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Using simple considerations of Mandelstam analyticity of the s plane along with that of the cos8 plane by
conformal mapping and the convergent polynomial expansion (CPE), a variable g(s, t) is constructed which

has the potentialities of reproducing some known scaling variables, Regge behavior, and providing

information about asymptotic behavior of slope parameters in diAraction scattering of the.type -(lnsg, where

p = 0,1,2. CPE in terms of I.aguerre polynomials in the proposed variable is possible for all energies, but
maximum convergence of the series is possible only at asymptotic energies. Use of the first one or two terms

in the CPE in y provides improved fits to the forward slope data at all energies and reasonably good fits to
the high-energy slope-parameter data at ~r~ = 0.2 GeV', for pp, pp, E+p and s--p scattering. Information on
the asymptotic behavior of slope parameters for these processes is obtained. Data analysis reveals that the

strong behaviors in the amplitudes for all these processes cannot be present inside the corresponding figures

of convergence in the mapped planes for all energies except near the threshold. A fit to the slope-parameter

data for any process determines unknown parameters in the corresponding g. %hen the cross-section-ratio

data for different processes are plotted against the corresponding g's all the data for every process starting
from p„» = 3 GeV/c up to the highest available energy and within the range ~r~(~rg„, where

~tg„= 1.25, 0.5, 2.0, 1.0, and 1.25 GeV' for pp, pp„rf +p, K p, and tr+p scatteting, respectively,

lie on a scaling curve. For p„» 3 GeV/c data points for ~tl y ~rg,„also approach the scaling curve,

and the data for all available values of ~r~ with P„» ) 50 GeV/c lie on it. For pp scattering it is found

that at high energies scaling in the variable y occurs for larger-~t~ data lying well outside the diffraction-

peak region. The scaling curves for pp and pp scattering are found to be different and those for m+p and

m p scattering are found to be very much the same. The scaling curves for E "p and 1I: p scattering are
almost the same. Our analysis implies that the data lying on the sealing curves can be represented by CPE
in terms of I.aguerre polynomials in the variable y, with the coefficients of expansion independent of energy.
The implication of such type of scaling in the data analysis at high energies using CPE is pointed out.

I. INTRODUCTION

Recently many attempts have been made to under-
stand diffraction scattering of hadrons at high

energies. Although the dynamics of hadron-had-
ron interaction are not known, certain systematics
have come to light. Qne of them is the sealing of
differential-cross-section ratio. Attempts have
been made through geometrical models' ' and by
means of general principles of axiomatic field
theorys ' (AFT) to understand scaling phenomena.
As a result different types of scaling variables
have been proposed. A brief review of works on
scaling has been reported in Ref. IO. Scaling
variables like to to, and uttrt t (s)/[so „,(sc)] have
been proposed by geometrical models. ' ' Vari-
ables like t(lns)s, ter~, s/o„, and tb(s) have been
predicted4 ' from exact results based on principles
laid down by AFT. Although the exact results
predict scaling of the diffraction peak for s- ~,
early onset of scaling in the energy scale starting
from laboratory momentum Pt,»=3.65 GeV/c

has been demonstrated in the variable utvt„, (s)/
[str „,(se)] by Hamsen and Krischs for small-angle
data in PP scattering. Krisch"-type' variables
violate the Cerrulus-Martin" lower bound for the
scattering amplitude.

The significance of scaling in the context of
the optimized polynomial expansion" (OPE) has
been pointed out in Ref. 10. The technique of QPE
for scattering amplitudes and form factors de-
veloped by Cutkosky and Deo, and Ciulli" has
proved to be one of the most useful means of get-
ting information on the dynamics of hadronic in-
teractions by analyzing experimental data. "
Usually OPE for scattering amplitudes involves
unknown parameters which depend upon energy.
%hile analyzing the differential-cross-section
data one has to determine a set of parameters by
a data-fitting procedure for every energy with the
help of a computer. Although this program has
yielded meaningful results" for lower energies, it
is definitely cumbersome and may be even untract-
able for high-energy scattering which involves
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a lot of parameters. If, on the other hand, scaling
ean be shown to be exhibited in OPE in a suitably
constructed conformally mapped variable, the
scaling function and hence fits to the da.ta at all
energies and all angles in the sealing region can
be known, once a set of a priori unknown param-
eters in OPE are determined by fitting the experi-
mental data at any single energy in the scaling
region. Hence, demonstration of scaling of the
data in CPE in a suitable variable y is important
from the point of viewed of the economic use of com-
puter time in fitting the data by the method of
analytic approximations.

Using Mandelstam analyticity of the x =cos~
plane and the technique of OPE by conformal map-
ping, a model of high-energy scattering of hadrons
was proposed. "" The images of the cuts formed
the boundary of a parabola with focus at the origin
and the physical region formed a segment of the
right half of the real axis in the mapped plane.
The physical region spreads. the entire right half
of the real axis, the appropriate physical region
for Laguerre-polynomial expansion, like -(lns)'
only in the limit s -~. One of the main draw-
backs' of the conformal transformation proposed
in Ref. 16 is that when applied to processes pos-
sessing an unsymmetric cut x plane of snalyticity
it gives rise to spurious cuts in the mapped plane
which affect convergence of polynomial expansion.
Apart from this and other deficiencies pointed
out in Ref. 19 the formula for the slope parameter
developed in Ref. 16 suffers from two deficiencies:
(i) It could not account for antishrinkage in PP
scattering, and the shrinkage-antishrinkage pat-
tern in K P and m'P scattering. (ii) It failed to
explain observed increase of slope parameter with
energy at high energies in PP, K'P, and m'P scat-
tering.

The reason for the deficiency (i) has been at-
tributed" to the lack of achieving the correct
physical region for all energies and conformal
mapping has been developed" which achieves the
correct physical region for I aguerre-polynomial
expansion for all energies, provided that the am-
plitude possesses one zero at least on the physical
region. In this mapping zy although the images of
the cuts do not form any regular figure of conver-
gence at finite energies, they always stay away
from the image of the physical region, a'Qowing

for a parabolic figure of convergence for Laguerre-
polynomial expansion, and thus CPE exists for
all energies. At higher energies the image of the
left-hand cut approaches the branches of a limiting
parabolic figure of convergence, although the
image of the right-hand cut forms the forward
portion of the parabola giving a special emphasis
of the right-hand cut for scattering near forward

angles, much earlier in the energy scale. Thus,
CPE goes over to OPE at asymptotic energies.
It was shown that the approach from CPE to OPE
is faster, the higher the energy is, the closer
the position of zero is to the background direction,
and the farther the left-hand cut is than the right-
hand cut. A universal formula was developed that
relates the slope parameter to the equations of
boundaries of spectral functions and lines of zeros
in the Mandelstam plane. This formula gave a
reasonably good description of shrinkage, anti-
shrinkage, and shrinkage-antishrinkage of forward
peaks for all the elastic diffraction scattering
processes for all energies except for certain ob-
jectionable features as described below. The work
of Ref. 17 suffers from deficiency (ii) as described
above and, in the simplest case of mappings pro-
posed in Ref. 17, two spurious branch points, at
z, =0 and z, =~, appear, giving rise to a spurious
cut which completely overlaps the image of the
physical region the the z, plane. It has been
pointed out that, looked at as a function of x, the
conformal transformation z, and the representation
of Ref. 17 possess no other singularity except the
dynamical branch points of the amplitude. There-
fore, if one ignores thepossible presence of pole
terms, the representation of Ref. 17 conforms to
correct analytic properties of the absorptive part.
Ciulli' has discussed convergence of polynomial
expansion in terms of a mapped variable, which
introduces an "artificial" cut explicitly along the
physical region. In his work, ~ results on the
convergence of polynomial expansion have been
taken to hold in the presence of an artificial cut
along the physical region. Convergence of poly-
nomial expansion for physical values of z, may
perhaps hold good in the presence of the spurious
cut with the Rez, + ic prescription above or below
the cut. Thus we suppose that the spurious cut
causes no problem for convergence as long as it
lies on the physical region in the z~ plane about
which the Laguerre-polynomial expansion is made.
Also, the simplest conformal mapping used in
Ref. 17 introduced a strong behavior at the point
g = -1, whose image falls inside the figure of con-
vergence in the mapped plane. ' Further, the
capability of CPE developed in Ref. 17 to account
for the high-energy slope-parameter data at non-
forward angles, on which many data points are
now available, had not been tested. In this
work we have tried to suggest a remedy for the
deficiency (ii) in the work of Ref. IV along with
clarifying the fact that the strong behaviors for
all the diffraction scattering processes are present
outside or on the corresponding figures of con-
vergence for all energies, except near the thresh-
old, when slope-parameter data at [t

~

=0.2 GeV'
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are also fitted by the formula derived from CPE.
The reason for the deficiency (ii) has been at-

tributed' to the lack of inclusion of the s-plane
analyticity for pp scattering. When s-plane analy-
ticity is exploited by conformal mapping and QPE
along with that of the x plane as adopted' in earlier
works, "" the formula for the slope parameter
accounts for the forward slope data at all energies,
including those at ISR energies. This approach
yields a variable y which has the potentialities of
reproducing known scaling variables and Regge be-
havior in the appropriate kinematical region. It
has been found'0 that all the available data on the
cross-section ratio for pp scattering, starting
from P„,=50 GeV/c, approached a scaling
curve, when the data were plotted against X.
From the finite lengths of images of the physical
region in the z plane it has been argued that the
representation of convergent polynomial expansion
for different finite energies is not unique, and
there is ambiguity and danger in using the asymp-
totic expansion in terms of Laguerre polynomials

. at finite energies. In view of the optimal conver-
gence and the fact that the correct physical region
for the series expansion is achieved for asymp-
totic energies, it has been argued that the scaling
in y occurs, as it should, higher in the energy
scale. But this type of approach suffers from
deficiency (i).

