)

Acur=VeopPy® = Ggyr +euc., (3.24)
and

baB= V(AW’VB)X’I_JW’X' - V(AW’GB)W, 3.18)

for the case of Maxwell fields, and
VA(M’VAW’T)N’P’O')W'+3\I,x,Y'(M'N'PP’Q')X’Y’
=VA(M'GAN’P'O’)’ (5.5)
oo™ =ViopV g P VFY = ViopGp P + c.c.
(5.4)

and

’

YaBcp =V(Aw'vax'hcp)w (5.6)

for gravitational perturbations.

The practical consequence of these results is a
computational scheme for perturbations of this
class of spacetimes (including many of astro-
physical importance—black holes and various
cosmological models, for example?®?%) requiring
only the solution of a decoupled scalar wave equa-
tion. This equation may be summarized for the
neutrino, electromagnetic, and gravitational per-
turbation cases by the NP equation?!

{a-[2s+1ly -7 +W)(D - 2s€ = [25 +1]p) = (T = [2s +1]a +B=T)(6 =258 =[25 +1]r) = (s +1)(2s + 1) T, ] = 0 ,

where §® is the corresponding scalar Debye po-
tential for s=—3, -1, or -2, respectively. Equa-
tion (6.1) summarizes Eqgs. (3.28), (4.13b), and

(5.20) of the text. The tensor or spinor components

of the physical perturbation field are then given
(in the NP frame) by prescribed differentiation of
»®) according to Egs. (3.29), (4.14), and (5.27) or
(5.28), respectively.

The differential operators of the exterior form
Hertz potential formalism?® have led to further
developments consisting of generalizations of the
notion of harmonic operator and applications to
analysis of the structure of the vacuum Einstein
field equations.*!+4

The linear scalar wave equation (6.1) and that
of Teukolsky®® have led to an extensive literature
on perturbations of the Kerr spacetime, including

approaches®+43:44:45 which combine both Teukolsky’s

derivation and the notion of a scalar superpotential.
The work of Chrzanowski*® and Chandrasekhar*
emphasizes the “intermediate” potentials, the

6.1)

r

vector potential* for spin 1 and the metric per-
turbations for spin 2 (for a treatment of these
potentials in the present context see Secs. IIC,
IIB, and V A above; see also Ref. 20 for vector
potentials). In addition the approach of Chandrasek-
har has yielded a demonstration of the separability
of the spin-1 case for nonzero mass, i.e., the
Dirac equation, in a Kerr background.*® Calcula-
tions of astrophysical processes involving pertur-
bations of black holes and utilizing decoupled
scalar wave equations also comprise a consider-
able literature (see e.g., Refs. 43-51).

Recent work by Wald* has produced very simple
and elegant proofs of the Debye potential formulas
for vacuum algebraically special spacetimes. The
spinor proofs of the present paper (and the treat-
ment of Ref. 20) show that the results are in fact
more general in that the nonvacuum spaces of the
generalized Goldberg-Sachs class are covered for
spins % and 1. Thus, for example, electromag-
netic and neutrino perturbations of the locally
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rotationally symmetric perfect-fluid. cosmological
models may be computed by these methods.
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APPENDIX

1. Exterior form Hertz potential formalism
for electromagnetism

If a 2-form Hertz potential P obeys
AP=dG +8W , (A1)

where G is an arbitrary 1-form and W is an arbi-
trary 3-form, then the vector potential 1-form A
is given by

A=8P-G (A2)

(note that A is not in the Lorentz gauge) and the
Maxwell field 2-form by

f=dA, (A3)
ie.,
f=dsP ~dG =6W - &dP. (A4)

In this formalism, the proof that f is a source-
free Maxwell field (i.e., that df=5f=0) follows
immediately from the identity d? =% = 0; this situa-
tion is in contrast to the relatively tedious proofs
given above for the equivalent formulas (3.17),

J

(3.24), (3.27), and (3.18) of spinor analysis. The

formulas (A1)-(A4) are given in Ref. 20 where

they are shown to give decoupled wave equations
for scalar Debye potentials in the (in general non-
vacuum) generalized Goldberg-Sachs?2 class of
spacetimes.

2. Spinor formalism

In this section those formulas of spinor analysis
used in the text are given; proofs are given here
for those identities not proved in Ref. 36. For
more detailed presentations of spinor formalism,
Refs. 26, 35, 36, and 52 are suggested.