Since deficiency (i) has been successfully re-
moved in Ref. 17, it is interesting to combine
with it the use of the s-plane analyticity as it has
been adopted in Ref. 10. Since CPE has been de-
veloped for all energies in Ref. 17, the possible
onset of scaling of the cross-section ratio for
differ'ent scattering processes much earlier in
the energy scale will be further interesting. The
scaling of the cross-section ratio in the context of
CPE has further importance, as has been pointed
out in Ref. 10 and in the second paragraph in this
section.

With this idea, using the analytieity of the s
plane along with the variable z„avariable X
= o.(s)z, has been constructed that has the poten-
tialities of reproducing some known scaling vari-
ables4' ' and Regge behavior in the amplitude for
al1. elastic diffraction scattering processes for
s» s~ and It I« t„, but the variable becomes b(s)z,
for high energies and all angles. Using the s-plane
analyticity by conformal mapping and CPE intro-
duces at most two more parameters than the pre-
vious analysis" into the formula for slope param-
eters. In addition, a constant C is used as a free
parameter to look into the possible removal of the
strong behavior from inside the figure of conver-
gence. Terms up to the first or second in the CPE
in y give a good description of the data for both

forward and nonforward slopes for pp, pp, K'p,
and w'P scattering, yielding better (in some cases
much better) values of y'/NDF for forward slopes
than those reported in Ref. 17.

The OPE has been used" effectively to determine
the asymptotic behavior of electromagnetic form
factors of proton and pion from data analysis. In
the present work, using the s-plane analytieity
along with the work of Ref. 17, we obtain informa-
tion on the asymptotic behavior of slope param-
eters by analyzing the slope-parameter data.
Present analysis reveals that the slope-parameter
data on PP scattering cannot distinguish -between
-lns or -(lns)' type of asymptotic behavior. Al-
though pp and K p data appear to be approaching
constants for large energies, fits to the data are.
improved when formulas having -(lns)'. and -(lns)
type of asymptotic behaviors are used for Pp and
K p scattering, respectively. Data on m'p slopes
are consistent with -lns type of asymptotic be-
havior.

More important is the result in the present work
on the early onset of scaling of the cross-seetion-
ratio data for various processes in the correspond-
ing variable y's. Fits to the forward slope data
and the slope parameters at ft I

=0.2 GeV for
different diffraction scattering processes deter-
mine the unknown parameters in the corresponding
X's. When the cross-section-ratio data for any of
the scattering processes are plotted against the
corresponding y, the data are found to lie on a
scaling curve. For every process all the cross-
seetion-ratio data for P» ~ 3 GeV/c and It I

~ Itl„,„.,
where ft f,„is found to be different for K'P, K P,
and pp scattering but the same for pp, g'p, and
g p scattering, fall on a single curve. As the
energy increases from P„„=3GeV/c, some data
for It I

& ft I,„approach to lie on the curve, such
that the available data for all ft I

and P» ~ 50 GeV/c
lie on the scaling curve. This implies that for a
high-energy process, the coefficients in the CPE
in y, for the cross-section-ratio data for all ener-
gies with P» & 3 GeV/c and ft I

& ftI,„, are energy
independent. Surprisingly, the available high-
energy data for pp scattering for larger values of
ft I lying well outside the diffraction peak region
lie on the same scaling curve. This has been
tested for the larger- ft I data at P» =200 GeV/c
and 1500 GeV/c. Recently Cornille' has looked
into different conditions of sealing and shown that
one of the scaling variables at asymptotic energies
can be t b(s), b(s) being the forward slope param-
eter. He has defined a class of scaling functions
in which are included sums of powers, exponen-
tials, and classical orthogonal polynomials, in-
cluding Laguerre but excluding Hermite poly-
nomials, with positive coefficients. Qur analysis
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reveals that a series in Laguerre polynomials in
the variable y, which becomes tb(s) for small ~t~

and large energies, is possibly a good candidate
for scaling function.

Several limitations of the present approach to
diffraction scattering have been pointed out in Ref.
10 and Sec. IV of this paper. Scaling in geometric-
al models has been either assumed' or hypothe-
sized." But scaling based upon principles of
AFT' 9 is supported by more rigorous theoretical
foundations. In the present work, scaling in the
variable y is not proved u prio~ but hypothesized
from the uniqueness of CPE at asymptotic ener-
gies. Experimental data verify such a hypothesis.

The paper is organized in the following manner.
In Sec. II we point out briefly how the s-plane
analyticity can be exploited along with that of the
x plane by conformal mapping and CPE. In Sec. III
data on slope parameters at forward angles and

~t ~
=0.2 Gev are fitted to determine unknown

parameters which are relevant regarding strong
behavior and for y(s, t) as a scaling variable. In
this section we get information on the asymptotic
behavior of slope parameters for various proces-
ses. The success of X as a scaling variable for
various processes is also tested in this section.
In Sec. IV we discuss our results and point out
possible reasons for early onset of scaling. Limi-
tation& of this method are also pointed out in this
section.

II. CONFORMAL MAPPING OF THE s AND cos 8 PLANES

In this section we use Mandelstam analyticity of
the s plane for the absorptive part of the ampli-
tude along with that of the cos8 plane as developed
in Ref. 17 to construct a new variable y(s, t). The .

potentialities of y(s, t) as a scaling variable for
determining the asymptotic behavior of slope
parameters, and the possible existence of a scaling
function are discussed. In developing representa-
tions for differential cross sections in this section,
we assume that scattering near forward angles is
due to the absorptive part of the amplitude alone.
With this assumption the contribution due to poles
has been neglected. There is a host of papers' '
which contain such an assumption. It has been
shown that the unitarity upper bound for the absorp-
tive part of the amplitude derived by Singh and
Roy' saturates the high-energy data near forward
angles for mN and pp scattering. "9 Experimental
measurements at high energies show that the real
part of the amplitude is small near forward angles
for NN, mN, and KN scattering. But away from
the forward directions interference between the
pole and cut contributions may significantly affect

(C+ x}'
[x+x,(s)]' ' (2a)

zo(s, x) = [cosh V4p()]

with

( }
x + I x+ x
X.-1 x +x

(2b)

x, (-x }being the start of the right- (left-) hand
cut in the x plane, and x = -x,(s) being the position
of zero in the backward hemisphere, which, in
general, may be energy dependent. With the con-
formal mapping z„ the correct physical region
for Laguerre-polynomial expansion, 0 & Rez, & ~,
is achieved for all energies and the convergent
polynomial expansion (CPE) for the differential
cross section

—=e ""Qa„(s)I,„(2o.z,)-Cfe

n

possesses at least one zero in the physical region.
Although the correct physical region has been
achieved for all energies and the image of the
right-hand cut deviates only slightly from the for-
ward portion of the parabola, the image of the
left-hand eut deviates drastically from the branches
of the limiting parabola at lower energies. At
none of the energies do the images of the branch
points touch the image of the physical region.
Thus for all energies a parabolic figur. e of con-
vergence for Laguerre-polynomial expansion exists
around the right half of the real axis in the z,
plane. For any finite energy, however, the inter-
ior of the figure of convergence contains only a
part of the image of the cut x plane, which in-
creases with energy. As s- ~, this parabola coin-
cides with the limiting parabola whose forward
portion is the image of the right-hand eut and the
rest is the image of the left-hand cut, and its in-

fits to the slope-parameter data. Although in the
present and earlier workslo, ls, lv, ls pole eontribu
tion has been neglected, it is important to know
how the inclusion of the pole term modifies expres-
sions for the slope parameter for several proces-
ses. However, we note that the simple picture of
scaling presented subsequently in this paper will
be perhaps difficult to realize if pole contributions
are explicitly retained. Since, in the present ap-
proach pole contributions have not been included,
the representations-for differential cross section
do not possess correct analyticity properties

In Ref. 17 conformal mapping of the g=cos8
plane onto the zl plane has been defined as

z, (s, x}=g(x)z, (s, x},
where
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terior contains the whole image of the domain of
analyticity of the x plane. Thus, according to the
established results of Cutkosky and Deo, and
Ciulli, " the polynomial expansion (3) converges
for all energies, the rate of convergence increas-
ing with energy. Only at asymptotic energies is
the convergence maxi, mum. In Ref. 10 it has been
pointed out that CPE at finite energies in Laguerre
polynomials is ambiguous, but convergent expan-
sion in terms of a nonunique set of polynomials is
possible and expansion with maximal convergence
in Laguerre polynomials is an asymptotic one. In
the present work it is clear that expansion in terms
of Laguerre polynomials is possible for all ener-
gies, the rate of convergence of the series increas-
ing with energy. However, in this case also maxi-
mally converging expansion with Laguerre poly-
nomials is an asymptotic expansion.

Since we are stressing analytic representations
which converge rapidly, it is important to locate
the positions of spurious singularities which may
affect analyticity and/or convergence. Regarded
as a function of x, the transformation z, and the
representation (3) possess only branch-point
singularities corresponding to dynamical singular-
ities of the absorptive part. But by construction
of the mapping g(x), the two-sheeted structure in
the y plane, where y =(c +x)/(x+x, ), has been
folded together, giving rise to spurious branch
points in the g(x) plane at g(x) =0 and g(x) =~.
These two branch points appear as square-root
branch points in the z, plane at zy 0 and z, =~.
Thus, in the z, plane a spurious cut appears, com-
pletely overlapping the physical region. Ciulli"
has discussed convergence of polynomial expan-
sion in terms of a mapped variable which intro-
duces an artificial cut explicitly along the physi-
cal region. In his work, results on the conver-
gence properties of the polynomial expansion have
been taken to hold ip the presence of the artificial
cut. Thus we suppose that the spurious cut causes
no problem for convergence as long as it lies on
the physical region in the z, plane about which the
Laguerre polynomial expansion is being made.
The convergence of polynomial expansion may
perhaps hold true for physical values of z„with
the Rez, + ie prescription above or below the spur-
ious cut.

We now point out the need for exploiting s-plane
analyticity to account for the high-energy slope-
parameter data. The differential cross section
for two-body dlastic scattering is a function of two
independent variables which we choose as s and
co&0. The slope parameter at.any fixed s is mea-
sured by taking a set of data points on the differ- .

ential cross section at various angles and fitting
the data in a given ~t ~

range. Slope parameters at

q(s) =sinh 'v~, , (4b)

(4c)Mg =(S —Sth)/(Sgh Sy) l

in which the image of the left-hand cut is a para-
bola with focus at the origin and the image of the
physical region is the entire right half of the real
axis. In the g plane, however, the left-hand cut
is mapped onto the boundary of a strip of width w,

but the image of the physical region is also the
right half of the real axis. In both cases, the
entire domain of analyticity for the absorptive part
in the s plane is mapped onto the interior of the
figure of convergence in the mapped planes. Thus
a series in Laguerre (Hermite) polynomials in
f(s) (q(s)) converges at the fastest rate. But for
expansion in terms of q(s), the coefficients of the
Hermite polynomials are not unambiguously de-

various energies are known by analyzing different
sets of differential cross-section data at corres-
ponding energies. Cuts in the s and cosH planes
represent forces responsible for the scattering of
hadrons. To account for the value of slope at a
given energy, the influence of the cut structure in
the cosH plane has been exploited by CPE through
the variable z,. But since .the slope parameter
b(s, f) is also a function of the independent variable
s, the cut structure of the abosrptive part of the
amplitude in the s plane may drastically influence
the behavior of the slope parameter, at least for
high energies. The slope parameter b(s, t) is pro-
portional to the parameter n, which, as has been
pointed out earlier, is energy dependent. ' '" "
Other parameters in (3) do not affect the forward
slope, although they may affect nonforward slopes.
We, therefore, attempt to adopt convergent ex-
pansions for o.(s). Cutkosky'0 has suggested analy-
tic approximation by the conformal mapping of the
individual factors in the corresponding independent
variables in a product. For the diffractive process
to be considered here, the absorptive part of the
forward scattering amplitude has a left-hand cut
from s = s, to s = -~ where s, is determined by the
root.of the equation s-Z+t~=0, Z is the sum of
the squares of the masses of initial and final
particles, and t~ is the equation to the boundary
of the spectral function p,„. The physical region
extends along the right half of the real axis starting
from threshold vh, lue s=sth to s=~. In meson-
nucleon scattering there are other cuts present in
the s plane, but we ignore them since they may not
contribute to the absorptive part. Since the physi-
cal region is a semi-infinite line, the most suitable
conformal mapping of the s plane will be a para-
bolic transformation onto the r(s) plane

g(s) =q'(s), (4a)
with
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termined, since the correct physical region
-~ & Re g ~ ~ has not been achieved in this case.
This type of mapping with Taylor-series expansion
has been used by Deo" in the context of virtual
compton scattering. %e also adopt a convergent
Taylor-series expansion in r (q). Since most of
the slope parameter has been accounted for by
mapping of the x plane" onto the z, plane, we -sup-

pose that only a few terms in n(s) are necessary to
account for the slope parameter in all the energy
ranges. In fact, the unitarity. restriction forbids
us taking more than the first two (three) terms in
the Taylor series in f (q). The reason for such a
restriction lies in the fact that the maximum
growth rate of the slope parameter allowed by
unitarityz' as s- ~ is -(Ins)', and f(s)-, „-(lns)'
an'd q(s)-, „-Ins. Thus, the convergent Taylor-
series expansion for a(s) can be written as

c,{1+ c,g),

d(1 +dq+d, q')

(5a}

(5b)

y(s, t) =n(i)z, (s, t), (6)

the convergent expansion for the cross-section
ratio

f(s, t) = —(s, t) —(s 0)
do' dO'

dt ' dt

can be written

f(s, t) =e" Q e„L,„(2y),
n =0

(8)

where the coefficients e„'s are related to the a„'s
of (3) by the relation

From the .above expressions we find that the
asymptotic behavior of n(s) is of the type -(Ins)",
with n =0, 1, 2. From Ref. 17 and the formulas
written in the next seeti'on of this paper we see
that lim, „b(s, o) =lim, „o,(s)/(4m '). Thus, b(s)
has the asymptotic behavior -(Ins)", with n =0, 1, 2,
where n =0, 1 corresponds to the constant and

Regge types of asymptotic behaviors, respectively,
and ~ =2 corresponds to the saturation of unitarity.
Thus, with the use of the s-plane analyticity, the
formula for, the slope parameter possesses poten-
tialities of saturating some kriown types of asymp-
totic behaviors. Now, defining the variable

analytically, it may be borne in mind that a„(s)
are "partial-wave amplitudes. " It j.s well known

that for unequal-mass scattering the analyticity
properties of the partial'-wave amplitude are dif-
ferent from the total amplitude. . The mapped
variable in the present work is different from
that in Ref. 10 and thus the analyticity properties
of a„(s) in Eq. (3) of Ref. 10 is different from
those of a„(s) in Eq. (3) in the present work. Since
the domains of analyticity for- partial-wave ampli-
tudes are not simple, analytic approximations of
e„'s and a„'s by conformal mapping may be compli-
cated. But it has been found in Ref. 10 that the
use of representation (14) for f(s, t) in terms of g
in that work makes the situation simple for high
energies such that in the scaling region one need
not worry about the energy dependence of e„'s.
Similarly, in this work we will find in the next
section that y(s, t) is a good scaling variable for
the cross-section-ratio data starting even from a
few GeV/c of laboratory momentum within a limi-
ted IIt

~
range, and all the available data in the

very-high-energy region. In effect it will be found
that e„'s are energy independent at least in this
region.

Before proceeding further we tabulate below
certain relevant features of the variable y(s, t) and
the polynomial expansion (8):

(i) For energies such that ((4q'+ t, - a/s) (» ( t (

and angles such that ~t~«ts, z, --t/tR and the
expansion (3) or (8) reproduces the usual exponen-
tial fit to the diffraction peak even at low energies.
This point was noted in Ref. 17. But for large s
and ~t[« t„, if now we retain terms only up to the
second in expansion (5b), y(s, t) - t 1ns and formula
(8) saturates Regge behavior. In general for large
energies and small ~t~, y(s, t)-tb(s), which is the
scaling variable proposed by exact results. ' '

(ii) For large energies and ~t~« ts, if we re-
tain the second (third) term in (5a) [(5b)], y(s, t)
-t(lns)', which is the scaling variable of Auberson,
Kinoshita, and Martin. 4 /

(iii) From the formula for slope parameters as
developed in Ref. 17 and the next section„ for large
energies the behavior of the forward slope can be
written as

(10)

8~ =
Q„oa„l.„(0)

(s)

In the expressions (3) and (8) the unknown param
eters a„'s arid e„'s are, in general, energy depen-
dent. It is possible to take into aeeount the energy
dependence of these parameters by some conformal
mapping of the s plane. But, while using the con-
formal-mapping technique to approximate a„(s)

where relation (6) has been used. Thus, for large
energies and all angle. s,

I

(

y(s, t) =4m, 'b(s}z, .

In view of these features of y(s, t), it may be
potentially useful iri describing scaling of f(s, t),
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which, according to (8), is possible if the param-
eters e„'s do not depend upon energy.

In the conformal mapping z„a special emphasis
has been placed on the influence of the nearest
right-hand cut on scattering near forward angles.
That the image of the right-hand cut forms the
forward portion of the parabola" and lies closer
to the images of the points near @=1 in the mapped
plane, takes into account such a feature. The
convergence of the series (3) or (8) in the forward
direction is further enhanced by the fact that y
(or z,} ~t, for small ~t ~. In view of these and the
more important reason that CPE has been possible
at all energies by schieving the correct physical
region for all energies, "scaling of the small-
angle data at least may start earlier in the energy
scale. Thus the series expansion (8) may repre-
sent small-angle data over a wider range with the
same set of e„'s.