The formulas are

N4 =-n*n, (‘dummy index rule,”
p. 309 of Ref. 36); (A5)

Xac = Xca=€acXs” [Eq. (3.16) of Ref. 36]; (A6)
€4Bep. = =04, (p. 308 of Ref. 36); (AT
VAX'Y 4 =30 .0 in Minkowski space

(where O=v4¥'y ). (A8)

Proof.

VAV g = VA Vagr = €001V 4 9,7 [by Eq. (A6)],
VAX'Y 4o = VA,V X ==6%,,v4,v ,% [by Eq. (AT)]
VAY'Y 4y =V XVA,, =65 VAT,

[using Eq. (A5) and the commuting of covariant
derivatives]. Next Eq. (A5) is applied to the left
side whose two terms are seen to be equal, giving
the result claimed;

Ve VA =360 + 3(Vap VAR = vAR'Y 1) (A9)

[generalization of Eq. (A8) to curved space].
Proof.

Vi VA = H (Vo VAR — VAR'Y 1) + 3V o VAR + 3VAR'Y o, (identically)
=3 (Vap VAR = VAR'Y ) + 5(V g VAR = V4,V .R) [by Eq. (A5)]
= (Ve VAR = VAR'Y 1) + 36540 [by Egs. (A6) and (AT)];

Fawax' =€apPwrxt T€wrx'Pan s

(A10)

for F 4y rpyr=F,, a real skew tensor and ¢ 5= 3F 45" [Eq. (3.26) of Ref. 36];

KBY’ - g‘B‘EY'

for KBY'=K" a real null vector [Eq. (3.24) of Ref. 36];
Voaw Vax = VoxrV aw = €anVaew Vigny + €prpViap Vet (0. 327 of Ref. 36);

Vaw'Gax' = VaxrGaw = €V a(wGxn + €grVupGpF  [proof analogous to that of Eq. (A12)];

RAW'BX'C Y'nz’

+€apEpi® apy iz T2A(€ o€ ppEnixr€yrzr +€4REcDEWIZ €LY 5

(A11)

(A12)
(A13)

Vapcp€wixt€yizr + € ap€cpPwixryrz T €ap€yrz®cpwix

(A14)
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where R,y pycripz 16 the Riemann tensor, & ,g5y+5r=®(4ny(yrzn =P 4pyrz iS the trace-free Ricci spinor,
and A =44R with R the curvature scalar [Eq. (3.52) of Ref. 36];

’ ’ . . ’ ’ G
€awrnzt X Y =5(5 486,50y F 6,% = 0,°6,50, 56,7,

’
where €4yp, XY=

*F = i(€ apPyrxr— €yred4z) [E. (3.35) of Ret. 36),

=€,5% is the alternating symbol [Eq. (3.34) of Ref. 36], which implies

(A15)

if F,, is the real skew tensor corresponding to the spinor of Eq. (A10) and the duality operation is *F,

=1 af .
=3z€ Fotﬁ,

Onas =Vur VN ac + V¥V iarMares OT Nap=Neup -

Proof. The right-hand side is

3V arr VN 5o + VgV 40 + VRV o 4o + VRV io ) «
But V,VF - v°, v * =5,°0 by Eqs. (A6) and (A7), so this becomes

36,50 ¢ +65°0M 4¢c) =0n 45 as claimed.

Similarly,

—M'N'P' I_ (MI Ax-'—NIPI I) Axl MI-—NIPI I)
OP¥'VPQ' =y Mg AX'PN'PRY_, | gax'y WPN'PRY)

The proof is analogous to that for Eq. (A16);

OpH'¥'P'R = ZVA(M'VAX'TJN'P’Q’)X’ + (VAX’VA(M’ — VA(M ’VAX')T;N'P’Q’)X, ,

Proof.

OpM' VPR = VA(M'VAX"IBN’P’Q’X, +yAX’! VA(M'?N'P'Q')x,

= e’ PNPRIX | gAX'y WM'HN'P'Q)
=2’y  WPYPOX  yary WD =

(A16)
for PH'NP'A = pUNPA) (A17)
for PU'NPQ =pUNFQ) (A18)

[by Eq. (A17)]
VA(M'V IT)N’P’Q')X'

[by addition and subtraction of a term and by use of Eq. (A5)], which is the result claimed. Equations (A19)
and (A20) are the Ricci identities, Egs. (3.55) and (3.56) of Ref. 36:

V(AP Vgorke ==Papcpt” +2AEu€pc

VH(W’V )ED ‘I’DEw'x'E

(A19)
(A20)

Equation (A21) is the vacuum Bianchi identity, Eq. (3.61) of Ref. 36:

VAXI¢ABCD =0.

(A21)
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