Before examining the scaling of the data on

f(s, f), it is necessary to known unknown param-
eters in the variable y(s, t) for every process. In
the next section we will find that only the forward
slope-parameter data cannot help in doing so. In
the next section, the universal formulas for slope
parameters, both for forward and nonforward
angles, are written down using the expansion (8}.
The fitting of the forward slope-parameter data
and the data at ~t

~

=0.2 GeV' is carried out to test
the improvement caused due to the use of s-plane
analyticity, to get information on asymptotic be-
haviors of slope parameters for several processes,
and to determine the unknown parameters in X.
The value of C determined in this way supplies in-
formation about the position of the point where
strong behavior of the amplitude lies in the mapped
plane.

III. SLOPE PARAMETERS AND SCALING OF THE
CROSS@ECTION RATIO

b(s, t) =—In/(s, t);d
(12)

It has been already remarked that, for large
energies and small angles zy ~ t; In this kinema-
tical region the convergence of series (3}or (8),
in addition to being accelerated by conformal
mapping, is further accelerated by virtue of the
variables being proportional to t. We, therefore,
suppose that only the first term (two terms) in the
expansion (8) may be necessary for describing the

slope parameter at It( =0 ((t(,„=0.2 GeV'), with

In this section we first examine how the use of
the s-plane analyticity in CPE, as discussed in
the previous section, improves tl; fit to the slope-
parameter data and supplies information on the
asymptotic behavior of slope parameters. We will
see that to know all the parameters in X(s, t), it is
necessary to fit the forward as well as nonforward
slope data. We report fits to the data with the
corresponding y'/NDF values for forward slopes
and the slope parameters at ~t ~

=0.2 GeV for PP,
It)P, K'P, and w'P scattering. Among the unknown
parameters in y(s, t), the value of C which occurs
in (2a), implies that the strong behavior for all
these processes cannot occur inside the figure
of convergence in the mapped plane for all en-
ergies except for the case s- sth. To look into
the efficiency of X(s, f) as a scaling variable and

possible onset of scaling earlier in the energy
scale, data on f (s, t) are plotted against X for
different processes.

The slope parameter b(s, t) can be defined as

0) ~d 4q'o(s)(C+1)' 1 f„
dt, =, F'(s, 0) tR 4q' + t~ —a/s

b(s, f}= —~+—ln[e +e (1 —2y)]
d d
dt dt

[2q'(C+ 1) + f] [2q'(C+1) + t] f R
—& ~z

F'(s, t) ts 4q'+ tz, —L/s+ t [u)0(u)o —I}]'i'

2q'{{'+))+t )+2a{X—)))
F(s, t) ' 1+2~ (14)

where

F(s, t) =4q'+u, (s) —r /s+ t,
uo(s) being the value of u on the line of zero, and
a=-e, /(e0+e, ). It can be easily verified that E{I.

(13) is obtained from (14) by putting f =0 and a=0.
From (13}it is clear that only the forward slope-
parameter data cannot determine C and n(s) sim-
ultaneously. We therefore use the data on forward
and nonforward slopes at ~t~ =0.2 GeV' to determine
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u, (s) =-2q'+(4q' —ps)'".

Such zeros, however, introduce spurious branch
points in the amplitude at

s = s, = 4 m' a 2(4m' a + a')' '

which affect analyticity in s and the optimal con-
vergence of expansion (5} since, due to their
presence, the size of the figure of convergence is
limited in the g(q) plane. Although these branch
points spoil the optimality of convergence, the
expansions (5) are definitely more convergent
than would have been the case otherwise, without
conformal mapping. In spite of these limitations
introduced by the Krisch' type of line of zero, we
will use it for fitting the PP data for the sake of
convenience and in the absence of any other de-
finite results. With this line of zero we have, for
PP scattering,

F(s, f}=2q'+(4q'- as)'"+f (18)

these parameters, which in turn determine X(s, t).
Since b(s) ~n(s), retaining terms up to the first,
second, and third in Eq. (5b} yields asymptotic
behaviors of the type -const, -1ns, and -(lns)' for
the slope parameter. Thus, formulas (13)-(15),
along with (5a) and (5b) have the potentialities of
verifying the asymptotic behaviors of slope param-
eters from experimental data. We will use these
formulas for data analysis for PP, PP, K'P, and
w' p scattering.

A. pp scattering

Experimental data on forward slopes for high-
energy Pt) scattering"'4 show a -lns type of in-
crease consistent with the exchange of a. Pomeron
of slope a'(0) =0.28 GeV '. Formulas developed
in earlier- works" "yielded a constant value of
slope for s- ~. The analyticity of the s plane
has been exploited' to good effect to fit such a
shrinkage pattern and exhibit scaling in the cross-
section-ratio data at high energies. In Ref. 10
however, the average data of Hansen and Krisch'
have been used for the purpose of data fitting
evaluating unknown parameters in y. In the con-
text of the theory of analytic approximation for
diffraction scattering, no formula, has yet been
proposed which yields a good y'/NDF both for
forward slopes and the slope parameter at ~t ~

=0.2 GeV', on which many points are now avail-
able.""We find that using the general formulas
(13) and (14) along with (5a) or (5b) gives good
y'/NDF for the actual forward and nonforward
slope data at all energies. In Ref. 17, the Krisch'
type of line of zero, as suggested by the analysis
of Odorico, "was used for data fitting with

For data fitting we have chosen 58 data points"'~
for forward slopes at all available energy ranges
whose average value of ~f[ (~t~,„)was less than 0.1,
and 25 data points" "for which ~t ~,„=0.2 GeV'.
Using formulas (5a), (13}, (14), and (18), a three
parameter fit to all these data points are obtained
with

go = 0.356,

g, = 0.0089,

C= 1.913 ~

(19)

do =0.287,

d, =0.102,

C = 1.917,

(20)

for which X'/NDF =1.84 (0."I2) for forward (non-
forward) slopes. In this case, the addition of the
parameters d, and a, does not improve the fit.
The fit is almost the same as that given by (19).
Thus, the present data are unable to distinguish
between the -ins or -(lns)' type of asymptotic be-
havior of the slope parameter. The value of C now

pushes the strong behavior of the amplitude to the

For this fit we took a=0 and the equation for t~Rpp
was taken to be the elastic boundary p„.

Adding a as a free parameter does not improve the
fit. For this fit the value of y'/NDF was found to
be 1.83 (0.'l8) for forward (nonforward) slopes. In
view of our use of the actual data points, this value
is quite good. Except for the fit of Hansen and
Krisch, ' in which the average of the data had been
used, ours is the first fit which reports such a low
value of y'/NDF for the actual data for forward and
nonforward slopes. In Ref. 17 the best fit yielded
a y'/NDF =14.9. Although such a large value was
partly due to mixing of data for larger ~t ~,„ in the
fit, the main reason was the inability of the formu-
la to account for the increasing value of the slope
parameter for increasing s in the CERN ISR
energy region. In the present formula the inclusion
of the s-plane analyticity by conformal mapping
has remedied such a deficiency and drastically
improved the fit. This fit to the data points has
been shown in Fig. 1. Visually, the fit appears
very good for all the data. In Ref. 10 an effective
boundary of spectral function which retreats away
from the theoretical boundary for lower energies
was needed to fit the data at all energies. But in
the present work a good fit to the data for all
energies has been achieved with the theoretical
boundary.

We next tried to fit the same data with the ex-
pression for o.(s) given by (5b), but other expres-
sions remaining unchanged. A three-parameter
fit is obtained with
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FIG. 1. Fit to the slope-parameter data ofpp scattering. The circles are the slope-parameter data near forward
angles and the triangles are the data for ~t ~

=0.2 GeV2. The solid lines indicate our fit.

point x =-1.917 lying on the left-hand cut for al1.

values of energy except for q'-0. Thus, its
image lies outside the figure of convergence in the
mapped plane for all values of energy, except for
very low energies near threshold. For s- ~ this
point lies on the limiting parabola, The unknown

parameters in y now being determined by fits to
the slope-parameter data, we plot the cross-sec-
tion-ratio data" ""29 f(s, t) against y to see if
there is scaling. Figure 2 shows such a, plot for
small-angle data with ~t ~

~ 1.25 GeV and for all
energies starting from P&,b =3 GeV/c. It may be
noted that, as compared to the scaling plots Fig. 2
of Ref. 10 and Fig. 5 of Hansen and Krisch, this
plot has an expanded vertical scale. Also, the
present plot in Fig. 2 covers a larger range of ~t j

as compared to that of Hansen and Krisch. ' From
Fig. 2 it appears that larger-angle data for P„b
=3-6 GeV/c deviate slightly from the scaling
curve, but, if plotted in the same scale as that
of Ref. 2 and Ref. 10, all the data of Fig. 2 would
appear to lie on the same scaling curve. Figure
3(a) shows the plot of still-larger-angle data for
several energies with ~t

~

& 1 GeV'. It is clear that
data for lower energies and for larger angles
deviate away from the scaling curve. But, as
energy increases, the data for larger values of
~t~ tend to lie on the scaling curve. Figure 3(b)
shows that all the larger-It

~
data starting from

Pbb = 50 GeV/c up to P„b = 1500 GeV/c fall on the
same curve. Surprisingly, we find that all the
available data, "even for large (t ~

values up to

~tr= 10 GeV for Pab =200 GeV/c, from Akerlof
et al."and Hartmann et al. ,

"and Pub =1500 GeV/c
from De Kerret et a/. ,

29 fall on the same curve.
So far, no variable has been tested to scale the
larger- ~t ~

data in such a remarkable fashion. We
find that scaling in the small-angle region starting
from P@b =3 GeV/c is at least of the same type as
that of Hansen and Krisch. ' Whereas scaling in the
variable of Hansen and Krisch has been plotted for
a small- It

~
range, the present plot of Fig. 2 covers

a larger- ~t~ range in the small-angle region. The
present scaling for small-angle data is much bet-
ter than those observed in the geometrical scaling
variable"' tz„, , which has been already tested'
to be a bad scaling variable even for small-angle
data (Figs 5and 6. of Ref. 2) and the variable to ~oP/

o,~ as observed in the work of Divakaran and Gan-
gal. ' It has been remarked by Hansen and Kriseh'
and noted by Giacomelli" that energy dependence
is not removed for the larger-angle data. Divaka-
ran and Gangal' have noted that sealing in the
variable t&x„,'/cr,

~ becomes worse for larger-
angle data. But, in the present work, scaling in
the variable y is remarkably well exhibited for all
the available data both for smaller and larger
angles starting from P„b =50 GeV/c. The scaling
in y determined by the fit (19) also yields the same
type of result.

B. pp scattering

As has been discussed in Ref. 17, the lower-
energy data are better fitted with a curve line of
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FIG. 2. Sealing and approach to scaling for pp scat-
tering for small-angle data. Quantitites inside the fig-
Ure IndIcate P]~b (GGV/c).

4

zeros

(s -u, )[u,(s) —u, ] =C,

for which

(21)

F(s, t) =4q'+u, +- ~ +t,C2
S —Q)

(22)
-10

and with elastic boundaries of p„(p,„) for ts
(t~ ). We have ta-ken""" "'2 44 data points for
which [t ~,„==0.11 GeV' to be the forward slope data,
and 23 data points""" ' for ~t ~,„=0.2 Ge+.
With the formulas (13), (14), (22), and (5b), we
first tried to fit the data with d, =d, =0, a choice
corresponding to lim, „b(s)- const apparently
consistent with experimental data and adopted in
Ref. 17. The best-fit values of parameters in this
case are

-l2-

IO

FIG. 3. Scaling and approach to sealing for pp scatter-
ing for (a) larger-angle data {b) larger. -angle data for
high energies only.
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=0.2 GeVt, for which the vertical scale is shown at the right of the figure. The dotted
(solid) lines correspond to constant [(lns)~] type of asymptotic behavior.

do =0.4137,

C, =2.788 GeV4,

0.687 QeV,

C = 1.9613,

g = -0.0196 .

For this fit, ya/NDF =7.5 (7.9) for forward (non-
forward) slopes. This fit has been shown by the
dotted curve in Fig. 4. Although almost the same
y'/NDF for forward slopes has been obtained with
the same formula, as in Ref. 17, the significance
of the present fit is the inclusion of accurate data"
on forward and nonforward slopes for high ener-
gies, which was not included previously, and the
choice of C as a free parameter. The value of C
in (23) reveals that the strong behavior lies out-
side or on the figure of convergence, as in Pp
scattering, for all energies except for q'-0. As

s- ~, of course, the strong behavior lies on the
limiting parabola. To see if the inclusion of s-
plane analyticity improves the fit, we first tried
formula (5b) with d, =0. This choice did not im-
prove the fit. We next included d, and d, together
as free parameters with the idea that possibly the
negative value of d, and the positive value of cL,

may account for shrinkage-antishrinkage at high
energies in a more effective manner. The best-
fit values of the parameters are

do ™~0.3339,

di = -0.1173,

d =0.0459,

C, =2.793 Gev',

u~ =-0.687 GeV2,

C =2.403,

a = 5.913 .
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FIG. 5. Scaling and approach to scaling in pp scatter-
ing.

This fit yields X2/NDF =3.98 (18.4} for forward
(nonforward) slopes with two more parameters
as compared to the fit (23). In this case the fit
for the forward (nonforward) slope has improved
(deteriorated) significantly. This fit suggests
asymptotic behavior of the type -(Ins)~ and has
been shown by the solid curves in Fig. 4. It is
clear that inclusion of the s-plane analyticity by
conformal mapping has improved the fit for for-
ward slopes. The fit for nonforward slopes may
perhaps be improved by including other param-
eters in the theory.

The values of the unknown para, meters in X being
determined as in (24), we now plot the dates 2' "
on f(s, t) against y(s, t) for PP scattering. Figure
5 shows such a plot for smaller It

~
data for all

energies starting from P„b =3 GeV/c. It is clear
that all the data points lie on the scaling curve.
High-energy data points for larger values of ~t~

are not adequate to exhibit some definite conclu-
sions on scaling, but we have found the same
trend as observed for large-angle data on PP scat-
tering. Larger- ~t

~
data at lower energies deviate

%'e have chosen""" 56 data points in all energy
ranges with small ~t ~,„as the forward slope param-
eters for data fitting. We have also taken 13 data
points""' at )t ~,„=0.2 GeV . A fixed-u line of
zero with u, (s) =const, theoretical elastic boun-
daries, p„ for t„, , and an assumed shape" "
for I~~- were taken to fit the data on K'P slopes.
Using (hese in formulas (13}-(15),and the expres-
sion (5b) for n(s) we obtain the best fit to the data
with 4 parameters,

do 0 1594

di =0.958

uo(s) =0.3272 GeV2,

C = 1.974.

(25)

This fit yields a y'/NDF =1.09 as compared to
15.9 in earlier analysis. " Although a sma, ll part
of the improvement of the value of y'/NDF is due
to the choice of the small- ~t ~

data, this analysis
demonstrates the significant improvement due to
inclusion of the s-plane analyticity. For the
slope-parameter data at ~t~,„=0.2 GeV, this fit
yields y'/NDF =3.9. The fit suggests asymptotic
behavior of the type -lns and has been shown by
the solid curves in Fig. 6. Addition of a and d, as
free parameters did not improve the fit and their
values were consistent with zero. The value C
=1.974 implies that the strong behavior lies out-
side or on the figure of convergence in the mapped
plane for all energies except near threshold. At
asymptotic energies the location of the strong be-
havior occurs on the figure of convergence.

The unknown parameters in y(s, t) now being
known, we plot the data"" on f(s, t) against y. .

Figure 7 shows the plot of all the data lying within

[t~ -2.0 GeV for Phb -3 GeV/c. The spread in
Fig. 7 is due to the fact that R P data in this range
have alsobeenplotted in the same curve, as will be
described shortly in this section. It is very clear
that all the available data in this angular range
lie on the same scaling curve. For still larger
values of ~t ~, the data, points are not adequate for
very high energies to draw some definite conclu-
sion from graph plotting. But there is a clear
trend showing that larger ~t ~

data for lower ener-
gies deviate from the scaling curve and as energy
increases from Phb =3 GeV/c, data for larger
values of ~t( tend to lie on the scaling curve. All

from the scaling curve. As the energy increases,
data for larger and larger values of ~t~ tend to lie
on the scaling curve. However, all the data points
lying within ~t~ ~0.5 GeV for Phb=3-200 GeV/c
fall on the same scaling curve.

C. K+p scattering
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ing. The spread for larger ( t

~
is due to the fact that

scaling curves for the two processes are not exactly
the same.

the available data for P» o 50 GeV/c lie on the
scaling curve.

D. E p scattering

The available data on forward slopes '& for
this process are quite erratic and oscillate very
rapidly at low energies. As has been pointed out
in Ref. 17, the only theoretical formula which has
given a good fit to the oscillatory pattern on the
data is due to Barger and Cline. But this work
has been strongly criticized by %care'4 who has
pointed out that the range of energy in which the
theory should work is much larger than the
authors" have used in their calculation, and that
there is not even a qualitative explanation of the
shrinkage-antishrinkage pattern at lower and inter-
mediate energies. Our formula" is free of this
type of criticism and the analysis of Ref. 17 with
formulas (13) and (15), fixed-u lines of zero, and
o.(s) = const yielded oscillations in the low-energy
region. This is due to the overlapping boundary
structure in p„which is related to the slope-
parameter formula. Regarding oscillations, we
do not expect better results from the present
formula. Because of the inherent inability of the
formulas to match rapid oscillations in the data,
the oscillatory pattern of the data below s =2.5
GeV' is avoided withthe supposition that their large
contributions to the y2 value might obscure true
information about the use of s-plane analyticity.
For data analysis we use 122 data points ' ' for



CON VERGENT PO L YNONIIAL EXPANSION AND. . . . II. 177

do =0.3731,

d, =0.0146,

u, (s) =0.0129 GeV',

C = 1.505,

g = -0.1397,

~ =0.070 GeV,

(26)

which yields a g'/NDF value 4.83 (9.45) for forward
(nonforward) slopes. This fit suggests asymptotic
behavior like -lns and is shown by the solid curves
in Fig. 8. Using other possible combinations of
parameters did not improve the fit and the values
of other parameters introduced were consistent

I

small
~
t

~
values as forward slopes in all available

energy ranges with s ~ 2.5 GeV, including those
from Refs. 25 and 26 which were not included
earlier, " and 22 data" ""points at high energies
for ~t~,„=0.2 GeV'. We use the same type of formu-
la as in K'P scattering except'for the fact that for

we use the effective shape as described in&K p
Ref. 17. The best-fit values of the parameters
are

with zero. The fit to the forward slope has been
extrapolated to the lower-energy region in which
the data points are denoted by solid circles and
were not taken for X' fit. It is clear that the oscil-
lation of the slope parameter is beautifully re-
tained. It is clear that our formula gives a good
description of the average of the data in all energy
ranges. The strong behavior in this case also lies
outside the figure of convergence for all energies
except for q'-0, ; although it lies on the figure of
convergence for s-~. From the value of X ob-
tained from data analysis, we observe that the fit
to the data requires an effective shape of spectral
function which yields the domain of analyticity
somewhat smaller than the theoretical one for the
absorptive part of the amplitude at lower energies.
We have tried a fit by chosing the theoretical
value X =m, and varying other parameters. In that
case there is almost no change in the fit of Fig. 8
for higher energies, although there is a change at
lower energies. But such a change in the fit at
lower energies does not affect our results o~
scaling discussed below.

The unknown parameters in y being thus deter-
mined, we now plot the data" ""on f(s, t) against
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=0.2 GeVt for which the vertical scale is shown at the
right-hand side of the figure. Closed circles denote data points at a lower-energy region which were not taken for the
fit. The solid lines indicate our fits.
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X in Fig. 7, where scaling for K'P scattering has
also been displayed. This is done with the inten-
tion of studying whether the data of K P scattering
scale individually or in a combined fashion with
that of E'P scattering. It is clear that the data on
&'P and K P scale individually and also in com-
bination in the corresponding y's. In the case of
K p scattering, all the data for lfl - 1 GeV and
starting from P„b = 3 GeV/c onwards, lie on the
scaling curve. As energy increases, data for
larger ~t ~

approach to lie on the curve. The data
for smaller P» and larger ~t ~

tend to deviate from
the scaling curve. I

(i) r+p scattering

For m 'P scattering the best-fit values of the
parameters are

do =0.4010,

dx =0.1102

u, (s) =0.2904 GeV',

C = 1.2112,

g = -0.1875,

~ =0.184 GeV.

(27)

E. n'-p scattering

For m'P scattering we use fixed-. u lines of zero,
elastic boundaries for t~, , and effective bound-
aries for t&, as described in Ref. 17, along with
the formulas (13)-(15) and (5b) for data analysis.
In these cases we also avoid rapidly oscillating
data" below s=5 GeV for s'P scattering, and
s=4 GeV' for m P scattering. Use of fixed-u lines
of zero introduces infinities as seen in Ref. 17, but
the infinities can be avoided by using curved line
of zero. " Both the types of lines of zero yield
almost the same fit for the high-energy region. "
For this reason we test the impact of the use of
s-plane analyticity on data analysis by using only
the fixed-u lines of zeros.

For this fit, 52 data points for forward slopes'
and 16 data points"" for the slope parameter at
~t~,„=0.2 GeV' were taken. The value of ys/NDF
for the fit is 3.75 (26.3) for forward (nonforward)
slopes. The contribution to. the y' value due to
four data points for nonforward slopes is 336 out
of the total 369. The value of C indicates that the
strong behavior is removed from the interior of
the figure of convergence for all practical purposes
except for q'-0, although it lies closer to the
origin than those in PP, PP, and K'P scattering.
The fit has been shown by the solid curves in Fig.
9. We find that it is difficult to reconcile the. for-
ward slope data of Foley ef a/. ,

" in the range
12 ~ s & 40 QeV' with other data points at higher
and lower energies. It has been concluded by
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do =0.480,

d~ =0.0527,

u, (s) =0.312 GeV',

C =1.22,

a = -0.187.

(28)

This yields the y2/NDF value 14.4 (12.1) for for-
ward (nonforward) slopes. In this case also, most
of the contributions to the y' come from the data
of Foley et aE.' in the region 12 &8 &40 QeV, on
which a similar conclusion as that for m'P scat-
tering has been drawn by the same authors. " We
note that these data also do not join smoothly to
the data at the higher-energy region. One of the
possible explanations of such a feature might be
due to the presence of oscillations at high energies.

Hohler and Staudenmaier, "Krubasik, "and Ambats
et al. ,

~ that these data do not join smoothly onto
the lower-energy results. . In the present analysis
we conclude that neither of these data join smoothly
onto the higher-energy data" also. We suggest

. that one of the ways to understand this feature is to
suppose that the oscillation in the slope parameter
observed in the lower-energy region is also pres-
ent at high energies but with larger period. Ac-
cording to the present fit, the data are consistent
with the -lns type of asymptotic behavior. The
value of X obtained from data analysis in this case
is found to be larger than the theoretical value
(A. =m } by about 31%. This gives an effective
boundary of spectral function which retreats
away from the theoretical boundary for energies
near threshold. We tried a fit by fixing X =m,
and varying all other parameters as given
in (27), but found no significant change to the fit
of Fig. 9 in the high-energy region, although there
was a. small change for lower-energy region.
However this change does not affect our conclu-
sions on scaling as described subsequently in this
section. The fit (27) determines unknown param-
eters in }t for w 'P scattering. Introduction of
other types of asymptotic behaviors either wors-
ened or cound not improve the fit.

(ii) m p scatten'ng

In this case also, formulas similar to those
used for p'P scattering were used for fitting 48
data points""" of forward slopes for s & 4 GeV'
and 19 data points"" for the slope parameter at
high energies for ~t~,„=0.2 GeV . Although an
attempt was made to fit the data with an effective
shape" for g+, the data are found to be con-
sistent with elastic boundary X =m, . Thus, best
fit in this case is obtained with one parameter less
than that for m'P scattering with

In this case also, the fit is consistent with a -lns
type of asymptotic behavior. For the nonforward
data, only one data point contributes 125 to the
total y' value of 219. Without this, y'/NDF for
nonforward slopes is 5.8. The fit (28) has been
shown by the solid curves in Fig. 10. It is clear
that our fit describes the data reasonably well.
The position of the point corresponding to the
strong behavior as decided by the value of C is
almost the same as in m 'P scattering. Including
other types of asymptotic behaviors in the formula
either worsened or did not improve the fit.

The values of unknown parameters in y for n P
scattering are given by (28} and that of m 'P scat-
tering by (27). With the knowledge of y's for these
two processes, we now plot the smaller-angle
data" ""on f(s, t) against the corresponding y's
in Fig. 11. It is clear that the data for these two
processes individually and in combination lie on a
scaling curve. Figure 12 shows the plot of data
for still larger values of ~t ~

in the same energy
range. Although data points for high energies are
not adequate to exhibit a prominent scaling curve
as in the case of PP scattering, there is a clear
trend showing that data for larger values of ~t ~

and smaller values of P~~ deviate from scaling
curve. As energy increases, data for larger
values of ~t

~

tend to lie on the scaling curve. In
both cases all the data points starting from P~~
= 3 GeV/c and within [t~ ~ 1.25 GeV lie on the
scaling curve. Data at all available values of ~t ~

with P „b ~ 50 GeV/c lie on the scaling curve.
In concluding this section we remark that the

use of the s-plane analyticity along with that of
the x plane by CPE has improved fits to the slope-
parameter data both for forward and nonforward
angles. Ambiguity about the possible presence of
strong behavior in the interior of figures of con-
vergence for various processes has been clari-
fied. The use of s-plane analyticity has served as
a useful tool in getting information on the asymp-
totic behavior of slope parameters. By using the
s-plane analyticity along with that of the x plane,
we have been able to demonstrate early on the set
of scaling for different elastic diffraction scatter-
ing processes in a systematic manner. The re-
sults on the asymptotic behavior of slope param-
eters, the values of C, the maximum value of ~t~

within which all the data starting from Ph,&
= 3

GeV/c scale, and the range of energy investigated
for scaling have been summarized in Table I for
different processes.

Concerning the results on scaling we find that
not only the data for smaller values of ~t~, but
also the data for larger ~t~ scale in a remarkable
manner as demonstrated clearly in the case of PP
scattering. Of course the minimum value of P&,&
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TABLE I. Information on the location of strong behav-
ior, asymptotic behavior of the slope parameter, and
scaling of cross-section-ratio data for different diffrac-
tion scattering processes. For asymptotic behavior the
symbol "-"is to be interpreted as "likely to be". (t)x„x
denotes maximum range of ~t ( of the data for P~,&=3
Gev/c which lie on the scaling curve. The parameter &

vrith. a negative sign gives the position of strong behavior
in the x plane.

Process

Asymptotic
behavior of

Value of, slope
parameter

Range of P»b
(Gev/c)

investigated
for scaling

I& I max

(GeV )

1.913
1.917

1.961
2.400

1.974

1.505

1.211

1.220

-(lns) 2

-lns

-const
-(lns)

lns

-lns

lns

lns

3-1500

3- 200

3- 200

3- 200

3- 200

3- 200

1.25

0.50

2.0

1.0
1.25

1.25

for which scaling starts for larger- ~t~ data is
larger than that for the smaller- ~t ( data. In par-
ticular, the recent data of Akerlof et aE.'-' and
Hartmann et al.39 at Pa~ =200 GeV/c lie almost on
the same curve on which the data of De Kerrett
et al."at Pi,q = 1500 GeV/c lie in the scaling plots
of Figs 3(a) a.nd 3(b). To our knowledge there is
no other scaling variable in the literature in
which scaling of the data has been so systematical-
ly exhibited for various processes. It can be
arguedl that the present model has been developed
for near forward angles and need not work in rep-
resenting the data at larger angles. Although there
is no convincing explanation yet as to why there is
scaling for larger- [t ~

data, some heuristic plaus-
ibility arguments can be put forward, as has been
done in Ref. 10. First, the real part may be im-
portant for larger angles but the same conformal
mapping variable can be used to represent the real
part at very high energies at which the domains of
analyticity for the real and the imaginary parts
are the same if we ignore pole singularities.
Second, the short-range forces which possibly in-
fluence larger-angle scattering are represented
by more distant branch points and by the conformal
mapping, although more distant branch point struc-
tures have not been explicitly included, their in-
fluence is indirectly taken into account by bringing
them to closer vicinity of the physical region in
the mapped plane. An alternative plausible heuris-

tic explanation may be that the real part effects
and influence due to short-range forces are neg-
ligible for high energies and at least within ~t ~

~ 10
GeV'.

IV. RESULTS AND DISCUSSIONS

Use of Mandelstam analyticity of the x=cos8
plane alone, "" could not explain high-energy be-
havior of slope parameters in PP, K'P, and p'P
scattering. This deficiency of. the proposed formu-
la'6 is ascribed' to the lack of inclusion of the
s-plane analyticity. Using Mandelstam analyticity
of the s plane for the absorptive part of the scat-
tering amplitude along with that of the x plane by
eonformal mapping, in which the correct physical
region in the mapped plane for Laguerre-poly-
nomial expansion is achieved only for asymptotic
energies, forward slope-parameter data i'or PP
scattering in a.ll energy ranges could be fitted
well, ' with effective shape of boundary function.
However, all the high energy data with s ~ 35 GeV'
could be fitteP with theoretical boundary. Experi-
mental data on the PP cross-section ratio starting
from P„~ =50 GeV/c and all available values of
~t ~

appeared to scale against a variable y(s, t).
But even the data near forward angles for a few
GeV/c of the laboratory momentum stayed clearly
away from the scaling curve. The onset of sealing
from such large values of laboratory momentum
may be possibly due to the achievement of the
correct physical region only at asymptotic ener-
gies and that expansion in Laguerre polynomials
is an asymptotic one. This type of conformal map-
ping and OPE suffers from the deficiency that it
cannot explain antishrinkage and shrinkage-anti-.
shrinkage pattern of forward peaks at lower ener-
gies as observed in the cases of pp, K p, and
g'P scattering. " Further, the conformal mapping
used in Ref. 16 for the unsymmetrical cut plane of
analyticity develops spurious 'cuts in the mapped
plane which affect convergence of polynomial ex-
pansion. This fact has been pointed out in Ref. 10.

In the convergent polynomial expansion (CPE) in
terms of the mapped variable zy correct physical
region has been achieved for all energies. " The
formula for the slope parameter" explains the
shrinkage, antishrinkage, and shrinkage-anti-
shrinkage pattern at all energies reasonably well,
except for the fact that this formula also fails to
account for the observed behavior of slope param-
eter at asymptotic energies in the cases of pP,
g 'P, and p'P scattering. In this work, analyticity
of the s plane for the absorptive part of the scat-
tering amplitude has been used along with the
variable z, to construct the variable y(s, t) = a(s)z„
where n(s) is constructed by conformal mapping
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of the s plane and CPE. Unitarity restriction does
not allow more than the first two (three) terms in
Taylor series in a parabolic (strip) variable. The
variable y(s, t) has the potentialities of reproducing
known scaling variables, ' ' Regge behavior in the
amplitude, and providing information about the
asymptotic behavior of the slope parameter of the
type -(lns)» where p =0, l, 2.

In Ref. 17 only the data on forward slopes were
used for the fit and the recently published data.
both for forward and nonforward slopes were not
used. Also, efficiency of the formula" to fit the
nonforward slopes was not tested. In the present
work we find that at most the first two terms in the
expansion are sufficient to fit the forward slope-
parameter data, including the recent data, at all
energies and the high-energy slope parameters at
~t~„=0.2 GeV for pp, pp, K'p, and v p scattering
reasonably wel. l, although only the first term in
the expansion is sufficient in the cases of PP and
&'p scattering. The data on K'p and m'p scatter-
ing are consistent with -lns type of asymptotic be-
havior, whereas the data on PP scattering cannot
distinguish between -1ns or -(1ns)' type of asymp-
totic behavior. Although apparently PP and K P
data support a constant type of asymptotic behavior, "
the fits to the data are improved by including a
formula with -lns (-(lns)') type of asymptotic be-
havior for K p (pp) scattering. The values of y'/
NDF for the forward slopes are improved (in some
cases very much improved) over that reported in
Ref. 17 for all the processes even after including
the recent data. 2' In Ref. 10 an effective
boundary of spectral function p„, which retreats
away from the theoretical one for lower energies,
was necessary to fit the slope-parameter data for
all energies. However, the data for high energies
with s ~ 35 QeV' could be fitted well with the theo-
retical elastic boundary. In the present paper the
slope-parameter data in all cases have been fitted
with the theoretical boundary except for K p and
g'p scattering. For K p scattering the effective
domain of analyticity of the absorptive part used
for the fit is smaller, whereas for m'P scattering
it is larger than the theoretical one at lower ener-
gies. These are not desirable features according
to 8-matrix theory, which emphasizes the maxi-
mal influence of nearest singularities computed
from box graphs. " We therefore examined the
type of fits obtained with theoretical boundaries.
The fits with theoretical boundaries are different
from the ones presented here only at lower ener-
gies and do not affect our conclusions on the
asymptotic behavior of slope parameter and scal-
ing as described in the present paper.

The asymptotic behavior of slope parameters
from data analysis is important from the point of

view of exact results based upon principles of
AFT." Recently Martin" has proved that asymp-
totically the slope parameters for ~t ~

=0 for the
processes A. +8-3+8 and A. +9-4+8 are equal.
The analysis of m'P data supports the same rate
of growth for the slope parameters, like -(1ns),
for both the processes. There are indications in
this analysis that K p slope may grow as -lns,
the same rate of growth hs K'p scattering, and pp
slope may grow as -(ins)', one of the rates of
growths for PP scattering. in none of our analy-
ses have we been able to obtain the equality be-
tween particle-par ticle and antipar ticle-particle
slopes asymptotically. It may be remembered that
errors in the parameters are important before
drawing such conclusions. In this analysis, errors
in the parameters could not be obtained owing to
exigencies in programming in the IBM 1130 Com-
puter. Although the extrapolation of slope param-
eters to infinity will be carried out in a separate
paper, we suppose that data for s = 1000 GeV are
necessary for K'p, hp, and. m'p scattering to
verify the asymptotic equality" of slope param-
eters. To determine all the yarameters in the
formula it has been necessary to fit both the for-
ward and the nonforward slope-parameter data.
From the values of the parameter Q for different
processes, we find that the strong behavior for
every process lies outside or on the figure of con-
vergence in the mapped plane for all energies ex-
cept for the case s- s&~ when itmay]. je in the in-
terior. The distance of the location of strong be-
havior from the origin in the mapped plane for
g'P scattering is found to be nearer than that in

PP, PP, and K'P scattering.
More important is the result of the present work

on scaling. The variable y(s, t) reduces to the
scaling variable" tb(s) for s» su, and ~t ~

« t„,
and has the potentiality to behave, if unitarity
bound is saturated, like the variable' t(lns)' in
this kinematical region. For s» stl, and all angles,
the variable is like b(s)z, . We note that results' '
based upon principles of AFT suggest scaling
variables for small ~t ~

and s- ~, whereas y(s, t)
reduces to the variables for s» sty, which con-
dition can be achieved much earlier than the limit
s- ~. The variable y, however, contains unknown

parameters which are determined by fitting the
slope-parameter data as described above. When
the cross-section-ratio data for different proces-
ses are plotted against the corresponding y's, all
the available data for every process starting from
P~,q =3 GeV/c and for )t~- )t[ ~, where ~t[ in
general varies from process to process, lie on a
separate sealing curve. As the energy increases
from P„~ =3 GeV/c, data for values of ~t~ larger
than [t ~~&„ for every process and any fixed energy,



19 CONVERGENT POLYNOMIAL E XPAN SION AND. . . . II.

lie on the corresponding scaling curve. Cross-
section-ratio data for all available values of lt l

and for P„b ~ 50 GeV/c lie on the corresponding
scaling curve for every process. The values of
ltl are 1.25, 0.50, 2.0, 1.0, and 1.25 GeV for
pp, pp, K'p, K p, and ~'p scattering, respec-
tively. Although the scaling variable y is different
for different processes and scaling curves for PP
and PP appear to be different, scaling curves for
g 'p and p P scattering appear to be the same.
The scaling curves for K 'p and K p scattering
appear to be almost the same. Qur scaling for
every process appears to be better than all other
existing plots, particularly those of geometrical
scaling ' M in the variable to&„and that of Divak-
aran and Gangal' in the variable to„,~/o, ~, and
almost the same as that of Hansen and Krisch~ in
the variable ut o„,(s)i[so „,(s)]for pp scattering
at small t, but better than these for data at larger
ltl values. Particularly in the case of pp scatter-
ing, the energy dependence for data within lt l

~ 1.25
GeV' has been very effectively removed, more
effectively than what has been done in Ref. 10.
As in Ref. 10, the present variable y proves to be
a remarkably good scaling variable even for high-
energy data for larger values of lt l lying well out-
side the diffraction peak region. In particular,
recent data for pp scattering at all available values
of ltl and P,+=200 GeV/c and 1500 GeV/c lie on
the same curve. This is evident from Figs. 3(a)
and 3(b). The scaling of the v' p, and j5p scatter-
ing appear to be similar. Although scaling of the
g 'p and g 5 scattering cross-section-ratio data
are individually similar to that of PP scattering,
there is a spr'ead in the scaling curve in Fig. 7

where the individual processes have been plotted
together. Results based on AFT predict scaling
only in the asymptotic energy region and within
the diffraction peak ltl & 4m, '. In this analysis,
scaling in the variable X has been achieved much
earlier in the energy scale and for much larger
values of lt). The possible main reasons for the
early onset of scaling might be due to the achieve-
ment of the correct physical region for all ener-
gies and the possibility that X reduces to the known

scaling variables earlier in energy scale than the
limit s- ~. Qther possible reasons may be the
special weight given to the right-hand cut as com-
pared to the left-hand cut and the additional con.—

vergence of CPE in the kiriematical region for
which ltl ts and 14q'+t~-a/sl ltl In Ref'. 10
it was found that expansion in terms of Laguerre
polynomials in the mapped variable z is an asymp-
totic expansion. At finite energies, however, con-
vergent expansion was possible for any finite ener-
gies with orthogonal polynomial whose nature and
the convergence of the series vary with energy.

But QPE was shown to be an asymptotic property.
In the present case, CPE'in terms of Laguerre
polynomials in the variable z, is possible for all
energies where the convergence of the series for
any particular process increases with energy.
Hoever, again in this -case, QPE is achieved only
at asymptotic energies.

Auberson, Kinoshita, and Martin4 have shown
that the amplitude ratio for the absorptive part.
becomes an entire function of their scaling variable
for s -~ within the diffraction peak. In the pres-
ent case we find from Table I that there are indica-
tions for every slope parameter to grow like -lns
or -(lns)' for s-~. Thus, in the plane of the
variable y(s, t) =n(s)z„ the images of the cuts
move away to infinity for s- ~, but the physical
region is still the right half of the real axis 0 ~Hey
~~. Thus, in our -analysis also there is evidence
that the domain of analyticity in some or all of the
diffraction scattering processes may be the entire

X plane minus the points at infinity when s- ~. In
this limit the image of the cuts coincide with the
limiting parabola whose interior is the image of
the entire domain- of analyticity of the x plane and
CPE becomes QPE. It might then be possible that
the same number of terms with the same coeffi-
cients represent the data for different energies in
the asymptotic energy region. Qur data analysis
on scaling suggests such a possibility and that
scaling starts earlier in the energy scale for the
data near forward angles. Cornille' has defined a
class of scaling functions in which are included
series in orthogonal polynomials including Laguer-
re, but excluding Hermite polynomials. In the
present case we find. that a series in Laguerre
polynomials in the variable y is a good candidate
for scaling function. In this paper no attempt has
been made to find out scaling function. The scaling
function can be determined by fitting the cross-. -

section-. ratio data in the scaling region covering
a wider angular range for any energy after PL,b
= 50 GeV/c. Then the CPE (8), with the coeffi-
cients e„'s determined by this data fitting repre-
sents scaling function. This work will be carrj.ed
out and reported in a future paper.

Finally, we summarize limitations and possible
flaws in the representation developed here. Some
of the limitations are common to this paper and
Ref. 10. Here only the cut contributions of the
absorptive part of the amplitude have been used to
develope a representation for the differential cross
section and the contribution due to poles has been
neglected. It is well known that poles lying on the
real axis contribute to the real part. There are
many works4 9 in the literature which neglect pole
contributions. It has been shown by Singh and Roy'
by model-independent analysis that the unitarity
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upper bound of the absorptive part of the ampli-
tude saturates the- high-energy data near forward
angles for pN and pp scattering. " Experimental
measurements at high energies show that the real
part of the amplitude is small near forward angles
for pfpf, z&, - and && scattering. But away from the
forward direction, interference between pole and
the Pomeron (cut) contribution may be substantial,
thus contributing to the slope. In the present
paper, pole contribution for nonforward angles
has not been included. But it is apparent that the
explicit introduction of pole contribution will spoil
simple realization of scaling, as has been des-
cribed in this paper. Second, the rate of conver-
gence of the series expansion in terms of I aguerre
polynomials is not unique with respect to energy.
For any particular process, the convergence of
the series increases with energy reaching its
maximum only at asymptotic energy. Third, it
can be argued that the present model has been
developed for scattering near the forward angles
and need not work in representing large-angle
data. But actually, at very high energies, scaling
of the larger-angle data lying well outside the dif-
fraction peak region is observed to be occurring
for PP scattering. There is no convincing explana-
tion yet as to why such a thing occurs in the pres-
ent model, although some heuristic (plausibility)
arguments may be put forward, as has been done
in Sec. III and in Ref. 10: It is possible that at
high energies, if one neglects the pole contribu-
tion, the same parabolic variable can represent
the, real part also, because at these energies the
distinction between the domains of analyticity
drops out. Further, the possible influence of
short-range forces for large-angle scattering,
which are represented by more distant branch
points, has been indirectly taken into account by
conformal mapping that brings the position of such
branch points to closer vicinity of the physical
region in the mapped plane. Alternative plausibil-
ity arguments may be that real part effects and/or.
the influence of short-range forces may be neg-
ligible even at the large range of ~t ~

used in this
paper. Fourth, a limitation of a serious nature
arises when conformal mapping of the type 'des-
cribed earlier" and in Ref. 10 are used for the
unsymmetrical cut x plane of analyticity. In that
case, '0 spurious cuts occur inside the:figure of-

convergence in the mapped plane which do affect
CPE or OPE. In the present case also, the square
transformation involved in g(x) introduces spurious
branch points at z, =0 (y =0) and z, =~ (X = ~),
giving rise to a spurious cut completely overlap-
ping the image of the physical region in the z, (y)
plane. Regarded as an analytic function of x, the
conformal transformation z, does not introduce

extra branch points except those obtained from
dynamics for all cases except for pp scattering.
Therefore, the representation does not violate
analyticity for any other process except for Pp
scattering. It may be questioned whether the
spurious cut affects convergence of polynomial
expansion in the mapped plane. At present we do
not have any clear answer to such a question but
provide examples of analyses where branch cuts
of a more serious nature are present. In the work
of Ciulli, ~ results on the convergence of poly
nomial expansion have been:taken to hold true in
the presence of an artificial cut present in the in-
terior' of the figure of convergence covering the

. entire physical region. Barrelet" has used the
theory of analytic approximations with conformal
transformation, which introduces cuts explicitly
in the physical region. In the presence of the
spurious cut lying on the physical region, the
convergence of polynomial expansion perhaps
holds true for physical values of the. variable with

Rez, + i~ or Rey.~is prescriptions, - above or below
the spurious cuts. Therefore, we suppose that
such a spurious cut may not cause any trouble
for convergence so long as its presence is con-
fined to the image of the physical region only in

the mapped plane. A serious objectionable feature
which occurs for PP scattering only is due to the
introduction of KrischI type of line of zero into
conformal mapping. Such a line of zero iritro-
duces spurious branch points in the s plane as dis-
cussed in Sec. III and violates the analyticity pro-
perty of the amplitude. Since the parameter a is
negative for this line of zero, the images of these
branch points lie on the Imp (Imp) axis. The con-
vergence of Taylor series in g (7)) is, therefore,
limited due to their presence. In spite of this
flaw, we have used Krisch type of line of zero pn

the absence of any other definite line of zero for
PP scattering and for the sake of simplicity since
it contains no other free parameters.

Our formula for slope parameter has not pro-
vided an adequate explanation for the oscillatory
pattern of slope parameters in the lower-energy
region in the case of m'p scattering, for which it
describes only the average of the data, and g P
scattering, for which oscillations have not been
fully described. Such lower energies do not enter
into the scaling region as described here. In the
case of m P scattering, the oscillatory pattern
near threshold energies has been described'~ using
a curved line of zero. It has been speculated"
that the inclusion of complex zero trajectories"'
into the formula may explain observed oscilla-
tions. Such a conjecture has been found to be true .

recently, at least in the case of m p scattering.
The scaling in.the variable of Krisch type" has
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been hypothesized and geometrical scaling has
been assumed by Dias de Deus. 3 In these cases,
of course, the hypothesis or assumption has been
supported by physical arguments. Scaling 'in the
variables' ' obtained from the principles laid down

by AFT are based upon more rigorous mathemati-
cal foundations; scaling in the variable of Ref. 10
and in the present work is riot proved a prior but
hypothesized from, considerations of uniqueness of
OPE at asymptotic energies in the context of
parabolic transformation. Experimental data on
cross-section ratios have been used to justify
such a hypothesis. As has been remarked in Ref.
17, experimental data are always not enough to
justify the representations used. Clearly, many
other representations using different types of con-

formal transformations may be possible. Never-
theless, our investigation provides a global under-
standing of diffraction scattering.
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